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The semiclassical impulse approximation is used to calculate the effect on the stopping power
of the charge and magnetic moment of a heavy particle. A stopping-power formula applicable
when 1(p& 10 is derived, where P= (1 —P ), P being the particle's speed in terms of the
speed of light. Applied to neutrons, for which, apparently, no quantum-mechanical result is
available, the semiclassical theory predicts for the stopping power of a medium containing
NZ electrons per unit volume —dE/ds =1.54 &10 3tNZ('P —1)('Y +3) MeV/cm. For most mate-
rials this is equivalent to —dE/pds- 5 &&10 9(& —1)(p +3) MeU cm /g. A method is suggested for
observing neutron energy losses of this magnitude to atomic electrons in gases.

I. INTRODUCTION

The slowing down of a fast, heavy, charged par-
ticle in matter has been calculated quantum me-
chanically in the first Born approximation by
Bethe. '2 The relativistic formula obtained for the
stopping power —dE/ds is

dE
l

mv

Here I is the mean excitation energy of the medium,
m the electron mass, v the speed of the particle,
p = v/c, c being the speed of light, and y = (l —pa) 1 ~ a.

The factor z is given by

x=4vs s XZ/mv

where —e is the electronic charge, ze the charge
of the particle, and NZ the number of electrons per
unit volume in the medium. Characteristic fea-
tures of charged particle slowing down are evident
in the semiclassical impulse treatment made by
Bohr. ' A formula much like Eq. (1) can thus be
derived from classical mechanics when one makes
certain "reasonable" assumptions, which also give
some physical insight into collision phenomena.
In this paper, we use the semiclassical method to
calculate the effect of magnetic moment on the
slowing down of a fast, heavy particle. The result
is used to estimate the stopping power of matter
for neutrons, a quantity apparently not yet formu-
lated quantum mechanically, although mentioned by
several authors. 4'

II. SEMICLASSICAL CALCULATION

Figure 1 shows schematically the interaction be-
tween a heavy particle and an electron at rest at

%e find the electromagnetic field measured in
K due to charge q and magnetic moment p. of the
particle at the position of the electron. The com-
ponents of the electric field measured in K at a
point (x,', x,', x,') due to q are

I I 13Et = qxt/s
I I I 13

Ea = 0, , =Eq/xsa

where s is the displacement of the point from the
origin of K. The magnetic field in K at this point,
due to p, , is given bys

~1(~l) Ss (s ' tt) —jl s
(4)s"

Applying the I orentz transformation to the elec-
tromagnetic field and the coordinates, ~ we obtain
the field components in K:

I
p gxy Sx2Ãl

&p

the position x, =b, x2=0, x3=0 in the coordinate
system E (laboratory system). The heavy particle
(charge q and speed v) is incident along the Xa axis.
As shown in the figure, we form a coordinate sys-
tem K (rest system of the particle) with axes par-
allel to those of K and with the incident particle at
rest at its origin. The magnetic moments of the
electron and particle measured, respectively, in
K and K are u and p, . According to the assumptions
made in the semiclassical approximation, the col-
lision between the particle and electron is swift and
the electron, which is treated as free, does not
move appreciably during the encounter. Further-
more, the path of the incident particle is assumed
not to deviate from a straight line.

A. Electromagnetic Fields
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where
s'= [x', + x', +y '(x, —vt)']'"

and
I'

xlul+ 2l"2+y(x3 tv)V'3 '

The quantities p, „p,„and JLt. 3 represent the com-
ponents of the heavy particle's magnetic moment
measured in E; u» u» and u, represent the com-
ponents of the electron's magnetic moment in K.

B. Energy Loss

With p, = u = gg = 0, the transfer of energy from
the heavy particle to the electron at the position
x1 = b, x2 = x3 = 0 results entirely from the first
term in the electric field component E, : y qx1/s
=yqb/3 . The force due to the component E, is
odd in time and averages to zero over the duration
of the collision. ' With p. t0, however, the mag-
netic moment of the particle contributes to the
electric field components E1 and E2 perpendicular
to the direction of motion in E. The magnetic field
components in E depend on p, and, in addition, I32

depends on q. Because of its magnetic moment,
the electron experiences a force

3pu3 5yvt
3 3, , —by ttvt , -„(b3't —y 3 vt) ) .

The impulses of these components are their time
integrals:

2eq 2e p, 2
IE1 = EE1dt —— +

vb cb

2e p. ,
E2 cb2

4u191 2qu2 4u2P 2IM1= —
b3 b2 + b3

4u1P 2 4u2P1
M2 b3

IE3 =IM3= 0 ~

The components of the total impulse received by
the electron are

2eq 2(e J13—qu, ) 4(u3 p.3
—u, p, , )

cb2 vb3

2et11 4(u1t13+u3t11)
2 b2 vb

I3= 0.

The energy lost by the heavy particle to the elec-
tron in K is

T= (i/2m)(I, +I ) .
A,

where the i, are unit vectors in the directions of
the coordinate axes in E.

The total force on the electron as a function of

time is the sum of FE = —eE and FM, evaluated at
the position x1 = b, x2= 0, x3 =0, where s = ~
= (b +y v t )' and u) =bt1, -yves, 3t. From (5) it
follows that

Fs1= —(ey/r ')(qb 8t13), —

Fs3 = (eye/3 ")[(i/3 ")(&b3u1- yves 3t) —u1], (&)

l3
Fs3 = eyqvt/3. ' .

Differentiating the components (5) of B and com-
bining them as indicated in (8), we find that X2

K

t

X)

3+u1 5by t = „333, , —y tt, vt —,(by, , —yy, ,vt))'V

yu2 3b
33 + ~(vt- 3»))

FIG. 1. Rest systems K' of incident particle (charge

q) and of electron {charge -e). System E' moves with
velocity v in K, which is also the laboratory system for
calculation of stopping power. Magnetic moments, shown

schematically, are P and u.
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db dE 4we q NZ b,„
ds tv b
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FIG. 2. Number of collisions with impact parameter
between b and b+db per unit distance traveled is equal to
the number of electrons in the annular cylinder shown.

As shown in the Appendix, use of this nonrelativistic
form for the electron recoil implies that we make
the restriction y& 10.

dE 1I1RX

= 2mNZ (T)b db,
ds b

min

(14)

where (T) is the value of (13) averaged over direc-
tions of u and p, . We make use of the following re-
lations, which apply to both p, and u:

=1(p. ,&
-=— p, sin8d8dp=o, (~~&= -'~2

0 0

(p, , p, ,&=o, i vj

&u, i,&=&u,. &&a,&=O.

Combining (12) and (13) and carrying out the averag-
ing in accordance with (15) gives

2 eaq' 2e2 p~+ u~q 16u2 p,

3ab 9ab

From (14),

(16)

C. Stopping Power

The stopping power of the medium, assumed to
be uniform and isotropic, through which the heavy
particle passes is obtained by averaging (13) over
directions of u, integrating over impact parameters
from b „to b,„(given below), and averaging over
directions of p.. As seen from (12) and (13), be-
cause T is a sum of powers of the magnetic-mo-
ment components, the order of performing the in-
tegration and averaging operations is arbitrary.
The number of electrons in an annular ring, cen-
tered along the particle's track and having unit
length and thickness db (Fig. 2), is 2mNZbdb, and

so we obtain the stopping power from the expres-
sion

The maximum and minimum values of the impact
parameters are'

b „=yv/P and b „=h/ymv,

in which v represents an average frequency as-
sociated with the motion of the bound atomic elec-
trons. The logarithm term in (1V) is the same as
that in the quantum-mechanical formula (1) if we

write

the energy 2h v replacing the precisely defined pa-
rameter I in the quantum-mechanical formula.
Restricting ourselves to values of y somewhat
greater than unity, we can neglect (1/b, „) com-
pared with (1/b „) in (1'7) (see the Appendix) to
obtain

p, = Pe@/2M~c and u= ueh/2mc, (21)

where M~ is the proton mass. '0 Equation (20) be-
comes

dE 4m' eNZ
l

2y mv
ds tv

(22)

with the restriction 1& y~ 10 imposed, as described
in the Appendix. The second term in the bracket
of (22) arises from the interaction of the heavy
particle's charge and the electron's magnetic mo-
ment. Since y~ 10 and (m/M~)2«1, this term is
the largest of the nonlogarithmic ones. The third
term in the bracket results from the interaction
between the magnetic moments of the particle and
the electron. The last term comes from the inter-
action of the magnetic moment of the particle and
the electron's charge.

III. STOPPING POWER FOR NEUTRONS

Setting z = 0 in Eq. (22), we see that only the last

dE 4we q NZ 2y~mv~
ln

ds tv~

y'm'v' 2e'u'+ u'q' 4u' p'y'm'
3eqh 2c 35

(2o)

Finally, we write q= ze and let p, and i represent
the magnetic moments in units of the nuclear mag-
neton and the Bohr magneton by writing
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= 9.24 xlo~ —(y'- 1)(y'+ 8} Mev cm'/g,
pds

'
A

(25)

where p and A, are the density and atomic weight
of an elemental medium being traversed. Since for
most materials Z/A -0.5, the semiclassical esti-
mate of stopping power for neutrons becomes

dE -5xlo-a(ya-1)(y'+2) Mevcm'/g. (26)
pl8

In aluminum, for example, Eq. (25) gives

= 4. 45M 10 '(ya-1) (ya+ 8) MeV cma/g,

(27)

with y =10, dE/Pds=-4. 54&&10 ' MeVcma/g, which
is about five orders of magnitude smallex' than the
value 1.86 MeV cxna/g for a. pro ton of the same en-
ergy (-10 GeV). The neutron mean free path in Al

{based on a nuclear cross section of 400mb) is about
40 cm. Thus a 10-GeV neutron would lose only
about 5 keg in traveling a mean fx ee path in alumin-
um, according to this semiclassical estimate.

Attempts have been made to detect ionization pro-
duced directly by the interaction of neutrons with
electrons. The order of magnitude of the direct
ionization current to be expected with available
neutron beams can be estimated with the help of

Eq. (26). At the CERN synchrocyclotron, for ex-
ample, the 400-MeV neutron beam has a flux den-
sity of - 2&& 10 neutrons cm 2 sec '. Assuming that
a uniform beam of neutx'ons at this energy traverses
a gas in which an average of 33 eV is needed to
cx'eR'te Rll lon pR11' we fllld fx'onl (26) that R clll'1'e11't

of 3X10 A is p1oduced per glam of gR8 per
cm in the path of the beam. In one experiment at
CERN a current of 10 11A was produced in an ioniza-
tion chamber, containing 1.19 g em 2 of gas, placed
in the neutron beam. ~ The estimated neutron direct
ionization current thus appears to be smallex' than

that produced as a result of nuclear interactions by
about a factor of 10 . This factor could be reduced
some by an optimum choice of chamber gas and by

tw'o terms in the square bracket remain. %'e ob-
tai.n for a neutral particle

dE veabIZy P p,
a m

d8 Qm t." Mp

The relative contribution from coupling of the par-
ticle's magnetic moment to the magnetic moment
and to the charge of the electron is —,'y, Introduc-
ing numerical values into (28) and writing y p
= ya - 1, we obtain for the neutron (p= —l. 9135)

GE =1.52 x10 aaIIZ(ya - 1)(y'+ 3) MeV/cm
(24}

going to higher neutron energies.
A possible way of observing ionization produced

dix'ectly by neutrons has been suggested by Hurst. '
A gas-discharge tube located just beyond the col-
lecting anode of a parallel-plate ionization chamber
Rnd open to the gas in the chamber through a hole
in the anode is triggered by pulses of charge pro-
duced in the eharnber. A similar arrangement has
been used for other purposes. 3 A high-energy
neutron beam, passing through the chamber paralleI,
to its plates, would produce charge mostly in large
pulses following the reactions of neutrons with
nuclei. A small amount of charge —perhaps 10
as little, based on the above estimate —would be
produced ln smRll pulses by the direct ionlzRtion
of atoms by neutrons. The predicted response of
the gas-d1schRX'ge tube 1n time ls R ser'les of lRlge
pulses (nuclear reactions) with an approximately
equal number of smaller ones (neutron ionizations)
intermingled.

The condition 1 &y & 10 that applies to Eq. (20)
and subsequent stopping-power formulas will be
discussed. The ratio b ~/b „=-10ay'Pa/I, v, where
I,„(&10a for all elements) is the mean excitation
energy expressed in electron volts, With I,v = 900,
(b /b „)a-V00 for a 10-MeV ~~cleon, for ex-
ample, and decreases to - 7 at 1 MeV. For con-
venience, we neglected (1/b ~)a compared with

(1/b „) in the nonlogarithmic terms in going from
Eq. (17) to Eq. (20), thereby introducing the re-
striction that y not be too close to unity. This
limitation is also consistent with the breakdown of
the semiclassical concepts used here when applied
to collisions in which a small amount of momentum
18 tr'ansf er'red.

From the relativistic expressio~ T = (PV+ mac )"
—me involving the electron's momentum P after
collision it follows that the nonrelatlvlstlc reco11
formula (13) is valid when

We examine each of the terms in Eq. (16) when

they have their largest value {b= b „}.The first
term gives

p2 4@2 2
2 2

2 2 2 2 2y2
m)n

(A2)

Pa 4aa 0 ~ a a lam'c' 3m ac'b'
min

where o, = ea/Ic = 1/127 is the fine-structure constant
and we have set q = e. In the second term, applied
to the nucleon, p«u, and we find that
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The third term gives

P3 64uP, 4 2 m ~ 642 2 2 'll 2

~ab8 9 (A4)

For y &1Q these terms are small compared with

unity and hence relativistic effects on the recoiling
electron will not be large.
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The electron-paramagnetic-resonance spectrum for SrCl~ .. La ' has been observed between
1.2 and 40 'K. At 1.2'K, the dominant structure is anisotropic and is described within experi-
mental error by second-order solutions of the effective Hamiltonian for an isolated E~ state
split by large random internal strains. Coexisting with the anisotropic structure at tempera-
tures between 1.2'K and approximately 5'K is structure whose position is isotropic but whose
intensity and linewidth are anisotropic and vary with temperature and sample treatment. This
structure is shown to result from rapid direct relaxation between the strain-split vibronic states.
At temperatures above approximately 6'K, only the isotropic structure is observed.

I. INTRODUCTION

The instability of a symmetric nonlinear poly-
atomic complex in an orbitally degenerate state was
demonstrated theoretically by Jahn and Teller. '
Early experimental evidence 4 indicated that the
effects of this instability could be conveniently di-
vided into two categories. Either the complex spon-
taneously became distorted and was stabilized in
a configuration of lower symmetry (static Jahn-
Teller effect), or the complex became distorted
but, instead of being stabilized, was rapidly reori-
ented between several distorted configurations
(dynamic Jahn- Teller effect). Anisotropic electron-
paramagnetic-resonance (EPB) spectra charac-
teristic of a static Jahn-Teller effect were first
reported for Cu2' in trigonal sites of ZnSiF6 6820

at temperatures in the liquid-hydrogen range.
Somewhat earlier, an isotropic EPR spectrum had
been observeds at ele'vated temperatures for the
same system and interpreted4 as a thermally in-
duced reorientation of the complex between
equivalent static distortions, a type of dynamic
Jahn- Teller effect. Subsequently, both types of
spectra have been reported for a number of sys- '

tems. These investigations and other studies of
the Jahn-Teller effect have been reviewed by
Sturge. '

Recently, anisotropic EPB spectra have been
observed -"which indicate the occurrence of
another type of dynamic Jahn-Teller effect for or-
bital doublets at liquid-helium temperatures. The
first such spectrum was reported by Coffman
for Cu2' in MgQ. Similar spectra were reported


