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Our recent theory of nonlinear electrodynamics of elastic anisotropic dielectrics is applied
to acoustically induced optical harmonic generation (AIOHG) in which two input optical waves
and an input acoustic wave are mixed to produce an output optical wave at a frequency dis-
placed from the optical harmonic by the much lower acoustic frequency. The susceptibility
governing AIOHG is derived from a fundamental point of view for acentric dielectrics of arbi-

trary symmetry.

It consists of (a) a direct effect represented by afifth-rank material tensor

whose symmetry, frequency dispersion, and relation to other nonlinearities are derived, and
(b) five indirect contributions, three being two-step processes and two being three-step pro-

cesses.

able material tensors and various wave vectors of the interacting waves.

The indirect contributions are expressible in terms of lower-order directly measur-

Because of the

latter dependence these contributions possess symmetry different from the direct effect and

from each other.

They can be comparable in magnitude to the direct effect.

Rotations pre-

sent in shear waves are shown to contribute to AIOHG to an extent comparable to that from

strains in materials whose second-order optical mixing tensor is large.

This shows that the

displacement gradient, not the strain, is the measure of elastic deformation relevant to

AIOHG. The form of the phase-matched output AIOH wave is derived for waves having an
arbitrary orientation in an anisotropic medium. The concept of double phase matching is
introduced, whereby not only the output wave is phase matched, but also the intermediate

step in one of two types of two-step indirect contributions.

Under this condition the output

wave grows as the fourth power of the crystal length if pump depletion is negligible. Double
phase matching can give an output-power enhancement, compared to single phase matching,

of ~10° under reasonable conditions.

1. INTRODUCTION

Recently the interaction of three optical fields
and one acoustic field was observed under phase-
matching conditions.! The experiment took the
form of observing an optical output field which was
at a frequency displaced from the second harmonic
of an input optical field by the much lower frequency
of an input acoustic field. The interaction has
been called acoustically induced optical harmonic
generation (AIOHG). The experiments were per-
formed in a collinear interaction geometry in in-
sulating GaAs, a cubic piezoelectric crystal.

One way of visualizing the interaction is to con-
sider the distortion of the crystal caused by the
acoustic wave as changing slightly the second-
harmonic generation coefficient. The change in this
coefficient reverses sign every half-acoustic
wavelength since the distortion is of opposite sense
every half-wavelength. If the acoustic half-wave-
length is made equal to the coherence length of
normal second-harmonic generation, then, when
the radiated harmonic and its driving polarization
become out of phase, the sign reversal of the
interaction coefficient allows them to remain in
phase. Thus, the interaction will be phase matched
under this condition, which can be shown to be
algebraically identically to wave-vector conserva-
tion in the interaction. In other words, the acous-
tic wave vector has made up for the wave-vector

3

mismatch occurring in the normal second-harmonic
generation,

The same interaction can be used in an acous-
tically controlled parametric optical process. Here
an input acoustic field and an input optical field
would mix to produce two output optical fields in a
phase-matched interaction. Harris, Wallace, and
Quate? have considered this process from a phe-
nomenological point of view. They assumed the
nonlinear susceptibility governing the interaction
consisted of two two-step processes—optical mix-
ing and acousto-optic scattering taken in either
order. Their calculations based on this formula-
tion indicated the strength of the over-all interac-
tion to be too small to be useful for acoustically
controlled optical parametric devices for reason-
able strain levels.

Recently we have devevloped a classical theory of
nonlinear electrodynamics of elastic anisotropic
dielectrics.® The theory is formulated from a
microscopic point of view before passage to the
continuum limit is made. Of crucial importance
to obtaining the correct nonlinear terms is a for-
mulation which allows for finite deformations of the
elastic medium. Construction of an appropriately
invariant stored-energy function is at the heart of
the development. A consistent set of coupled elec-
tromagnetic field equations and dynamical force
equations governing the motion of the various mech-
anical degrees of freedom of the material medium
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are obtained. The theory predicts the symmetry
of any nonlinear, as well as linear, interaction of
electromagnetic waves and various eigenmodes of
the solid such as acoustic, ionic, and electronic
vibrations; it predicte the various multistep indirect
contributions to the over-all interaction and their
symmetry and so interrelates various nonlinear
interactions; it can predict the dispersion of the
susceptibility that governs the nonlinear interac-
tion. The theory is valid for wavelengths of the in-
teracting waves which are long compared to unit-
cell dimensions.

In this paper we apply the general theory to the
interaction of three optical fields and one acous-
tic field. The calculation will be carried through
in a form applicable to mixing of two input optical
and one input acoustic wave in a noncollinear in-
teraction in a medium of arbitrary symmetry and
orientation, However, the susceptibility which we
will derive from a fundamental point of view will
be applicable to whatever form in which the inter-
action occurs.

The susceptibility governing AIOHG consists of
six major contributions. We will describe them
here in the order they appear in Eq. (5.40). The
first term represents the direct interaction of the
two input optical waves with the one input acoustic
wave. « It is a fifth-rank tensor and possesses the
symmetry of the material. It does not possess
symmetry upon interchange of the two elastic in-
dices. This arises because material rotations
occurring in the presence of shear distortions can
give contributions comparable to those arising from
strains in materials of large second-order optical
constants (optical-mixing or harmonic-generation
tensor). The antisymmetric contribution to the
susceptibility from rotation is calculated for GaAs
in Sec. V of this paper and is found to be compar-
able with the measured susceptibility which includes
both symmetric and antisymmetric parts. The
elastic asymmetry just described is analogous to
that derived by us for the ordinary lowest-order
photoelastic interaction®’® and recently observed.®
It forces one to consider the displacement gradient,
not the strain, as the basic measure of elastic de-
formation relevant to photoelastic interactions of
all ordervs.

There are five indirect contributions to the AIOH
susceptibility :

(a) One two-step indirect process uses the piezo-
electric effect to produce an electric field from the
input acoustic wave and then mixes this electric
field with two electrical fields of the input optical
waves via the third-order optical-mixing tensor.
The susceptibility representing this indirect effect
is a fifth-rank tensor function of the acoustic
wave-vector direction. Because of this functional
dependence it will have a rather low symmetry,
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diffevent from that of the direct effect. The lower
symmetry here is analogous to that found for the
indirect photoelastic effect (piezoelectric effect in
combination with the electro-optic effect). ®

(b) A second two-step indirect effect arises from
acousto-optic scattering of the input optical wave
from the acoustic wave followed by mixing of this
scattered wave with the input optical wave via the
second-order optical-mixing effect. The suscepti-
bility governing this indirect effect is a fifth-rank
tensor function of the wave vectors of the input
optical and acoustic waves and the acousto-optic
scattered (intermediate) wave. Because of this
dependence this contribution to the total suscepti-
bility also has a different symmetry from the
direct effect. Included in the acousto-optic scat-
tering process is the contribution made by rota-
tions, as well as strains, when acoustic shear
waves are used in optically anisotropic media. *-¢

(c) A three-step indirect effect arises from the
production of an electric field from the input acous-
tic wave via the piezoelectric effect, optical
mixing of this low-frequency electric field with the
input optical wave electric field via the electro-
optic effect, and a second optical mixing involving
the electric field at the acoustically shifted optical
frequency with the electric field of the input optical
wave. This indirect effect can be equally well de-
scribed as acousto-optic scattering via the in-
divect photoelastic effect® followed by second-order
optical mixing. The susceptibility governing this
three-step indirect effect is a fifth-rank tensor
function of the acoustic and optical wave vectors
and the wave vector of the acoustically shifted
optical frequency wave. This indirect effect also
has a symmetry differing from the others.

(@) A third two-step indirect effect arises from
second-order optical mixing (sum-frequency gen-
eration, or harmonic generation if the two input
optical frequencies are the same) of the two input
optical waves followed by acousto-optic scatter-
ing of the sum-frequency optical wave with the
input acoustic wave via the photoelastic interac-
tion. The latter interaction, once again, contains
contributions from rotations as well as strains.
The susceptibility controlling this indirect effect
is a fifth-rank tensor function of the input acoustic
and optical wave vectors and the optical sum-fre-
quency wave vector. The symmetry of this con-
tribution also differs from the rest.

(e) A second three-step interaction arises from
second-order optical mixing of the two input optical
waves, the production of a low-frequency electric
field from the acoustic wave by the piezoelectric
effect, and the mixing of the sum-frequency elec-
tric field with the low-frequency electric field via
the electro-optic interaction. The susceptibility
producing this indirect effect is a fifth-rank tensor
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function of the input acoustic and optical wave
vectors, and the sum-frequency wave vector., This
three-step indirect effect can equally well be de-
scribed as sum-frequency generation followed by
acousto-optic scattering via the indivect photo-
elastic effect.®

The form of the derived susceptibility suggests
the possibility in an appropriate geometry and
material of double phase matching. By this we
mean the phase matching not only of the output
AIOH but also the intermediate wave in one of the
indirect processes. For instance, the acousto-
optic scattering of the input optical wave could
be phase matched. This would require

kp=ko+K, , (1.1)

where the wave vectors are distinguished by B, 0,
A for the acousto-optic (Brillouin) scattered wave,
the input optical wave, and the acoustic wave.
Phase matching of the second step, optical mixing
of waves of frequencies w, and wy, requires

Fomkpr ks (1.2)

where the AIOH wave is denoted by C. If both steps
are phase matched according to Egs. (1.1) and
(1.2), the over-all process is therefore required

to be phase matched also,

Ko=2k,+k, . (1.3)

Attaining both Egs. (1.1) and (1. 2) simultaneously
will require a material of special dispersion and
birefringence in conjunction with appropriate orien-
tation and input optical and acoustic frequencies.
When such is attained the over-all strength of the
process can be made comparable to ordinary op-
tical mixing, since with attainable acoustic and
optical powers essentially 100% of the input optical
wave can be scattered at the Bragg angle from the
acoustic wave. In this way a third-order process
takes on the strength of a second-order process.
The increased strength of AIOHG under the condition
of double phase matching is indicated by the depen-
dence of the output intensity on the fourth power of
the crystal thickness (in a plane-wave geometry
ignoring depletion of the pump waves); under the
condition of single phase matching of the output the
dependence is the conventional second power of the

J
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crystal thickness. It is hoped that implementation
of the double-phase-matching concept will make
AIOHG and the related parametric process strong
enough to be useful.

Our approach will be to derive the basic equations
governing ATOHG in Sec. II based on our general
theory of nonlinear electrodynamics.® The develop-
ment will lean heavily on that carried out for the
ordinary photoelastic interaction in dielectrics.?®
In Sec. III we form the wave equation for the AIOHG.
In Sec. IV it is solved near the condition of single
phase matching for a general orientation of the
waves with respect to an arbitrary anisotropic me-
dium. In Sec. V the symmetry of the nonlinear
susceptibility governing AIOHG, its relation to
lower-order susceptibilities, and its dispersion are
examined. In Sec. VI the wave equation is solved
near the condition of double phase matching,

II. FORMULATION OF BASIC EQUATIONS

Our objective is to develop the theory of the in-
teraction of two input optical waves with an input
acoustic wave in a dielectric to produce an output
optical wave at a frequency which is the sum of
the frequencies of the input waves. We exclude
ferromagnetic and ferroelectric materials from our
treatment because extra contributions may arise in
these materials. The nonlinear contributions ob-
tained here are, however, present in such materials,
Furthermore, we will not consider here effects
of wave-vector dispersion, such as optical rotation
(activity), or loss in the various vibration modes
of the solid.

Because the interaction under consideration is
linear in the acoustic variable, we can and must
linearize the equations in the acoustic displace-
ment, Because of this, the treatment can follow
the photoelastic interaction treatment® exactly ex-
cept that three—as well as two—input-field driving
terms must be included. Because of this we present
here only those changes in the photoelastic-effect
development necessitated by the higher-order in-
teraction being studied.

In order to obtain all possible three-field inter-
action terms we must expand the stored-energy
density p°Z, given in Eq. (2.43) of Ref. 5, to higher
order according to

P’z (A%, Egc) = EB <2'0)HXBBAXA% +23 (I'I)H:BCA: Epc + ‘O'Z)HABCDEABECD+ 2 (3'0)11:%701\:1\%1&?3
oy o

@2,1)7708 B (1,2) a
+ 2 Hy5coDgASEcp +20 HipcpsAAEscEpp+ 2
@

o,B

(3,1) gyoBy aABAY 2,2)ya B ap B
+ E ’ IiAECDEA.AtllBA'CEDE+ 28 ! HABCDEFAAABECDEEF .
Gy

a,B,7

Here Z is the stored energy per unit mass, p° the
mass density, E,p the tensor measure of finite
strain (4, B=1, 2, 3) defined by

@, 8,7

4,0) gyaBy6 AABAYAS
" HyEcpAGABATAY,
®yBy7,6

(2.1)

E p= %‘(xi.Axs,a ~045)=Ep, , (2.2)

A% asetof N-1(u=1,2,...,N~1) polarizationlike
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vectors (A=1, 2, 3) defined by

Ag=Riy% , (2.3)
where R;, is the finite rotation tensor given by
(2. 4)
(2.5)

and the material descriptors “™™H%; are fre-
quency-independent tensors characteristic of the
material medium. The summations over Greek-
letter postsuperscripts run from 1 through N-1,
where N is the number of vector degrees of free-
dom (ionic and electronic) per primitive unit cell
which are important in characterizing the material
medium for the interaction considered. In all
equations we employ the summation convention over
repeated Latin-letter subscripts. The presuper-
scripts are just handy designations to indicate the
number of A§ and Epc that are associated with it.
The N vectors y*(p=0,1,2,...,N~1) include
the c. m. position vector (u=0) and N -1 internal
coordinate vectors whose components are expressed
in a Cartesian frame, called the spatial frame,
and denoted by lower-case Latin letters as subs-
scripts. The coordinates §* are functions of the
time ¢ and X which is a continuum variable that
designates a material point in a reference frame,
called the material frame_a which we choose also to
be Cartesian. As such, X is a time-independent

Ry =x;,5(C? ") pa s

Cup=04p+2E g=%; %;,8 »

2 2
mumz_zmu%ay‘;,i_ w Uy
a2 ot ot ot 2

du;
y#,j+2 9" € jn Y, y't}Bk,t"'quEi*”q”’eijk
v
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quantity. Components in the material frame are
denoted by capital Latin-letter subscripts. The
coordinate vectors ¥* are related to the N particle
position vectors X*(a=1,2,...,N) by a transfor-
mation matrix U*¢,

— N - —
W(x,t):E1 U**x*X, 4, ©=0,1,2,...,N~1.
-

(2.6)
The c. m. coordinate 7° is given by
- - y -
§o=%= / p*x%/p°, 2.7
-

where p* is the mass of the ath particle, taken
as a constant, divided by the primitive-cell volume.
The coordinates y* are also chosen to be displace-
ment invariant and to preserve the diagonality of
the kinetic energy,
N R N-1 o
27 pM(EYP= 20 m*(§4) . (2.8)
a=1 u=0
This equation defines the mass density m" asso-
ciated with the uth internal coordinate of the
medium,

The 3N force equations representing the material
medium, given by Egs. (2.60) and (2. 61) of Ref. 5,
now become with the inclusion of all three-field
interaction terms which are linear in the displace-
ment 1,

8ul

at Bk+%; quvy;Ei.j

i, 3y}
+ Z) qu»ve ijk at yjlek +E quyeijk y Bk - 2 Z) (Z'O)H‘;I? g_ (I'I)H‘ilbcub,c
v v B

ot

- @0 up 8 8 8 (3,0)77uB7,8 o7 (2,1 gus 8
ZB> Hog (Voti,at 3wy, 5010 = Vo tha, s = V5 45, 101a) = 3 25 Hfbcyybyc‘zzg HipeaVolUe,a
8,7

@, 3
-3 E : O)H‘;fgygy;(uj,c_uc,j) - E E 6,0
B,y Byy

- 4,0)ruBy6 B8, 7,6 @,1)
4 2] HYd vy veye—3 20 SV,
Byv

By7,6

%y
0 —S_tzt_ =Za> (I’I)H:gi y:‘,g*' Z(O'Z)Habgi Ug,pe T Gi ’
(2.10)
where
" .
q'= Z) Vcwqa , 2. 11)
a=1
N
q*= 3 Vekgry ey g (2.12)
a=1
i-%-X, (2.13)

and G represents the nonlinear terms in the acous-
tic equation, which we will not need. The sums

B .7
VoVela,e s

1BY,,8

Habcyb yg(ui,a - ua,i)

(2.9)

in Eqs. (2.9) and (2. 10) span the range 1,2,...,
N-1. InEgs. (2.11) and (2.12) ¢“ is the charge
taken as a constant on the ath particle at position
X * divided by the primitive-cell volume while ¢” is
the charge associated with the coordinate vector
y”; ¢*¥is a charge associated with both the uth and
vth internal coordinates. The quantity V*” is the
inverse of U”* and V*°=1. Equation (2. 13) defines
the displacement 4. The independent variables in
Egs. (2.9) and (2.10) are Z and ¢, where Z is the
coordinate vector in a laboratory Cartesian coordi-
nate system. When three-field interaction terms
that are linear in U are included, the electromag-
netic field equations in rationalized mks units,
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given by Egs. (2.18), (2.19), (2.63), and (2. 64) of
Ref. 5, become

B o
VxE+3t——0, (2.14)
v-B=o0, (2.15)
€T B+ D ¢V -50=7 - [7_‘, q”{;"?-ﬁ] , (2.16)
v v

- - - >y -
VXB _ EE__Z)qviay =—‘2‘[Eq"§VV'ﬁ]
v

= -, 80
+VX[ZV> unvX—a;:] (2'17)
The 3N matter equations (2.9) and (2. 10) and the
eight eleciromagnetic field equations (2. 14)-(2.17)
are the basic equations of AIOHG. We will show,
however, in Sec. III that the three matter equations
(2.10) and the two electromagnetic field equations
(2.15) and (2. 16) are unnecessary for finding the
characteristics of the output light wave in AIOHG
in a dielectric.

IIl. DERIVATION OF THE INHOMOGENOUS
WAVE EQUATION

In AIOHG an input optical wave of frequency wg,
and an input acoustic wave of frequency w, mix
to give an output optical wave of either 2w, + w N
or 2w, - w, frequency. In order to select out a
particular frequency component we expand each of
J

- Wgm*y}(2;2,1) - ¢ By(%;2,1)+ 22 S OHPYNZ;2, 1)+ VBl u,0(252,1)= F§ (3;2,1)

- WEmluy(2;2,1) = 20, VVHY, 9 (2;2,1) =292y, ug,0a(%32,1)=G4(%;2,1),

where
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the fields §, 7%, E, and B in a Fourier series of
the form

Z(Z,0=% O L Hmn), 3.1)
MyN= e
where
Z(Z, t;m, n)=Z.(%; m, n) e muos nuy % (3.2)
Z(%, - m,=n)=Z*(Z;m,n) . (3.3)

The solutions for AIOHG are m=2, n=+1, Just
as in the treatment of the photoelastic interaction®
an jterative technique can be used in solving the
AIOHG problem. Thus the (m,#)= (2, +1) solutions
can be obtained from a linear problem in terms of
the (1,0), (0,1), (1,1), and (2, 0) solutions which
are obtained separately and independently of the
(2,+1) solutions. N

The §, ¥* E, and B fields in the form of Egs.
(3.1)-(3. 3) are substituted into Eqs. (2. 9), (2.10),
and (2.14)-(2.17). For notational convenience we
consider the (m,n)=(2,1) problem only; the 2,-1)
problem can be handled analogously. We obtain

V-B(%;2,1)=0, (3.4)

-

) ED-V.f E(E; 2, 1)+2,,q"v 'y U(E;zy 1)= Q(E; 2’ 1) » (3- 5)

v x ﬁ('i; 2,1+ ieowcﬁ(i; 2,1)+iws2y, "V %(Z;2,1)

=1(%;2,1), (3.8)
VXE(Z;2,1)-iw.B(%;2,1)=0, 3.7
(3.8)

(3.9)

Q(Z;2,1)=3[2, ¢"v},:(Z;2, 0 uy, (250, 1)+ 20, ¢*%,4(Z; 1, 1) uy, (251, 0)+ 23, 4"9%(; 2,0)uy,,4(2;0,1)

+22 @"3(Z;1,1) 4y, ,4(Z; 1, 0) + interchange of (2, 0) with (0,1) and (1, 1) with 1,0)],

(3.10)

1(%;2,1) = 30 25, ¢"{(wg + ©a) ¥5(Z; 2, 0) ;,5(%; 0, 1) + (W5 + wo) 4(%; 1, 1) (%5 1, 0)

+ @4 (040 1 = 81057 [ 92(Z; 2, 0) uy, (2;0,1) +90(2;1,1) 0, ,(Z;1, 0)+m,;(%;2,0)u,(Z;0,1)

+¥m,4(Z;1, 1w, (Z; 1, 0)] + interchange of (2,0) with (0,1) and (1, 1) with (1,0)} ,

(3.11)

-> 1 -> - - -> - -> .
F¥(%;2,1)= E(Zw,,w,,m“u,(z; 0,1) 3% (Z;2,0) + 20gwom*u,(Z; 1, 0)y%,(Z;1,1)+ wﬁm“u,(z; 0,1) % ,(%;2,0)

+Wim u,(2;1,0) 9% (Z;1,1) - jw,qhe, #%43(Z;0,1)B,(Z; 2, 0) - iwoq" €, (Z;1,0)B,(2; 1, 1)

+22 4*%y4(Z; 0, DE;, (Z;2,0)+ 20 ¢**y%(%; 1, 0)E;, (Z;1,1) —iw, 27 ¢*% i 5(2;0,1)B,(Z; 2, 0)
14 v v

- i 27 4", 5 ¥Y(2;1, 0)By(2;1,1) - ZB? OHLE[95(;2,0) uy,,(2;0, 1) - ¥5(Z; 2, 0) u, 4(Z; 0, 1)

v

+y?(§; 2,0) ui.b(‘i; o, 1)6{41 - ye(i; 2,0) ub,j(z; 0, 1)614] - ZB) (Z'O)H:bs [yg(i; 1,1) ui.a(i; 1,0)

=95 (21, Dt i(%1,00+ 9425 1,1) (351, 0)5,, - ¥3(Z;1, 1) uy, ;(Z;1,008,,]

-3 54; CORY [v5(2;2,0)95(Z;0,1) +8(%; 1, 1) 92(%; 1, 0)] - 2 § @gue [v3(Z;2,0) 4, 4(%;0,1)
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{eo

+¥8(2;1, 1) u,,((%;1, 0] + Interchange of (2. 0) with (0, 1) and (1, 1) with (1, o)}

1 . - - - -> -> -
* Z<— Y04€ 15 2 ¢ [u,(z; 0,1)y3(Z; 1, O)Bk,l(z; 1,0) +u;(2;0, 1)3’;,1(Z; 1,0)B,(%; 1, 0)]
v

3 -> -> - -
- 32 Z) GOy (295(Z; 1, 0) (251, 016 5[u;, (25 0,1) = u,, (%50, 1)]

+yb(z,1,0)y (351, Oy, a(%0,1) = 1,1 (;0, D]} 4, 2 W VHELWE 1, 009451, 0098(%0,1)

-332 SOy ¥3(251,0)91(Z; 1, 0) g, (%50, 1)+1nterchanges of (1,0),(1, 0),and (0, 1))
»?

Wo=2Wo + W, , (8.13)
Wp=Wo+ Wy (3.14)
wy=2w, . (3.15)

The expression for G(Z;2, 1) will not be given since
we will show shortly that it is unnecessary for the
solution we wish. In Egs. (3.4)-(3.9) the linear
terms have been grouped on the left-hand side and
the nonlinear driving terms, involving products of
either two or three fields in this case, placed on
the right-hand side. It should be noted that in the
definitions of the nonlinear driving terms in Egs.
(3.11) and (3. 12) that interchange of (2, 0) — (0, 1),
(19 1) hand (1’ 0)’ and (1, 0) hand (1; 0) - (0; 1) requires
the concurrent interchange of Wy «—=w,, Wg+=w,,
and Wy «— Wy «— W,, respectively, wherever the
frequencies appear.

Let us consider the case where the AIOH wave is
phase matched to the forced wave whose wave
vector is the sum of the wave vectors of the two
input optical waves and that of the acoustic wave.
In this case all of the terms in the nonlinear driving
functions of importance to the output in Egs,
(3.10)-(3.12) will be proportional to e"z“O““A”z for
a plane-wave interaction. Here k, and kA are the
wave vectors of the input optical and acoustic
waves. Other cases where phase matching also
involves one of the free waves at an intermediate
frequency, for example, w,+w,, will be discussed
in Sec. VI. If we further assume that there is
negligible depletion of the input optical and acous-
tic waves, then the nonlinear driving functions
can be represented as

Q(%;2,1)= Q(2, 1)e*ForiZ | (3.16)
i(;2,1)=1(2, 1)e!@fo*kp 2 | (3.17)
F(2;2,1)=F*(2,1)e!losip T | (3.18)

At this point we can reduce the number of equa-
tions that we must consider. First, Eq. (3.4) is
the divergence of Eq. (3.7) and hence redundant.
Second, Egs. (3.5) and (3.6) can be combined, with
their time dependence retained, to yield a relation
that can be called the conservation of nonlinear
charge:

2QE52,1)

or (3.19)

‘(thI) 0.

(8.12)

I
Because of this relation it is not surprising that
of the two nonlinear driving functions Q and I only
one, I contributes to the nonlinear susceptibility
governing AIOHG and that of the two Egs. (3.5)
and (3. 6) only one, Eq. (3.6), is needed in the
development, Third, because the output wave is
an electromagnetic wave, the linear term in Eq.
(3. 8) involving "V H is of order (v,/vo)? ~10'°
times the magnitude of the dominant terms in the
equation and so may be neglected (v, and v, denote
the velocities of acoustic and optical waves in the
medium). The neglect of this term uncouples the
equation for U from the remainder of the equations.
This means that the { equation can be ignored in
solving for the output optical wave and hence that
G(z 2,1) plays an insignificant role in driving the
output optical field.

The remaining equations can be solved by using

. (3.8) to eliminate 7¥ from Eq. (3.6), then

usmg Eqgs. (3.6) and (3.7) to form an inhomogeneous
wave equation for E(z 2,1), and solving it for the
electric field of the output light wave.

Define T2¥(w) by

€9 20 T (W) (2P OHE - ?mP8775,,) = 6976, . (3. 20)

With the use of this equation, Eq. (3.8) yields

yi(Z;2,1) =€, 25, Tii(wc)g" Ey(Z; 2, 1)+ F (%5 2,1)] .
(3.21)

From Egs. (3.6) and (3. 20) it is seen that the linear
susceptibility is given by

Xi5(@)= 20 ¢" 1Y (w)g*

Vil

Equations (3.6), (3.7), and (3.20) combine to yield
the driven wave equation

(C/wc)z[Ej,u(EQ 2,1)~ Ei,u(i; 2,1)]
-k (Wc)E[(2;2,1) = ®,(%;2,1) /e, , (3.23)

where the dielectric tensor ;;(w) and the nonlinear
driving polarization are given by

(3.22)

K@) =085+ X (@) , (3.24)

®(Z;2,1)=€ 2 ¢"T7} (0)F(Z;2,1) +il(Z;2, 1)/, .
o (3. 25)

With Eqs. (3.17) and (3. 18) the latter equation can
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be written as

5 (%;2,1)=0(2, 1)e' @oripi | (3. 26)

IV. SOLUTION OF WAVE EQUATION FOR SINGLE
PHASE MATCHING

The general solution of the inhomogeneous wave
equation (3. 23) is the sum of the general solution
of the homogeneous equation, called the free wave,
and a particular solution of the inhomogeneous
equation, call the forced wave.
will contain parts corresponding to the ordinary and
extraordinary waves. We are interested in the
general solution near the condition of phase match-
ing of the output wave. Usually only one wave,
either the ordinary or the extraordinary, can be
phase matched in a given geometry and so we wish
to consider only that wave. It must be proportional
to one of the free-wave eigenvectors and only the
projection of the forced wave onto this eigenvector
will contribute to the phase-matched output.

To express the output wave we use the biortho-
gonal set® of plane-wave eigenvectors of the free-
wave electric field §°’ and the free-wave electric
displacement D', Here 6 refers to either the
ordinary wave, extraordinary wave, or longitudinal
nonpropagating solution (infinite refractive index).
They can be expressed in the principal coordinate
system of the dielectric tensor (diagonal elements
Ky, Ky, K3) S

g$0>=s‘/(nzo—K‘)N9 3 (4. 1)
D= ks, /(] - k)N, , 4.2)
where
s=%0/|% 4.3)
ng= c|E9| /o, 4.4)
3 1/2
No=(Z st/ - W) @.5)
i=1 .
ke being the wave vector of a free wave. Their nor-
malization has been chosen so that
8(0).5(@) 600 . (4.6)

Denote the free wave that is phase matchable by
£ and consider the direction of propagation, the
frequency, and the golarization state as independent
variables of § and ®. Therefore

E(%;2,1)1r00= C8W (B, wo)etie? @.7)

where C%’ is an arbitrary scalar constant, k. is
the wave vector of the output free wave, and §;
is defined by

So=ke/| k| . @.8)

The forced wave can be expressed® in terms of the
eigenvectors of the free-wave electric field that
propagates in the direction of the forced wave as

Each of these waves

2801

E(E;Z 1)torced
S 30, 90)8 ) (Bp, we) PR uctprtpi |

v=1 €o(| 2ko+k,|2/| ke |2 -1)
4.9)
where
Bp=(2k, +ky)/| 2k +K,| . 4.10)

Of the three terms in the forced-wave expansion
only the ¢ =£ term need be retained.

Near the condition of phase matching where a
relatively intense output occurs, the small “re-
flected” electric field at the frequency w. can be
neglected in the boundary condition at the input
surface of the material medium. Thus, the pro-
jection of E(%;2, 1) on 8 (3, wg), which is the
scalar product of E(%;2,1) with ®)(3p, ), is
taken as zero at the plane input surface,

E(EP: 2, 1) 5(6)('§D) wC) =0
= COBE(Z,) we) - B3, wc)e‘;c';P
'gm(gm wg) * ('];(2’ 1) JRICTRSAE A
€o(| 2k + Ry | /|Kc|2-1)

where Zp are the coordinates of the input surface,
the origin of them being taken to lie in the plane.
Since Eq. (4.11) is good only near phase matching,
it is a good approximation to take

5(“(-§Da we) * -g“)('éc: we)=1

4.11)

s

even though the propagation directions are slightly
different. Two conditions result from Eq. (4.11):

(ako), = (k; - 2k, - k,), =0, (4.12)
where ¢ stands for the components tangential to the
input plane, and

89 (3,, ) -0(2,1)
€ol] 2o + Ky | 2/ | ke | -
Letting # denote the component of a vector along

the inward normal to the input surface, we have
near phase matching

E(%;2,1)= (- 2i/e) V8D . §(2,1)
x(| 2o + k4| /| K| * - 1)

(4.13)

C(€)=_

XSIH(Akc _é_ )ei(fcﬂ?(rEA)'Z/z , (4'14)
H(Z;2,1)= 2ic2/wo)k, X885 (2, 1)

X (| 2ko +k4|2/|ke|2 - 1)

Xsin(akg,* 17) ¢! Gorigriy iz , (4.15)

where terms of order (ﬁc -Z)-! have been neglected.
The time-averaged Poynting vector is

= 2C°kE [ Baner B .7 2B
S('z’; 2, 1)___ et ¢ [(g(l))zkc - (g(t) _kc)g(l)]
- €oWc
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. | 30 .5(2,1) 2

| (Ec +Eo +EA) . Ai;c"

Xsin®(Akg,* %) . (4.16)

This expression applies within the material me-
dium at reasonable distances into the medium but .
where pump-wave depletion is negligible and at
directions and frequencies close to those needed
for phase matching of the output AIOH. Except
for the latter condition, Eq. (4.16) applies to input
waves having arbitrary orientations with respect
to the anisotropic medium. Phase matching occurs
in this plane-wave geometry when

(akg), = (ko= %o = ka)p=0 @.17)
since the boundary condition has required the tan-

gential component to vanish already. At exact
phase matching Eq. (4.16) becomes

50;2,1) = (P41 /B weks,)| 8- 62, D2

J
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X [{gm)zﬁc _ ('gce>,§c)gu)] , (4.18)
where [ is the distance into the crystal normal to
the entrance surface.

V. NONLINEAR POLAklZATlON GOVERNING AIOHG

The nonlinear polarization which drives the
AIOHG process is given by Eq. (3. 25) in conjunc-
tion with Egs. (3.11) and (3.12). Estimates of
magnitudes of the various terms show many of them
to be of negligible size under typical conditions.
Assuming that there is no phase matching of an
intermediate step in any of the indirect contribu-
tions and that only the forced wave whose wave
vector is the sum of the two input optical wave
vectors and the input acoustic wave vector is im-
portant for the phase matching of the AIOH output,
we find that the following terms in ®(2,1) are sig-
nificant and of comparable size (see Appendix A):

Vv 1
(9‘(2, 1) == E0 Z q Ti‘; ((Uc) <—2- EB (Z'D)H(‘z‘ba[yg(z) 0) uj.a(O’ 1) —yg(zi 0) ua,j(oy 1)

vin

+95(2, 0) %y,5(0, 1)8, = ¥4(2, 0) ,,4(0, 1) 5] +3 33 G:0puBr] 48(2,0) 970, 1)+ ¥5(1, 1) y2(1, 0)]

3
+E (2'1)H?fcayﬁ(2, 0) uc.d(O’ 1) + E 2 (3,0)Hu87
B By
+95(1,0092(1, 07,40, 1) = 25,40, D]} +3

3 ‘ 1
+ Z Z; (S'I)H?bﬂc.);iey%(ls 0) y:’:(ly 0) ud.e(o’ 1))" E Z) qay?(z, 0) uk.k(oy 1) 3
:1%4 o

where, since the spatial dependence has been re-
moved, the derivative notation now stands for mul-
tiplication by the imaginary unit times the appro-
priate wave vector.

'This equation must be reexpressed in terms of
a nonlinear susceptibility summed over the input
electric field E;(1, 0) and displacement gradient
,1(0,1) amplitudes. Expressions from the linear
optical problem® (,r) = (1,0), the linear acoustic
problem® (m,n)=(0,1), the acousto-optic scatter-
ing problem® (m,n)=(1,1), and the second-harmonic
generation problem?® (m,n)= (2, 0) are needed. They
are

y%(l, 0)= eoz:u Tg‘;(wo)quj(l; 0,

¥50,1) == €22, T3} (W) [V HY,

(5.2)

+ q“a,asezﬁ/%ap Ky q(wA)aq] Up, l(o: 1, (5.3)
vi(1,1) =€, 20, T (@p)[¢"E,(1, 1) +F2(1,1)] , (5.4)
v4(2,0)= €, 2, T (wy)[¢“ Ex(2,0)+ F5(2,0)], (5.5)

B, 1= 5 802 Er, 08 (Bp, 0p) - 81, 1)
b - - -
0=l €o(|ko+Ry|2/| %52 = 1)

,(5.86)

{23’:(1, 0) 3’;(1, 0)6ja[uh,c(0, 1) - uc,k(o, 1)]

25 WOEETS 48(1,0) v%(1, 0) 95(0, 1)

17,6
(5.1)
r
N 3 B)Z Bl % .®
F@2,00=3 89S, wy)8(8,, wy) - @(2,0) . 6.7)

o=t €(| 2|2/ Ky|2 - 1)
1
FHO D=8 |3 5 TR (VR0 - o,
'8

— 2,00 pyup @,0)ggup 2,1
UH 0+ SO HY S, + 2 e ]

+ 3¢, 2{ Toe(Wo) 57 (ws)g® ¢ OHYS
P16E50

(1,1) q“’a,ase:’,;“;
x( VH g+ )

L MCALN
X Eg(]') O)uk.l(or 1) ’ (5. 8)
F{(2,00==3€} 23 Ti(wo)T 5 (wo)
0,846
xqtqt @ OHYE,(1,0)E,(1,0) , (5.9)
2dyB9004 g q eyh
_ WRWO WA __ r skl
®,(1,1)=¢ (Xf i ki €otpkp (@2)a,
X E;(1,0)u,,0,1),  (6.10)
®,(2,0)=€yd; ¥4 E (1, 0)E,(1,0) . (5.11)
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In these equations we have used the unit vectors 3,
8p, and §; defined by

=k, /|k, , (5.12)
Br= (Ko + K,/ | Ko + Kk, (5.13)
3;=2k,/| 2k . (5.14)

We have also used the piezoelectric tensor e;4
given by

egn=—€ 25 q°T%(wy) VUHY, , (5.15)

8,0

which relates the infinitesimal strain S,; defined by

Skl= %(‘uk,,+u;'k) ) (5. 16)
to the linear polarization according to
P4 =€0XJ»(“’A)E:A+ ejklskl . (5.17)

The quantity d;?;°,4, defined by

W R W, Gz
diBeorh = - 380 5 pom e T8 ()T (w,)

2 Py ,B
Vs y?
X ¢ q'q SO (5.18)

is the direct electro-optic (clamped) tensor ex-
pressed in the form of the optical mixing tensor.
It relates two input electric field amplitudes to a
nonlinear polarization’ by

P2 = Deyd; P08 BB A
where
D=1 if wy=w,
=2 if wy#w, .

(5.19)

It is related to the Pockels electro-optic tensor
¥ tme DY

“WRWo WA

a4 8% = = 1k (W) ki s (@) (5. 20)

where 7, is defined in terms of the change of the
inverse dielectric tensor caused by a low-frequency
J
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electric field E,
0k 5= V1B « (5. 21)

The factor of 4 in Eq. (5.20) arises from D=2 and
the fact that d; ;% refers to one of the two fre-
quency components wo + w, produced, while 7,

is quoted as if for a static value (w,=0). The
direct photoelastic susceptibility’ x;2;°,# consists
of a part symmetric in its elastic indices, indicated
by parentheses, and a part antisymmetric, *~ in-

dicated by brackets,

WpWo Wy “wa wWpWo Wy
Xi g ni "Xi 1 St X% (5. 22)
where

w w w

Xi® i ty= - qu(wo)G.;—EoPE 4 (wB)'I“’,;y(wo)
1"

3:11
xq'q° @ DLl +3e3 2 Timws)

PriyB
Y0,

T8(wo)The (wa)g"d @.0gaty LU,
(5.23)

WBW w
Xi 23 ity = 4K 4 (Wp) 84 = k(W p) 6y,

+Ky5(W0) B4 = Kyy(@0)8,,] . (5. 24)

The symmetric part is related to the Pockels pho-
toelastic tensor p,,..; by

X:,B;)O(:?F = 3Kim (@ B)Pmanikns (@0) (5. 25)
where the factor of 2 arises because p,,,;; is quoted
as if a static value as done above for 7,,,. The
Pockels photoelastic tensor relates the change in
the inverse dielectric tensor to the strain by

(66™); 5= Pisni S - (5. 26)

For the simplification of Eq. (5.1) we must also
define the direct third-order optical mixing tensor
by

et == L q' T )T TR (@) (@) WO L 3eb D g T )
Wi Bh bt
XTER (T 5(w2)T G (w5 5 (9,) + T 70, ) T 88w, )T 22w, B 0,
+ TR0 55 (w3 )T 55 (1)L 55 (ws) ] @0 pur 5,0 HES , (5.27)
;
where D=1 if all of w;, w,, w; are equal
W= Wi+ Wy+ Wy (5. 28) =3 if two of w;, w,, w, are equal
Wyp= W+ Wy (5. 29) =6 if none of w;, w,, w; are equal .
_ By substituting Eqgs. (5.2)-(5.11) into Eq. (5.1)
Wag = Wpt Wy, (5. 30) and using the definitions in Egs. (5.15), (5.18),
Wy = W+ Wy , (5. 31) (5. 22)~(5. 24), and (5. 27) we are led to define a

It relates three input electric field amplitudes to
a nonlinear polarization by

Wy g wg Wy

5“4 U3 gt ¥
(Pi +D€0 e‘ feh Ef E' EII 3,
where

(5.32)

susceptibility x;°;!,%# responsible for the direct

mixing of three optical waves with one acoustic
wave by

WoW WaWy

wcwwzw (JWUJWA
Xi“f g ni

=X St h Xi O et (5.33)
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WA Wy Wo W — 3620
Xi cf lgztk'f): 1 uZ:Dn qvqean'ﬁ; (wc)Ti’,}(w;)TZ(wz)
u:ﬂ:‘r
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(3.1)HMBY

|

(4,0) yuBrton o (1,1)g70
jbchl—4€0cz> OHGE T pq (w,) T VHY,
4

(8,0) 178y o6 @16 3,0V pupyepss @,1)7768 . (3,0)7uBp 06 2
‘2502%[ " Hpe Tae(@10) VU Holy + S OHYET L 0w, ) B VHD,, + GO T (0, ) @YY
Py

2 (3,0) 77087 106 (3,00 b8 o (. 3 (1,1) (3,0) 5
+665 2 [COHEITS (w,,) Higy T g (wy) M VHYE, + @ H}‘;,_.”Tf,e(wm)‘s'o’HﬁﬁTff(wA)“'”Hf,“

£16,8,0

(3,0) 71 pB o 06 (3,0) 176 4 W29 Y,
+ UV H gy T e(waa) S OHEITE (w),) (1.1)1#11]>_%d‘12!1‘25m (5.34)
and
2
wgwwgwy _ 3€p v & nevi(, Bt 'm (3,0) 7718 (3,0)
Xi'femi=T g Z¢> 9'4°q" T (o) T (0T T (w,) (PO HEETS,, — H:fcyﬁn*‘(3'°)H715c75»‘(S'O)H'ffcmu
v n
u:B:v
(3,0) gyuBy (3,0) zyuBy (3,0)
+ 7 Hypg O ~ HY30 00— 260 25 [ e T 50(ws) (Z’O)Hg‘t‘éu‘(B'O)Hftg:TZg(wm)(2'0)H2:5u
0,6
(3,0) 77107 06 (2,0) 7768 (3,0) 6 0) 476
+ 0  Hgg Tog(wyy) #OHRS,, - HY 00 (wy,) B Heiﬁ;w‘s'“’H?ffTSZ(sz) GOHYS,,
_ (3,0)77180 v 05 (2,0) 770 (3,0) 77087 o p6 (2,0)77u6 _ (3,0) 77087 006 ,
Hipd Tae(Won) OHG0 0+ G OHRL T i (w,) BOHYS — S ORLr 180w ) @ Oy
(3,0)zyupr neb 2,0) 768 _ (3,0)
+ Hiige Tar(w1a) Hiy — Hjg? T8 (wy4) (Z'O)Hgg
3,0) 77180 7 06 (2,0 778y _ (3,0) r7u8p o 06 (2,0)
+ DV HGE T o(way) B OHY, = S OHE T (w,,) Hﬁ:]) , (5. 35)
where
wc=w1+w2+wA , (5.36)
Wyp= Wy + W, , (5.37)
w1A=wl+ wA ’ (5- 38)
Wap= Wyt W, , (5.39)
Equation (5.1) now can be expressed as )
wq oNT o)z
®,(2 1)"60 I:x;oc;:owowA+3e::c;JowowA €57 +2d;"c;"0;"8 é’J (SF; wa)gm (SF: wB)
i@y )= g Rl gk T T e
€opKpo(a)ag ost ([ +ky |2/ kp|2-1)
“BY¥o % wa wWowy Wy @
x(x:B:lo;:i“_ 2dp"y 4 araseskl)+( ‘;’C;’H:’{i _ 2d;” 7, ara,geskAl
€08pKpe (W 4)a, €0k, (W 4)a,
3 g(w)(" Ia) )8(0)(‘
e i _\SpWy)o, SI,CUH) d“’u"’o“’o]
L 't 6| Ey(1, 0)E, (1, 0)uy, (0, 1) (5. 40)
o=t (| 2Ko|2/| Ryl %= 1) 75 e ’

for the case w;=w,=w,,

Equation (5. 40) in conjunction with Eqs. (5.33)-
(5. 35) is one of the two major results of this work,
the concept of double phase matching to be dis-
cussed in Sec. VI being the other. The effective
susceptibility controlling the AIOHG process is
contained in the braces of Eq. (5.40). The direct-
effect term and the many indirect-effect terms ap-
pearing there have been described already in the
Introduction in the order written. We will not re-
peat that description here.

The form of the denominators of four of the in-
direct processes—direct and indirect acousto-

J

Wewiwawy

wowywawy WC Wl wawA
®y «eo[in fen ¥

€0tkpe(Wa)a,

!
optic scattering followed by second-order optical
mixing and harmonic generation followed by direct
and indirect acousto-optic scattering—suggests
the possibility of phase matching the fields at the
intermediate step. When this is done the free
wave at this intermediate step must be introduced
into the development as well as the forced wave,
which was the only one used in the derivation of
Eq. (5.40). These highly interesting cases will
be considered in Sec. VI.

If the two input optical frequencies are different,
the analog to Eq. (5.40) is

wy 3. gz )
€, fepn %n%Csu +2d;"0:’2;"1A b 81" (Br1, w14) 85 (Bpy, wy4)

o=t (TEI'F-I;A'Z/IEIAIZ_I)
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w w
% x‘*’m“‘l A _ 2dm“fl,‘4ara es,,,) Zd"’c“’l“’u }33 8§w)(-§F2; W) 850 (B2, W34)
m fR Tk, (W) J

0=1 ('E2+EA|2/I'1:2AIZ-

W, W w
Wo 4 Wo W 2A%2%A wp “C“’lZ“’A
(szAgakf _ 24, % araaeskl>+2 (xr’c;’lz‘:;ﬁ 2d, r araseskl)
€0a,Kp(W4)a, eoa,x,q(w 4)a
3 o)z (oN&
85 By, w13) 8, (Byy, Wyg) w1919

=1 (|E1+E2{a/!ﬁlzlz—1)

where the frequencies are defined in Eqs. (5.36)-
(5.39), [the frequency notation is such that

@ crot0 4= 0,(2,1) of Eq. (5.40)], Kya, Ko, and
k,, are the wave vectors of the free waves at fre-
quencies w,,, W,,, and w,, and the unit vectors
8r1, Sps, and §, are defined by

8= (R Ky) /Ry + Ky (5.42)
§F2= (-’kz*'EA)/, E:a"'izﬂ , (5. 43)
8= (Eﬁ'iz)/l Eﬁ'izl . (5. 44)

The antisymmetric part of the susceptibility
given by Eq. (5.35) can be simplified by the use of
Eq. (3.20). If terms of order (w,/w,) are then
dropped, we find simply that

w w w

we wywawy wigwy W w1z wywy
Xi ol n= 1(d; 7 g Om—0y 5 g 04 1 +d; 04,20,

W w. W Wy W,
d‘*’c‘“m“’zaf d; C;"l 2A5 o= dy c 1 2A5 ).

(5.45)

Concerning Eq. (5.45) we note the following: (a)
x‘;’c?l“’z %, contains only shear components in the
elastic indices; (b) any shear distortion causes a
rotation; (c) rotation of a lower-order optical an-
isotropy should contribute to a higher-order optical
effect; and (d) Eq. (5.45) depends only on the sec-
ond-order optical mixing tensor. We thus interpret
Eq. (5.45) as the contribution to the total suscepti-
bility governing AIOHG caused by rotation of the
optical mixing tensor in the presence of an elastic
shear distortion. Equation (5.45) can, in fact, be
derived on this basis from a very simple kinematic
argument given in Appendix B. It is completely
analogous to the rotational effects recently pre-
dicted*® and observed® to occur in ordinary acousto-
optic and Brillouin scattering. The presence of

the tensor asymmetric in the elastic indices in

Eqs. (5.33) and (5. 35) once again®'5 demonstrates
the fact that the measure of elastic deformation rel-
evant to acousto-optic effects is not just the strain
but rather the strain and the rotation, or more
simply, just the displacement gradient as indicated
in Eq. (5. 40).

The antisymmetric susceptibility of Eq. (5.45)
will be zero for all centrosymmetric crystals since
d;;,=0 for them. It will be nonzero for all acentric
crystal classes except the cubic 432 class, regard-
less of the input optical frequencies. For class

12, WA
mfl]EfEukl ’

(5.41)

f

432 it will be nonzero only when the input optical
frequencies are different. It would also be zero
for an acentric isotropic noncrystalline medium.

The antisymmetric susceptibility of Eq. (5. 45)
can be comparable in magnitude to the symmetric
part for many crystals. For instance, for GaAs
we predict

X1220281= + 3d123= +0.65%107 " m/V

on the basis of a recent measurement® of dy,;, while
measurements® yielded

X12228 = X122(23) + X1221281= (+ 0. 8 or +1,1)x10 " m/V .

Thus it is seen that rotations in shear waves can
give effects in AIOHG comparable to those of
strains.

The symmetric part of the direct susceptibility
representing AIOHG, given in Eq. (5. 34), cannot
be expressed in terms of directly measurable
lower-order tensors (except for the last term).

As such, it represents a new measurable tensor
that characterizes the material medium. We will
term the various contributions to the divect suscep-
tibility as intevnal contributions. The first one in
Eq. (5.34) represents a one-step mixing of the two
input optical fields and the one input acoustic field
via the ®VH material descriptor. The second
term corresponds to a two-step mixing of the po-
larizations induced by the input optical fields via
4O with the internal displacement produced via
DY py the input acoustic field. The third group
of terms represents a two-step mixing process:
First, the polarization induced by one of the input
optical fields is mixed with the displacement gradi-
ent of the input acoustic field via ®"H, the re-
sultant internal displacement mixes with the polar-
ization induced by the other input optical field via
®OF, The fourth group of terms corresponds to
a three-step mixing process: First, the displace-
ment gradient of the acoustic wave produces wn
internal displacement via “'’H; the resultant in-
ternal displacement mixes via ®’¥H with the po-
larization induced by an input optical field; the in-
ternal displacement resulting from the latter mix-
ing then mixes with the polarization induced by the
other input optical field via ®*®H again. The last
contribution in Eq. (5.34) is expressible in terms
of a lower-order directly measurable tensor and
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represents simply the change in density of nonlinear
oscillators arising from compressional or dilata-
tional components of the strain.

Equation (5. 34) predicts the form of the frequency
dispersion of xj ¢f1¢2A. All frequency dependence
is seen to enter via the T} (w) susceptibilitylike
factors which have arisen from the solution of the
dynamics of the problem. The “™™H material
descriptors by their nature are frequency-indepen-
dent quantities. Note particularly that contributions
to the susceptibility having different symmetry have
different dispersion. A sufficiently complete and
accurate dispersion analysis could be used to de-
termine ®VH. For the analysis it would be nec-
essary to have found “*PH from the piezoelectric
tensor, T from the dielectric tensor, *'®H from
the electro-optic and the second-order optical
mixing tensors, VU H from the photoelastic tensor,
and “OH from the third-order optical mixing ten-
sor. To perform such an analysis it is necessary
to decide how many internal coordinates (number
of oscillators) are important to the experimental
results. This determines the range of the summa-
tions over Greek-letter superscripts., Even if a
single electronic and a single ionic degree of free-
dom are assumed for GaAs, ®"VH values cannot
be deduced from the measured AIOHG susceptibility
for GaAs® because one of the interacting waves (the
acoustic wave) in that experiment is a low-fre-

TABLE 1.
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quency wave and because for many of the nonlinear
interactions there are no data for GaAs for inter-
acting waves, one of which has a frequency below
the ionic (infrared) resonance which could be used
to distinguish between ionic and electronic parts of
the various “™™H,

The symmetry of the susceptibility of Eq. (5.34)
for a given crystal class can be determined from
the symmetry of the individual "™ H. Alterna-
tively, and more simply, its symmetry can be found
by applying the point-group operations to a fifth-
rank tensor which is symmetric upon interchange
of its last two indices. Being an odd-rank tensor,
it will be nonzero only in acentric crystals. If we
take the input frequencies identical, w;=w,, then
the tensor will also be symmetric upon interchange
of the second and third indices. As this is likely
to be the most common experimental situation, we
list the symmetry of the symmetric divect suscep-
tibility expected for this case in Table I. I w; #wy,
but they are close enough that there is no significant
dispersion of the optical properties between these
frequencies, then the symmetfy of Table I will be
applicable to high accuracy. If w;, w,, and w¢ all
lie in an essentially dispersionless region, then it
is apparent from Eq. (5. 34) that

WOWIWaW A — , WCW]WaW
x‘flzq,_x 1wawa |

(5. 486)

Conceptually this is the same as the Kleinman sym-

Form of a fifth-rank material tensor which is symmetric upon interchange of the second with the third

index and upon interchange of the fourth with the fifth index for each of the 21 accentric point groups is presented. All
elements of the tensor are zero for the centrosymmetric point groups (triclinic 1, monoclinic 2/m, orthorhombic
mmm, trigonal 3 and 3 m, tetragonal 4/m and 4/mmm, hexagonal 6/m and 6/mmm, and cubic m3 and m3m). The
tensor represents the elastically symmetric direct susceptibility governing AIOHG, given in Eq. (5. 34) for the case
that the two input electric fields are of the same wavelength (or close enough that dispersion is negligible—see text).

In the table X;(s (a1, IS contracted to Xiqp, Where a=1, 2, 3,
3,1) or (1, 3),

4, 5, 6 for (f,@)=(1,1), (2,2), (3,3), (2,3) or (3,2),

(1,2) or (2,1), respectively, and b represents (%, l) similarly. Zero elements are indicated by a

dot; nonzero elements by letters; related elements are expressed in terms of the sa/me letters except when only X
appears, for which cases no relation exists between the nonzero elements.

i=1 i=2 i=3
a=12 3 45 6 1234586 1234586
- Triclinic 1
=1 X XXXXX | XXXXXX XXXXXX1
2l X XXXXX | XXXXXX|XXXXXX
S XXXXXX|XXXXXX | XXXXXX
A XXXXXX | XXXXXX|XXXXXX
5lXXXXXX | XXXXXX |[XXXXXX
GBXXXXX XXXXXX | XXXXXX
Monoclinic 2
s -
p=1f * * * X* X | XXX X ¢« o v X X
2 v.onX XXX'X' -uoXuX
3f ¢+ e X X| XXX X~ e o e X X
4 XXX X s+ e X X |XXX* X
5 e X X | XXX X . X X
6] XXxXx-+* X e v s X X XXX'X'
a—
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S Ul W DN

S U W N

O U W DN =

S U W N

2B
2D
F
2b
2H

Monoclinic m

r— —
b=1 | XXX+ X+ [+ X* X|[XXX* X
2 XXX X+ |+ X*X|XXX* X"
3 lxxx- x|+ X X|XXX* X
4 . . . Xl X XXX. X. . . . XD X
5]XXX* X+ |+ +X*X|XXX* X"
6 . . . X. X XXX' X. . . . X- ﬂ
e
Orthorhombic 222 —_—
b:1 LY ¢ ¢ s s 0 X oo LR ¢
2 LR G s e e e X ¢ e e e . X'
3 ° DY X- . . .« . . X- . . . . . X
4 XXX. . . . . . . . X . . . . X.
5 . . . . . X XXX- . . . . . X. .
6 . . . . Xn ° . . Xl . XXX- . .
Orthorhomic mm2
—
b=1 F R & RN G XXX ¢+
2 . . . ° Xo . . . X. ° XXX- . .
3 . . . . X. - . ° X. . XXXn . .
4 e o s o o X XXX * o o o X o e
5 XXX. ° . ° . . . . X ° ° ° o Xe
6 . . . X . . . . . . X. . ° . . . X
— —
Trigonal 3[D= - (A+B+C); m=—(j+k+1)]
-E2d 2I 1-m |2j 2k n 2J —2eD-C| 2N 2P
E 2¢ 2J j-k |21 2m  —-n 2I —-2dB-A| 2P 2N
- f K ] o -o . K —-f F R R
c M p G-H|2H 26 L -p Ma-b| q —¢q
L p —-M b-a|~-2b —-2a —-¢c M p G-H| -0 O
n I-Je-d B+C| D-BC—-A E d—e I-Jdk+] |-t t
Trigonal 3m[D= - (A+B+())
* 21 . * . * 2J . D-C | 2N 2P
. 2J . . ¢« 21 . B—-A | 2P 2N
. K . . . . K . F R R
M * G-H 2H 2G L - M . <.
. _M . . . . M . G_H _Z Z
I-J * B+C| D-B C—-A E * I-J * c
Trigonal 32 [m= ~ (j +£ +1)]
° 2d * l-m| 2 2k n *  —2e . . .
* 2e * j-k| 2 2m —n *  —2d . ¢
. f . 2z z —z . . _f . . .
c . P . . . c -p . a—b q —q
° P * b-a|=-20 -2a2a —-c - . L
n * e—d . . *d-e k+1 -t t
Tetragonal 4
. I M ° . . . N_J . Q RS ° .
. J N . . . ° M_I . R QS . .
. K O . . . . O._K . T TU . .
C**D| F E G * =+ -H|°> -+ v w
G* *"H|-B-A-C * =+ D|+ « «-wy
L P - ° * * =P L | Y=Y+ =

Q *
Q -
S

S N e

A
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(continued)

TABLE L

Tetragonal 4

s
11
o~
i
N ]
zZ SR
[

Tetragonal 422

Tetragonal 4mm

[
N
D e o .
[ . .
PR o oo
e e e o Qe
n.oucL
Z SR .
cu.Gan
o v e e .
o.aF.n
-.D-
SR oo
-a-oaL

Tetragonal 42m

NNX
A
-
e e e e e
o e e o s D
e e s e e D
N
N I
o.l!.P
« e e e Q.
lo.QAc
e+ e .,
e e e .my -
e e e e eny
~ e e .
L N & )
c e e M. e
A

Hexagonal 6

2J

2D

2G
-2A

G—-H
B-A

L

-C

—2B

o

=~ (J+K+L)]

(A+B+C); M

Hexagonal 6 [D

vﬁ[.ooR
R%...I
P« s
|
PP « s N
I
O < &y =
b e o +
ST X
N O
e e« RO .
1
Z .. e R
t I
o. .3
N3 T o
[52]
e e |
RECC 4
= N Q
11O« « +
N q
e . e RO
I
R O
R, ..
i
IS
Ko o}
S -
bt
AC e o
B

Hexagonal 622

e o o o Un o
1

* o o o o e

e e e o e Ry

» s o o o &N

I

4]

e« o 6 | o o
<
ww_nﬂ_.o.o

[
3]
o v e o oo |
Q

b
q
Q
e o s e o |
<]
QR s o o
[aVIAN
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(continued)

Hexagonal 6 mm

b=1 . ° ° ° zJ ° ° ° ° 2K ° ° 2M ZN 0O -° ° .
2 ° ° . ° ZK . . ° . ZJ ° ° 2N 2M 0 . ° .
3 . . . . L . . . . L o ° P P Q . . .
4 . ° ° . ° G_H 2H 2G I o . ° ° ° . R . .
5 ZG ZH I . ° . 0 . . ° . G__H ° . . . R 0
6 . ° ° J,_K . . . . . . J_K ° . . . . ° M_N

Hexagonal 6 m2 [M=— (J+K+L)]
b=1 . o o e o LM 2J oK N . . . . « o R
2 . ° e o o J-K oL 2M -N ° . . ° ¢« o R
3 . ° . . . O o __o ° . . ° . . . ° .
4 . . « o p . . . o« —P . Q -Q - °o e
5 ° . . P . . ° . ° . P o . ° o ° °
6lK~M J~L N s+ ° ° . o . o K+L o e o R
Cubic 23
° . . o K o ° . o o ° . J-
. . ° ° I . o . o o o K
o e o o J e o s o o o ]
. ° ° . . P ° ° . o H °
C A B ° o e o o P o o
. . . H ° ° B C A . s o
Cubic 432
b= N -J o . « e o

1

2 o o . . . . . . .

3 e o o J . ° o e .

4 o o e e _H ° * .

5 —-B * B . . o o o _H

6 o e * H ° ° B —-B .
Cubic 43 m
. . J ° ° . ° . o J
e o I . . . . . e J
o e J ¢ o e o o T
. . ° H . . ° * H o
A B ° ° ° o o H o o
o o He o B B A » o o

metry condition for the second-order optical mixing
coefficient. ® The forms of the susceptibility tensor
in Table I can also be used for the direct acousti-
cally induced electro-optical effect if the first in-
dex is used for the low-frequency electric field and
the second and third indices for the output and input
optical electric fields.

VI. SOLUTION OF WAVE EQUATION FOR DOUBLE PHASE
MATCHING

Double phase matching, as discussed in the Intro-
duction, refers to phase matching both individual
steps of an indirvect contribution to a third-order
(four-wave) interaction such as AIOHG. !° In this.
case there are two types of indirect contributions
which can be doubly phase matched under appropri-
ate conditions: (a) acousto-optic scattering (direct
and indirect) followed by second-order optical mix-

ing, and (b) second-harmonic generation followed
by acousto-optic scattering (direct and indirect).
We will consider the former of these first.

When acousto-optic scattering is phase matched
according to Eq. (1.1), the free wave must also be
included in the nonlinear driving polarization of
Eq. (3.25). This will cause this particular indirect
contribution to dominate the nonlinear susceptibility
of AIOHG for sufficiently large but reasonable in-
teraction lengths. For this reason we will drop the
remaining terms in the nonlinear driving polariza-
tion. Only the term in Eq. (3.12), proportional to
¥5(z; 1,1)y%(Z; 1, 0), need be retained. Into this term
we substitute Eqgs. (5.2) and (5. 4), dropping the
F“(Z; 1, 1) term from Eq. (5.4) because it cannot
be phase matched. For E(Z;1,1) in Eq. (5.4) we
use
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B(7 1, 1)= 8 (Sr, wp) 87(Sp, wp)-0(L, 1) X (stwowA _ 2800040, ae0f
€0 (ko +k, 1%/ 1Kk 12-1) me €0apkpo (W4l a,
X [eiForiarE _ pikpiE] (6.1) XE4(1, 0)E,(1, 0)u,,(0, 1) . (6.3)
from Ref. 5. Here 71 refers to the particular one

of the eigenvectors that is phase matchable and §F
is given by Eq. (5.13). We obtain for the nonlinear
driving polarization for this case

B25(2, 1)
+ky 1%/ 1Ky 12 -1)

§DB( E; (2’ 1)=(“’<’
o

x[ei(2k0+kA)'z _ el(ko+k5)'z] , (6. 2)
where

_1;?3(2, 1)=2€0d?c;’01w86§")(§F, ws)(g::)(gp, wp)
J

g(z)(gp) wC)g

@)(5p, we): PPB(2, 1)

Here the superscript DB stands for double phase
matching of the intermediate step at frequency wp
and denotes that part of the total @(z; 2, 1) given
in Eq. (3.25) that is important in the present situ-
ation.

The nonlinear polarization in Eq. (6. 2) is now
used on the right-hand side of Eq. (3.23). The gen-
eral solution of .the wave equation in the medium
consists this time of one free and two forced waves
according to

i(2Kkg+k 4) 2

E( z; 2, 1)=C(”gm(§c, wc)e“zc'z. +

€l 12Ky +K 1%/ 1ip 12=1)(1 Ky +K 4 13/ [Kg 2 =1)

898z, we)8® (85, wg): PPE(2, 1)
T eol IRy + K 12/ Ko 12=1)(1Kp +K 4 12/ IKg1%=1)

\el(io-i-ig)'; . (6.4)

Here £ denotes the particular eigenvector which is

phase matchable, s, and S, are defined by Eqgs.

(4. 8) and (4.10), respectively, and 8; is defined by
Se = (Ko +K3)/| Ko +Kg) . (6.5)

By using the same input boundary condition as in

Sec. III, the conditions

|
and

5(6)(56’ "-’c)' 8(“(§D’ wc)g 1 ’
which are good near phase matching, and an origin

of coordinates in the input plane surface, we obtain
by the procedure of Sec. III, three conditions

5(“(§G, wc).g(“(é’c,,wc)gl (EC—ZI%—EA)t=(EC —EO_EB)tZO’ (6.6)
I
o _ _[ 1 _ 1 ] gw.Bo5(3 1) 6.7
12k +k 4 1%/ ko 12=1 7 |Kp+Kp 13/ 1K 12-1]€i(IKp +k, 1%/ K5 12-1) ° )
This leads to an output electrical field of
(5, 1= - 28080 P00 D (minae, Dot sinea By Fet 1)
> €AKpy (Kg+Ko +K 4) ARcp (Ro+2ko+Kk,) Akp, (kKo +kp +kp
x exp| §i(Ke +Kp +3Ko+K,)- 2], (6.8)
where
ATy =Ry Ko — K4, (6.9)
ARG =Ko - 2K — K4, (6.10)
-.D:_’C ‘Eo“_’s . (6‘11)
The time-averaged Poynting vector then is
- s 2(1A T >
- 2,44 2(8)  TDB 2[BENT . (T . £LEn Bte) sin®(zA kg, . z)
5552, 1)< ZERIBIEC B0, 1)1 (@O - - (- 84 8] <[Aﬁcn- et
€qelAkg,. (kp+ko+Ek,)[?
. sin?(3 AIT:D!- Z) 2 sin(3AKg,. 7) sin(3akp, %) cos(%AE&.@ 6.12)
I[Akun' GEC"'kO +kB)]Z AKCYI- (EC+2EO+kA)AEDnJ (E0+E0+EB) ) . :
[
This equation is valid under conditions similar to AEB'F 0, (6.13)
those stated for Eq. (4. 16). N
Double phase matching occurs when Akp,=0, (6.14)
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which then also requires,

Akg,=0. '(6.15)
The input boundary condition in the plane-wave ge-
ometry assumed here has required the tangential
components of these quantities to vanish already.
At exact double phase matching Eq. (6.12) becomes
rERSINE ). BPE(2,1) (2

S0 2, ) = e o B

X[(BOke - (Ko 48], (6.16)
where [ once again is the distance into the crystal
normal to the entrance surface. Note that doubly
phase-matched AIOHG grows as I* compared to the
usual 12 characteristic of singly phase-matched non-
linear processes such as given in Eq. (4.18). Ne-
glecting the ratio [ 89« P22 (2, 1)/8). 3(2, 1)]?

)
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which can be either greater than or less than unity
in different materials and geometries, and neglect-
ing cosine projection factors of the normal compo-
nents of various wave vectors, we see that the ratio
of the intensity of the doubly phase-matched AIOH
to the intensity of the singly phase-matched AJOH is
[4r51]%=6x10°% for a crystal thickness of 1 cm, a
wavelength in vacuum of 1 4, and a refractive in-
dex of two. This spectacular enhancement factor
offers hope that AIOHG under doubly phase-matched
conditions may find practical uses.

By a similar development the time-averaged
Poynting vector can be derived for AIOHG with dou-
ble phase matching of the other two-step indirect
contribution, second-harmonic generation followed
by acousto-optic scattering (denoted by DH on the
effective nonlinear polarization). We find that

sin®(3Akg, . %)

5(%:2,1)= 110
(2,1) cowel Ky, . (ky+2ko)]?

2c2RARE1 8 - BPH (2, 1)IZ[(E )Pk, — (Ko e 84)80) ( sin®(3A%e, - 7)

[Akey. (Re+2Ko+K))] [ake,* (Ko +ky+K )P

2 sin(éAEc),- Z) sin(%AEE,,- %) cos(2AK,,. %)
AEC,,- (EC+2EO+EA)A§E,,- (Ec+§,,, ) ,

where = .
Aky=k, -2k, , (6.18)
ARy =ko ~ky -k, , (6.19)

WOWHW A WA
PI:H(Z’ 1)=¢, (X?C;)H&A _ 2dj CifrAaae
€0apKp(wa)a,
X 8§n)(-§11 wy)é'f: )(EI: wﬂ)

X dpHPOP0E (1, 0)E,(1, O)u,, ,(0, 1), (6.20)

and §; is given by Eq. (5.14).
Double phase matching in this case corresponds
to

&Ky, =0, (6.21)

Akg,=0, (6.22)
which then also requires

Ake,=0. (6. 23)

Here again the input boundary condition in the plane-

wave geometry assumed has required the tangential

components of these quantities to vanish already.

At exact double phase matching Eq. (6.17) becomes

FrARLIAEY  BPH(2,1)12
128¢€wokakim

x [P ke = (ko - 8408,

which is analogous to Eq. (6.16).

5(;2,1)=

(6. 24)

APPENDIX A

We wish to make an order of magnitude estimate
of the various terms in F* (2, 1) of Eq. (3.12) and

+EA) (6.1%7)

in i(2, 1) of Eq. (3.11) in order to determine which
should be kept in the nonlinear polarization 5(2, 1)
of Eq. (3.25). From Egs. (3.8) and (3.9) with the
nonlinear terms set to zero it is possible to make
the following estimates:

(2,0)‘ﬁwmnw%’ (A1)
(0,2) 'ﬁ'z movi , (A2)

R)l/z , (A3)

WO H v, wp mOm
where R denotes the value characteristic of some
resonance, ionic or electronic, of the crystal
(different superscripts, which have been omitted,
here, will correspond to different resonant values).
We also estimate that

@D @07 , (A4)
G0 H 200 ‘I_-f/a , (A5)
GDF 30 ‘I:I” (A6)
40 ~ 3,0 ‘I:f/a , (A7)

where a is a typical primitive unit-cell dimension.
From the lower-order problems, (m,#)=(0, 1),
(1,0), (1,1), and (2, 0), the following estimates are
possible:
9(0, )~ [w4(m°) 2/w o (m®)V 2Ju(0, 1), (A8)
u(l; 0)~ ['UAU-’R(mR)I/a/vowo(mo)l/z]y(l, 0), (A9)
E(1, 0)~(wim®/q®)y(1, 0), (A10)
E(0, D)~ [w g m"Y %/wreo(m™) 34 (0,1), (A11)
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B(1, 0)*(wim®/q%0)y(1, 0) , (A12)
B(0, 1) [0,404g % (m°) " 2/ % e o(m ™)V 2]u(0, 1),

' (A13)
y(1,1) = (wa/v4)y(1, 0)u(0,1), (A14)
EQ1,1) = (wmPw? /v4g®) y(1,0)u(0,1), (Al5)

B(1,1) ~ (wgm®wg /v4v0q%) y(1,0)u(0, 1),(A16)

u(1,1) ® [, (m™) 2 /v4 wo(m% 2

x (1, 0)u(0,1), (A17)
¥(2,0)~ (1/a)y(1, 0)y(1, 0), (A18)
E(2,0)~ (m*wj/q%a)y(1,0)y(1, 0), (A19)
B(2,0) ~ (mei/q avo)y(1,0)y(1,0),  (A20)
(2, 0) ~ [v4wr(m®)2/v4woa(m’)V?]

xy(1,0)y(1,0). (A21)

The charge density ¢® can be eliminated by using
its relation to the change in the dielectric tensor
Ak below and above a resonance according to

Ak~ (B2 egmFwd . (A22)

Substitution of Eqs. (A1)-(A22) into each of the
40 terms of 'f(z, 1) in Eq. (8.12) and into each of
the 20 terms of 1(2,1) in Eq. (3.11) leads to the
conclusion that only 13 of those in -F"(Z, 1) and one
of those in 1(2, 1) yield significant contributions to
P,(2,1). These terms are given in Eq. (5.1).

APPENDIX B

Consider the effect of an infinitesimal body rota-
tion on the second-order optical mixing tensor of

the material body. An infinitesimal body rotation
carries a body point at x; to the new position x;
given by

a 7
x’,-:x,-+u,-=x,-+€m50,~xk5—8—Xix,, (B1)
where X
9 -
i =8 ;+u;,;=0;;+Ry; , (B2)
9x; '
Riy=3(ui,;—u;,) == Ryy= - €, 06, . (B3)

Here 1 is the displacement vector and R is the
mean rotation tensor that describes the counter-
clockwise infinitesimal body rotatlon through the
angle 166 | about the direction of 50. The second-
order optical mixing tensor d;;, must transform on
each index i, j, k£ under the body rotation exactly
as the vector x; transforms under the same rota-
tion:

9

x! 8x/ ax!
o yy= 2 05 2% , (B4
ife= 9%, dx axn Imn ifg s )
5difg:dzngiz+dingfm+difnRgn ) (B5)

0d e = %(dlfg Oip — dpe 011+ 14 Opy
= Aing Oy +dipy Oy ~ d gy, Og1) Up,; - (B6)

If Xifetr11 represents one of the two frequency com-
ponents of the antisymmetric part of the AIOHG
susceptibility which arise if the displacement
gradient oscillates at a particular acoustic fre-
quency, then

0 ie= 2Xifet11Un,1 - (B7)

Thus we obtain Eq. (5.45) of the text
Xifetr11= 7 (d1pg Oip = Appe 011+ iy Opp — dipg 054
+dify Ogp = digy Ogy)- (B8)
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