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Current-induced flow of superconducting domains similar to the flow of normal domains
(f]ux flow) has been observed in the intermediate state. A theory {neglecting the Hall effect)
is presented for the motion of domains in an intermediate state of arbitrary topology, With-
out pinning, the current in the normal regions is uniform and equal to Jo, the average current
density. Domains move with velocity vD =c4p/oH, . Both results agree with those previously
derived for flux flow. Introducing pinning gives agreement between the predicted and mea-
sured velocities.

A dynamic current-carrying intermediate state
was first discussed by Gorter, who suggested that
a transport current could induce motion of laminae
perpendicular to the current. Although attempts
to observe this particular phenomenon have pro-
duced conflicting results, ' current-induced motion
of simply connected normal domains (flux flow) has
been demonstrated by several experiments. ' Re-
cently, we have observed that a transport current
can also induce a flow of simply connected super-
conducting domains, and it appears from our ob-
servations that any intermediate-state topology is
unstable with respect to transverse motion in the
presence of a transport current. In this paper we
describe the characteristics of superconducting
domain flow and present a theory of the current-
induced motion of domains of arbitrary topology.
In the theory, the magnetic field is assumed to be
perpendicular to the transport current and the Hall

effect has been neglected. The electric field with-
in the normal regions is calculated using Maxwell's
equations and the condition that the electric and
magnetic fields vanish withi'h the superconducting
regions. Using this electric field, the domain ve-
locity v& is obtained by solving a power-balance
equation which equates the power supplied by a bat-
tery with the power dissipatedby Joule heating and

by pinning or motion-induced thermal gradients,
This formulation avoids the difficult problem of
defining the force on a domain. For normal do-
mains, where there is no dissipation in the absence
of motion, the force has been obtained by thermo-
dynamic arguments, ' but this approach is not di-
rectly applicable to superconducting domains where
there is dissipation in the absence of motion.

The intermediate state gras observed using the
magneto-optic rotation in a thin film of EuSe& p 9~

Eup~«&& evaporated onto the sample surface. "
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FIG. 1. Four sequential photo-
graphs illustrating the motion of
superconducting domains {dark
regions). The arrows point to
the same domain in each picture.
The samp1e is a rectangular Pb
slab 4&&12 &&40 mm. The small
superconducting inclusions in the
left-hand picture have been re-
touched for illustrative purposes.
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When more than about half of the sample is normal,
current-induced flow of simply connected super-
conducting domains occurs. An example is shown
in Fig. &, which consists of four sequential frames
of a motion picture film. Several superconducting
laminae are perpendicular to the current" and sev-
eral shorter superconducting laminae are at other
angles to the current. The entire pattern, includ-
ing the gaps in the vertical laminae, moves with
only slight deformation from top to bottom. In ad-
dition, there is motion of small superconducting
domains, aligned roughly with the direction of the
current, which appear in the regions between the
large laminae. These small inclusions are thought
to be part of a Landau branching structure.

The pattern can be made to evolve continuously
from normal domain flow to superconducting do-
main flow by slowly increasing the applied field at
constant current. The direction of motion of super-
conducting domains is the same as that of normal
domains. Quantitative measurements of the de-
pendence of the superconducting domain velocity' on
current and applied field show a behavior similar
to that for normal domain motion.

To calculate the domain velocity v~ induced by
a steady transport current I, we construct a power-
balance equation

Pp(I vp) = Pz(I, vc)+Pl, ,

where Pp(I, vD) is the power supplied to the sample
by a battery, Pz(I, vp) is the power dissipated
through resistive losses in the sample, and I'I. is
the power dissipated through other losses (e. g. ,
pinning or motion-induced thermal losses ). The
terms P~(I, vn) and Pz(I, vn) may be calculated
by determining the electric fields in the presence
of moving domains. Then, vD is determined from
E&l. (l) when Pl. can be defined.

For calculating Pp(I, vD) and Pn(I, vp) the hy-
pothetical geometry shown in Fig. 2(a) is useful
because its cylindrical symmetry ensures that do-
mains move continuously in circles without encoun-
tering a sample edge. The sample in the interme-
diate state (hatch-marked) is a tube with cross-sec-
tional area g, length l, normal-state conductivity
0, and critical field H, . It is connected at top and
bottom (d and c) by tubular superconducting leads
(solid) to a variable voltage source at points a and

The source maintains a constant current I.
The average current density is Jp=I/O, . The ap-
plied field H, is directed radially through holes in
the inner superconducting lead.

The electric fields E„(r)and E~(r) in the nor-
mal and superconducting regions, respectively,
must satisfy the following conditions: (a) Es(r) = 0
a,way from a domain boundary; (b) nX E„(r)= —n
&&(vo && H, )/c near a moving domain boundary whose
normal is R. ,

' where H, is the magnetic field in
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FlG. 2. (a) Hypothetical geometry used in the analysis.
(b) Side view of the cylindrical sample in the intermediate
state showing schematically the electric fields for an
irregular superconducting domain (shaded) .

the normal region; (c) I= J ~ J(r) ~ da, where &

is any surface within the sample which breaks all
current lines. If some S (called S„)is entirely
normal, then one may write

I=of, E„(r)'da.

[i.e. , E~(r) does not affect the total current]. If
there is no &„,then Ep(r) = —Ep over the entire
sample.

Expressing P~(I, 0) in terms of these field dis-
tributions, one obtains

P~(I, 0) =IV= —If Vp(r) ~ dT =If, [Ep+Ep(r)] ~ dl,

the last expression beirig valid since E(r) = 0 in the
super conducting leads. Because the line integral
is the same for any c and d at the sample ends, it

These conditions appear to be sufficient to ensure
uniqueness of the solution for the electric field.

The power-balance equation for moving domains
may be written in terms of the electric field and
dissipation a.ssociated with static domains, so we
examine static domains first. Consider the simply
connected superconducting domain (shaded) in a
normal strip shown in Fig. 2(b). The total field
E(r) may be written as Ep+ Ep(r), where Ep= z Jp/o'

is the field which would occur in the absence of any
superconducting domains. Thus ED(r) resembles
a polarization field. Boundary conditions require
Ez&(r) to have the following properties: It must be
perpendicular to the surfaces where the supercon-
ducting leads connect to the sample; within the
superconducting regions En(r) = —Ep; and if there
is an entirely normal surface 3„,then

En(r). da=0
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may also be converted to a volume integral:

d

Ps(I, 0) = - [Eo+ E~(r)] ~ Eodz
Eo 8

C

ample

[E+E (r)] E dr

= g [E,+ E~(r) ] ~ Ed'r,
N

Ps(I, 0) = Ps(I, 0)= P(I, 0) .

This equality yields the following result which wiB
be useful later:

where f„stands for the integral over the normal
regions.

The power dissipated resistively is

Ps(I, 0)= f„E(r)~ j(r) d y=, f„[E,+E,(r)] d r

The power dissipated by the normal currents in the
domain boundary region is neglected since this vol-
ume is small compared to the domain volume for
bulk type-I superconductors. Although the super-
currents in the boundaries undergo accelerations
as the domain moves, there is no net energy change
in the supercurrents and the process is nondissipa-
tive.

For static domains there are no other dissipative
processes, so

Ez(r) = [Eo+ E~(r)] + E~(r) '„+—v && H, = 0,
cEo' z

E„(r)= [E,+ E,(r)]+ E,(r) '
cEo' (4)

Substituting Eq. (4) into Eq. (5) and using Eq. (3)
yields

P, (I, v, )=P(I, 0)- ' ' v
~

E', (r)d'r (6).

For moving domains, the power delivered by the

battery may be written Ps(I, vn) =If', E(r) dl, where
the line integral is taken through the battery and

E(r) = —V p(r) —X (r)/c is the total electric field.
A more useful expression for Ps (I, vn) may be ob-
tained by noting that (X (r)) = 0, where angular brack-
ets denote the time average taken over a complete
revolution of the domain pattern. Then (f', E(r) dl)
must be independent of path since it equals
(- f, '7y(r) dl) and the latter is independent of path.
The axially symmetric placement of the battery and

voltmeter ensures that P~(I, v~) is constant in time
for constant v~. Therefore, we have

Ps(I, vz) =(Ps(I, vD)) =I(f,'E(r) dl) =I(f~E(r) dl ) .

Since the domain pattern simply rotates as a func-
tion of time, it is possible to convert the average
of the line integral from c to d into a volume inte-
gral:

Ps(I, vn) =of, , E(r) ~ Eo d'r

f„[Eo+ E~( r)] ~ E~( r) d'~= 0 . (3) Using Ps (I, vn) = o f„E2(r)d'r and Eqs. (3) and

(4) yields
Now assume that domains move at the velocity

vD in the direction perpendicular to the z axis.
The total field for the moving domain pattern at any
instant of time is constructed by adding proper
multiples of the fields Eo and E~(r), for the static
domain pattern which is congruent to the moving
pattern, and the electric field contributed by the
domain motion. Noting that the Meissner currents
produce a magnetic field —H, within the supercon-
ducting domains we see that the electric field pro-
duced by the motion is the same as that from a
moving solenoid with a constant field —H, over the
same cross section as the super conducting do-
mains. The contribution from such a solenoid is
E...= —v, && ( —H, )/c within the superconducting do-
main and E„,= 0 outside. The total field is the sum
of [E,+ E~(r)], E„,, and some multiple of the field
E~(r) such that the total field is zero within the
superconducting regions. The use of ED(r) as the
additive field ensures that condition (c) is satisfied.
Recalling that E~(r) = —Eo within the superconduct-
ing regions, it can be seen that the conditions
(a)-(c) are satisfied by

Pz(I, v~) =P(I, 0)+ — ' o
~

E~D(r) d3x. (I)
cEo.

In the absence of pinning or other dissipative
terms, Eq. (l) reduces to Ps (I, vD) = P„(I,vn), so the
equality of Eqs. (6) and (V) results in a quadratic
equation for v~, whose solutions are

vD- 0 and vDx H, ~ 2/c = —Eo ~ 2 = —Jo/o'.

The solutions are illustrated in Fig. 3, where
Ps(I, vD) and Ps(I, vn) are plotted. For the moving
domain solution vD = cJo/o ) H, (, we see that accord-
ing to Eq. (4) the field in the normal region is just
E p so the current density J= OE o is unif orm and
equal to the average current density Jp.

The above results depend on Jp, II, , and o, not
on sample geometry. It is reasonable to expect
them to hold for any geometry for which J is per-
pendicular to H, as long as the sample is large
compared with the domain size.

To determine which solution will prevail we ex-
amine the stability at each solution to a fluctuation
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FIG. 3, The power supplied to the sample in the
intermediate state by the battery Pz(I, vD) and the power
dissipated resistively in the normal regions PR(I, vD)
as functions of the domain velocity vD [Eqs. (6) and (7)j.
In the absence of pinning, energy conservation requires
that P~(I, vD) =-P~(I, vD). Thus, solutions for vD occur
at vn = 0 and vn ——c&0/oH~. With pinning, additional ener-
gy is dissipated at a rate P~ so energy conservation re-
quires that P~(I, vD) —P~=Pg(I', vD). The dashed line
illustrates the left-hand side of this equation when Pz~ vD.
The solutions occur for va = 0 and vD = cJp/0+& vp, where
vp is the decrease in the domain velocity due to pinning
EEq. (8)l.

5vD in velocity. For nonstationary situations, we
have

Bg
Ps (I, v n) —Pz (I, vn) =

where 8 is the energy added or subtracted to change
the velocity of the domain. Expanding Ps(I, vv)
—P„(I,vv) in a Taylor series and setting 8 8/Bt
= (8 8/8vn)(svn/Bt) yields

B BS BVD
fPB(I& V D) PB(I, VD) j vD =

BVD BvD Bt

The term in large parentheses is positive for posi-
tive velocity near vD = 0 and negative near eD
=

ciao/o

I H, j. The stability depends on the sign of
8$/Bvn. If 8 has the form of a kinetic energy,
then 8 8/8 vn is positive for positive vn and the so-
lution at vL, = 0 is unstable to positive fluctuations
in vn (5vn and 8 vv/8 I are of the same sign) but
stable to fluctuations about vn = cJa jo i H, ( (8 vo
and 8vz&/ taBre of the opposite sign). This seems
to agree with the experimental observations, but
the dependence of 8 on z L) should be examined in
more detail.

Since the theory is valid for domains of arbitrary
topology, the equations for normal domain flow may
be obtained as a special case. Here, P(I, 0) = 0 and

Ez&(r) = —Ea. We can compute the force f z, per flux
quantum on a unit length of flux line by equating the
total energy dissipated f ~ ~ vv(l 8)/pa) IQ (where
B is the average magnetic induction which is II,
times the fraction of normal material) with the en-

ergy supplied by the battery Pn (I, vz&). Using Eq.
(6) we obtain

f~ ——8'a0 x p Q /c I

the usual result for flux flow. ' We can also com-
pute the average electric field (E}. When normal
domains flow, Eq. (4) reduces to

Ea(r) =0, E„(r)= —vn xH, /c.

Since [Bi /i H, I is the fraction of normal material,
we obtain

(E}= —vox B/c,

which is a well-known result.
As an example of nonzero pinning, assume that

I'I, is dissipation caused by a density P of pinning
centers, each of which absorbs an average amount
of energy e each time a domain boundary passes it.
(It is reasonable to assume that a is independent
of applied field and is proportional to the condensa-
tion energy H, /8v times a factor which involves the
penetration depth and pinning-site geometry. ) As
the domains move there are pS~ l~v& pinning cen-
ters passed per unit time, where 83 is a structure
factor defined as the total area of domain boundary
parallel to the current (and perpendicular to the
domain flow) per unit volume of sample. Thus P~
= (PsSalQ )vn, and inserting Eqs. (6) and (I) into

Eq. (1) we obtain

5g)=Op- Vp,

where

va- cZO/oH„v~ = (c'p)(1/o)(e/H', )(S,/S, ),

St --(1/l .8)J (En/Ea) d x

The pinning term v& is independent of Jp and always
positive. Thus z 0 is an upper bound on the domain
velocity. Figure 3 graphically illustrates the solu-
tions in the presence of pinning which occur when

Pn(I, vn) —PI, = P„(I,vn).
To test this relation we have measured supercon-

ducting domain velocities in a Pb slab by timing
their transit between fiducial marks scribed on the
slab. In Fig. 4 we have plotted o(vn va) deter--
mined experimentally" as a function of reduced ap-
plied field for six values of Jo. In all cases
o(vn —va) is negative within the scatter in the data
and the theoretical prediction that Uo is an upper
bound on v D is therefore confirmed. Furthermore,
it can be seen that o(vn —vo) = —ov~ is nearly the
same function of H, /H, for the four lowest values
of Jp ln agreement with the above expression for
v&, which predicts that ov~ is independent of tem-
perature for T sufficiently below T, . Nearer T,
the temperature dependence of the penetration depth
and coherence length will make s/H, , S„andSa
temperature dependent. This may explain the dif-
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ference in o(vD —vo) for the higher values of J'0.

It is probable that the previously unrecognized

FIG. 4. Experimentally determined values of 0(vD —vo)
as a function of &~/&~ for a wide range of Jo and T.

motion of superconducting domains has affected
earlier data. Superconducting domain flow appears
to be an explanation for the conflicting results of
experiments performed in the geometry first used
by Sharvin. Following Sharvin we have used a
magnetic field close to H, and nearly parallel to the
surface of the sample and have observed current-
induced superconducting domain flow between static
superconducting lamina. The lamina may be the
static features of the intermediate state observed
by Brandt and Parks.

Improved agreement between theory and mea-
surements of noise voltages and thermomagnetic
effects ' at high fields should also result from in-
clusion of superconducting domain flow in those
theories.
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