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We apply our recent theory of nonlinear electrodynamics of elastic anisotropic dielectrics
to the photoelastic interaction and derive for the first time from a fundamental point of viewthe
form of the photoelastic susceptibility for materials of arbitrary symmetry. An indirect photo-
elastic effect is shown to exist in piezoelectric crystals. Its susceptibility cannot be repre-
sented as an ordinary tensor; it possesses different symmetry than the normal or direct photo-
elastic susceptibility, and it can be comparable in size to the latter. The direct photoelastic
susceptibility can be represented by a fourth-rank tensor, but it lacks the traditionally assumed
symmetry upon interchange of the last two (elastic) indices. The independent elastic variable
relevant to the photoelastic interaction is the displacement gradient, not the strain as believed
since 1841. This arises because rotations can play as significant a role as strains do in photo-
elasticity of strongly birefringent crystals in the presence of shear distortions. The form of
the derived photoelastic tensor gives information about the various origins of the effect and can
predict the frequency dispersion of the effect. Though the nonlinear polarization derived here
is equally applicable to Brillouin scattering, specific application is made in this paper to
acousto-optic scattering, and the form of thephase-matched output wave is derived for waves
having an arbitrary orientation to an anisotropic medium.

I. INTRODUCTION

The first nonlinear optical effect discovered was
the photoelastic effect observed in 1816by Brewster. '
The interpretation of the effect in anisotropic media
has been based until now on the phenomenological
formulation made by Pockels, 2 which stated that
the change in the inverse dielectric tensor (5ii );&

was proportional to the strain S~, according to

where p;», is the Pockels photoelastic tensor. Be-
cause (6« '),

&
and 8» are hoth symmetric tensors,

P,», should be symmetric upon interchange of i and

j and upon interchange of 0 and /. It should also
possess the crystal symmetry of an ordinary fourth-
rank tensor.

The modern era of photoela, sticity studies began
with Brillouin's pioneering work on light scatter-
ing from thermal fluctuations in solids (Brillouin
scattering). He showed that the scattered light
would be shifted in frequency from the incident
light by an acoustic frequency. The necessity of
quasimomentum conservation in the scattering in-
teraction causes the acoustic frequency active in
the scattering process to depend upon the angle of
scattering. Brillouin scattering was first observed
by Gross' in liquids where only longitudinal elastic
vibrations play a, role. Leontowitsch and Mandle-
stam calculated the expected scattered intensity
in terms of the elastic and photoelastic constants
of a solid. Raman and Venkateswaran in gypsum
and Sibaiya in Rochelle salt observed Brillouin
scattering from transverse as well as longitudinal
elastic vibrations. Chandrasekharan pointed out
that for unpolarized incident light as many as 12

Brillouin frequency components could be scattered
in a birefringent medium. Chiao ef, al. ' first ob-
served stimulated Brillouin scattering.

Debye and Sears" and Lucas and Biquard'2 per-
formed the first scattering of light from coherently
generated acoustic waves (acousto-optic scattering).
The spatial form of the scattered light in these ex-
periments was explained by Raman and Nath.
Mueller studied the photoelastic behavior of cubic
crystals theoretically, using polarizable point ions
and the anisotropy of the Coulomb potential and the
Lorentz local field, ' and suggested methods of de-
termining the photoelastic tensor by acousto-optic
scattering. " Such measurements were first made
by Gait' and by Burstein and Smith' on cubic
crystals and extended to birefringent crystals by
Narasimhamurty. ' Dixon' added considerably to
the understanding of acousto-optic scattering in
anisotropic media.

Recently we have developed a classical theory
of nonlinear electrodynamics of elastic anisotropic
dielectrics. The theory is formulated from a
microscopic point of view before passage to the
continuum limit is made. Qf crucial importance
to obtaining the correct nonlinear terms is a formu-
lation which allows for finite deformations of the
elastic medium. Construction of an appropriately
invariant stored-energy function is at the heart of
the development. The theory predicts the symmetry
of any nonlinear, as well as linear, interaction of
electromagnetic waves with various eigenmodes of
the solid such as acoustic, ionic, and electronic
vibrations; it predicts the various multistep con-
tributions to the over-all interaction and their
symmetry and so interrelates various nonlinear
interactions; it can predict the dispersion of the
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susceptibility that governs the nonlinear interac-
tion. The theory is valid for wavelengths of the
interacting waves which are long compared to unit-
cell dimensions.

In this paper we apply the general theory to the
simplest interaction between an input acoustic wave
with an input optic wave and derive the photoelastic
susceptibility relevant to either acousto-optic or
BriQouin scattering. This is the first time that
the form of the photoelastic susceptibility has been
derived for materials of arbitrary symmetry from
a classical point of view that is fundamental (in the
sense that the susceptibility is obtained deductively
from a Lagrangian which describes a solid as an

aggregation of moving charged mass points in in-
teraction with an electromagnetic field). We find
that the susceptibility consists of two parts: One
is a fourth-rank tensor possessing material sym-
metry which represents what we will call the direct
effect; the other is not a simple fourth-rank tensor
but rather a fourth-rank tensor function of the
acoustic wave-vector direction. The latter part,
which represents what we will call the indirect
effect, exists only in piezoelectric materials and
represents the macroscopic two-step contribution
to photoelasticity through the piezoelectric and
electro-optic effects. This indirect part has dif-
ferent, often lower, symmetry than the direct
photoelastic effect. The indirect effect can, in

fact, make a significant contribution to the total
effect in certain geometries in some nonferro-
electric crystals such as n-iodic acid. It can
also be very large in ferroelectric crystals such
as lithium. niobate. The present theory, however,
does not apply to ferroelectric crystals.

The history of the indirect photoelastic effect is
quite murky. An awareness of its existence can
be found in the literature ' as evidenced by a, real-
ization that the values of the photoelastic tensor
components may vary depending on the electromag-
netic boundary conditions present on the crystal
during measurement. Nevertheless, review
papers ' pn the phptpelastjc jnteractipn have cpm-
pletely ignored the indirect photoelastic effect.
We find, however, after an extensive search that
the form of the indirect photoelastic effect was
derived by Chapelle and Taurel though we can find
no reference to their work by later workers in the
fields of Brillpuin and acousto-optic scattering.
Concurrent with our work, Coquin+ has considered
the indirect photoelastic effect and its importance
in ferroelectric lithium niobate, Brody and Cum-
mins ' have studied the effect by Brillouin scatter-
ing near the ferroelectric transition temperature
in potassium dihydrogen phosphate, and Wemple
and DiDomenico 8 have estimated its size in oxygen
octohedra ferroelectrics from a phenomenological
treatment. That the indirect photoelastic effect

has a symmetry different from the direct effect
seems to have been unrecognized by all workers
except Chapelle and Taurel.

We also find that the photoelastic susceptibility
tensor which represents the direct effect and
hence the properly defined photoelastic tensor
p, », does not possess the traditionally assumed
symmetry upon interchange of the last two (acous-
tic) indices. We show that this occurs because
the displacement gradient is the natural indepen-
dent acoustic variable for photoelastic measure-
ments. From the time of Neumann' s work' (in 1841)
unitl now, the strain, or sometimes the stress, ha, s
been believed to be the proper variable. The displace-
ment gradient is needed because the rotation of
volume elements, which involves the antisymmetric
combination of displacement gradients, contributes
to light scattering from shear distortions in strong-
ly birefringent media to an extent comparable to
the strain, which is the symmetric combination of
displacement gradients. The deviations from
equality of P&», and P&»~ can be large for common
crystals such as calcite, sodium nitrate, etc.

Finally, we will show what internal effects con-
tribute to the photoelastic susceptibility, how these
are related to other measurable quantities, and
what dispersion is expected for the photoelastic
tensor.

Our method is as follows: In Sec. II we begin
with the continuum Lagrangian of the problem,
passage to the continuum limit from the discrete-
particle Lagrangian having been discussed previ-
ously. 0 The dynamical equations for the degrees
of freedom of the material medium and the electro-
magnetic field equations are obtained from the
Lagrangian. These equations are then expressed
in terms of a more convenient internal coordinate
system. A polynomial form of the stored energy,
expressed in rotationally invariant quantities, is
adopted. Next, the equations are linearized in the
displacement and expressed in the spatial frame.
Only terms that involve at most twp fields are re-
tained, as is appropriate for the photoela, stic effect.

In Sec. III the various fields are expanded in
Fourier series in time and only terms whose fre-
quency is the sum of the optical and acoustical
frequencies are retained. The wave equation is
formed and the nonlinear driving polarization de-
termined, the latter being the heart of the problem.
The wave equation is then solved, neglecting
pump-wave depletion. The Poynting vector is ob-
tained for a near phase-matched output but for
otherwise arbitrarily oriented waves with respect
tp the anisptropic medium.

In Sec. IV the symmetry of the derived nonlinea. r
polarization is discussed while in Sec. V its
origin and dispersion are discussed. The results
of these sections have been summarized above.
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II. FORMULATION B(z, t) = V&& A(z, t), (2. 7)

I =LI, +IF+Jr,
where

N ~—Z p [x (X, t)]'
a=1

—g'x (P(x, t),x'„(x, t)))dx,

(2. l)

(2. 2)

Ip= —
&0 E zt —cB zt dz, 23

Ir= q x X t Ax X t —4x" X t dX

(2. 4)

j z, t ~ Az, t —qz, t 4z, t dz. 2. 5

In the Lagrangian we regard the vector and

scalar potentials A and 4 as the generalized coor-
dinates describing the electromagnetic field. They
are functions of position, which is expressed in a
laboratory Cartesian coordinate system z, and are
related to the electric field E and the magnetic
induction 8 by the familiar relations

E (z, t) = —vc (z, t) (2. 5)

%e wish to develop the theory of the interaction
of an electromagnetic wave at an optical frequency
with an acoustic wave at a much lower frequency.
To handle vibrations at optical frequencies, the
theory, of course, must be dynamic in nature.
Since the wavelength of light, as well as the wave-
length of sound, is large compared to a unit-
cell dimension, a long-wavelength theory is ade-
quate. In this paper we will not deal with effects,
such as optical activity, which involve wave-vector
dispersion and so represent deviations from the
truly long-wavelength limit. The general theory, a'

on which this treatment is based, however, is cap-
able of handling such effects. %e will simplify the
problem here in two other respects, though gen-
eralizations including them are straightforwa, rd.
An ideal dielectric, that is a material which con-
tains no free charge, will be considered, and loss
in the various modes of vibration of the solid will
be ignored, although the latter is easy to add. Al-
so, only nonmagnetic and nonferroelectric materi-
als will be considered. Our interest is in aniso-
tropic media and the theory will be formulated so
as to apply to crystals of any symmetry as well as
to isotropic media. Our treatment will include
piezoelectric crystals and will demonstrate the
anomalous photoelastic properties of such crystals.

We will begin here by writing the total Lagrangian
'

L of the system in the continuum limit as a sum
of a particle I agrangian I&, an electromagnetic
field Lagrangian L,„, and a. field-particle interac-
tion Lagrangian Lr'.

q(z, t) = Z q J[5[z-x (X, t)]dX,
e~1

(2. 3)

j(z, t)=Z q ' x (X, t)6[z-x (X, t)]dX, (2. 9)
J

where 6[z -x") is the Dirac 5 function.
The dynamical equations of the electromagnetic

field are obtained from the Lagrange equations for
the generalized coordinates 4 and A with the
Lagrangian densities defined in E(ls. (2. 3) and

(2. 5):

&OV E(z, t) =q(z, t),
&E(z, t)—V&8(z, t) —Eo =j(z, t),

P, o

where p, o is the permeability of free space. The

(2. lO)

(2. ii)

where rationized mks units are employed. In Eq.
(2. 3) eo is the permittivity of free space and c is
the free-space velocity of light. We regard the N
different continuum particle positions x, which
we choose to express as components g,. iv a com-
mon Cartesian frame called the spatial frame, as
the coordinates describing the mechanical motion;
N is the number of different particles, ions and

electrons in a primitive unit cell. Each x is to
be regarded as a function of X and t, the time.
The quantity X is a continuum variable that desig-
nates or names a material point in a frame, called
the material frame, which we choose to be Carte-
sian and as such is a time-independent quantity.
A dot over a variable represents the partial time
derivative holding X fixed, often called the materi-
al time derivative. The quantities p and q are,
respectively, the mass and charge, taken as con-
stants, of the eth particle divided by the primitive
cell volume. The term poZ of E(l. (2. 2) is the
stored-mechanical-energy density of the material
medium. The mass density of the medium p is
conventionally introduced as a factor in the stored-
energy density to make Z the stored energy per
unit mass. The quantity x"z, of which Z is'a func-
tion, denotes Bx'/BX„, where A denotes the com-
ponent of X(A=1, 2, 3). Whena component of x need
be specified, a lower-case Latin letter will be used
as a subscript to distinguish it from the upper cas-e

Latin letters used to denote components of X. We
make the important physical assumption in Eq.
(2. 2) that the dependence of Z on the derivatives of
x with respect to X„higher than the first will be
negligible. %Ye assume a homogeneous medium;
hence Z does not depend explicitly on X. It is also
important that Z possess displacementand rotational
invariance. The charge and current densities of
E(l. (2. 5) are defined by
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charge and current densities can be expressed in
a multipole expansion about the center of mass x
of the primitive unit cell. Magnetic dipole, elec-
tric quadrupole, ' and higher-order terms will be
dropped. The free-charge density will be set to
zero and the corresponding current dropped since
a dielectric is being considered. Equations (2. 10)
and (2. 11) then become

~,V E(z, t)= V-P(z, t), (2. i2)

1 BE(z, t)—v&&B(z, t) —&,
81

+ vx [p(z, t) xx(z, t)], (2. 13)

where the polarization P(z, t) is given by

g q x'(z, t) p(z, t)
J'(z, t) J'(z, t)

(2. 14)

and the Jacobian of the transformation from X to
x is given by

J(E, l) =(1st
sxA 1~%(%,0)

(2. is)

By comparison of Eqs. (2. 12) and (2. 13) with the
conventional forms of Maxwell's equations, it is
seen that the electric displacement D and the mag-
netic field H must be given by

D(z, t) = eoE(z, t)+ P(z, t), (2. is)

H(z, t) = (1/po) B(z, t)+x(z, t)&& P(z, t) . (2. 1V)

(2. 19)

The dynamical equations of particle motion are
obtained from the Lagrange equations for the
coordinates x with the Lagrangian densities de-
fined in Eqs. (2. 2) and (2. 4). We obtainao

~I

p x =f"+q [E(x")+x xB(x')],
where

(2. 2o)

0 eZ 0 8 8Zf'= t' sg. 'P ex eg'.
A.

(2. 21)

and X is still the independent variable. Repeated
tensor. subscripts as in the second term on the
right-hand side of Eq. (2. 21) indicate summation
over those subscripts.

At this, point we transform from the set of parti-
cle coordinates x to a set of internal coordin-
ates ' y which retains the diagonality of the

Note that in the electric dipole approximation an
effective magnetization term arises from the mo-
tion of the polarization. The other two of Maxwell's
equations, besides Eqs. (2. 12) and (2. 13), are
direct consequences of the definitions in Eqs. (2. 6)
and (2. '7), namely,

V&&E(z, t)+ ' —0 (2. ie)
eg

V B(z, t)=O.

at~a~p~gpx
p

(2. 23)

The inverse transformation of Eq. (2. 22) will be
represented by

+-1
x =XV"''

tt-0
(2. 24)

The diagonality of the kinetic energy in the internal
coordinate system

N ~ N- 1 ~5 p'(x")' = Q m" (y')~ (2. 2s)

defines the effective mass density m' associated
with the pth internal coordinate of the medium. It
can be shownao from Eqs. (2. 22)-(2. 25) that

p V"=m'U". (2. 2s)

The dynamical equations of particle motion, Eq.
(2. 20), can be transformed to the internal coordin-
ate representation

~ I N „Nm'y'=2 V"'f™+2V"'q [E(x )+x "&&B(x )],
(2. 2V)

where p, = 0, 1, 2, . . . , N —1. Denote

where now

Z=Z(x „,y"), v=1, 2, . . . , N —1, (2. 29)

the change to new independent variables being in-

kinetic energy, which contains the continuum co-
ordinate vector x representing the center of mass
of the primitive unit cell, and which possesses dis-
placement invariance for all members except x.
It will be important later in the construction of a
rotationally invariant stored energy to have co-
ordinates which are in the form of N vectors (sym-
metry coordinates or normal coordinates are not
generally in such a form). The inclusion of the
center of mass as one of the new' coordinates will
be important in the expansion of the stored energy
where derivatives with respect to X of x and the
other y~ will be handled differently. Transforma-
tion to internal coordinates is not a restrictive
step; at a later point in the development a second
transformation to either symmetry or normal co-
ordinates can be made.

gee will represent the transformation between
these sets of coordinates by

N

y'(X, t) = E U" x (X, t), p, = 0, 1, 2, . . . , N 1. —

(2. 22)

Note that we have shifted the range of numbering of
y" with respect to x . This is chosen to allow de-
noting the c.m. coordinate x by y:
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dicated by the caret. Note that because of displace-
ment invarianee, Z is not a function of the c.m.
coordinate y =x. %'e neglect its dependence on
y~„(v =1, 2, . . . , N —1); hence the second term of

Eq. (2. 28) is needed only when p=o. This repre-
sents the lowest-order approximation in the long-
wavelength limit and is equivalent to omission of
wave-vector disper sion.

The E(x ) and B(x ) fields of Eq. (2. 2V) may be
expanded in a Taylor series about the c.m. x by
regarding the variable

x"(X,f)-x{X,f)=u (X, t) (2. 3o)

as a small quantity. This procedure is justified be-
cause it has been shown that' the local electric
field effects ean be included in the stored-energy
density Z. Only when treating phenomena such as
optical activity, ' where the phase change of a, light
wave between atoms of the same cell becomes im-
portant, must this expansion be generalized. Only
electric monopole and electric dipole terms will be
retained; magnetic dipole and quadrupole terms
and higher-order terms will be dropped here.
Equation (2. 2V) can then be put in the form

40

~' y' =f'+q'[E(x)+x &&B(x)]+(p' ~ V) E(x)

+p' && B(x)+x && (p' ~ V) B(x)

(2. 36)

8 8-1
P=& q u"=& q"y'=p. (2. 3V)

We also have

PB =P

(2. 3O)

With these simplifications the dynamical equation
for the e. m. becomes

OO

p'x = f'+ (p V) E(x) + p&& B(x)
e

+x&& (p ~ g) B(x) . (2. 4o)

Construction of a rotationally invariant stored
energy density Z has been discussed previously.
The most convenient method of guaranteeing the
rotational invariance of Z is by expressing it as a
function of rotationally invariant variables. B Z

is to be expressed as a polynomial in these vari-
ables, regarded as a truncation of an infinite series
expansion, then it is sufficient to choose E» and

AA, defined by

e=1
(2. 32)

(2. 31)

The effective charge q~ associated with the pth
internal coordinate is given by

1 ~
gs = p (x ~ x s —has ) = Zs g q

A~~=A, „y', , p, =l, 2, . . . , N-1,
where

ft~~=&~, 3« '")a~

(2. 41)

(2. 42a)

(2.42b)

(2.42c)

q "=5 V""q V "=q"
e= 1

We note also that

(2. 34)

(2. 35)

since V =1.
The c.m. equation ean be represented formally

the same as Eq. (2. 31) with p, =o. However, in
an ideal dielectric,

and the effective polarization associated with it is
given by

N N-1
p' = Z V" q u = Z q'"y",

e=1 p= 1

as the independent rotationally invariant variables.
The deletion of the caret from Z will indicate its
dependence on these new variables. The quantity

E» is the finite strain tensor, R&„ is the rotation
tensor, C» is the deformation tensor, and AA is
a set of E —1 variables which, since it involves
the internal coordinates y~(p, 0 0), can be thought of
as polarization-like coordinates though we have
found it convenient not to introduce the effective
charge in the definition. This is avoided since our
treatment must include infrared inactive vibration
modes that do not possess any associated effective
charge.

On the basis of the above discussion we can ex-
pand p'Z as

~ ~KEBAB~ AAJ ~ BA~ Ag A~ +~~ ~&&cAA E&c + IIABcDEY {2&0) g e g ~ {1 1) {o,2)

e,8 e

ABc A, 8 c ABcD AAQ ca ~ HAacag AA Egc ED@&3~0) 8t e 8 y Y'. (2, 1) e8 e g - ~ {1,2) e

e,g e
(2. 43)

In Eq. (2. 43) the "post"-superscripts o., P, y in-
dividually span the range 1, 2, . . . , N —1. The

I

"pre"-superscripts provide a handy designation for
the various H's. The subscripts are tensor indices
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BZ BZ ~ „BZ B&
~$B +~ $f v

B+f,A. B~LB v= 1 BAB B+$,A
(2. 46a)

BgqB
&~g(6~--&AB -" )

Bx~

l+ 2 +pe D f +&e D6AB +ieB 6AD

3 /
2 k~f, D~AB + +f, C ~AB~CB

and summation is implied for repeated subscripts.
Such a convention cannot be applied to the "pos't"-
superscripts. The series expansion has been
carried far enough to yield all two field-driving
terms for the force equations, as needed for acous-
to-optic mixing, except those which would contain

two c.m. - (acoustic-) type fields, whose contribu-
tions would be negligible. The absence of terms in

Eq. (2. 43) involving "2'HA and '2' "H~ reflect as-
sumptions that the natural state of the medium (the
state where external fields and stresses are ab-
sent) is unpolarized and unstrained, respectively.
Thus ferroelastics and ferroelectrics are excluded
from the discussion. The stored-energy function
is assumed to be a single-valued function of the
values of the independent variables. This excludes
mater. 'als exhibiting hysteresis from the discussion.
It also means that the stored energy is not depen-
dent on the rate of approach to its value. Hence
the H coefficients are tensor constants which are
independent of frequency. They characterize the
material medium and so possess the group sym-
metry of the medium. If S represents a transfor-
mation of the group, then 0

gy ~ ~ $ (of) $g) ~ ~ ~

WABCD .. —HA .Be Ce D ... SAe ASB'BSC CSD D
' ' ' . (2. 44)

The derivative of the stored-energy density needed
for calculation of f" (p, = 1, 2, . . . , N I) is-

BZ BZ (2. 45)
By]

' 8A~

The derivative needed for f~ is

frame. Equation (2. 47) leads directly to the follow-
ing relations,

~&+If,»
K B Q

yg yg e
BX Bg

'""y" '
XB

(2. 48)

(2. 49)

needed to simplify the force equations. The rela-
tions

(2. 50)

AA =%A+2 ye (+&,A

AR. , ~ yA at 1 0."A,B =8 ++~,ByA, &+ 2ye, B(+e, A
B

(2. 51)

+ 2 y, (u, AB
—uA, B ), (2. 52)

EAB = 2 (+AeB +MB, A) e (2. 53)

correct through terms linear in u, are also needed.
It should be noted that because of the use of a com-
mon Cartesian coordinate system in Eq. (2. 47)
there no longer is a distinction between upper-
and lower-case tensor subscripts. We will denote
8 y, jexB in Eq. (2.49) and (2. 52) henceforth by

~a, ~

At this point the independent variable of the force
equations (2. 31) and (2. 40) is still X. It is more
convenient to solve the equations in the spatial
rather than material frame. The equations thus
need to be transformed to make x the independent
variable. A caret on the u and y~ functions should
now be used to denote their new functional depen-
dence:

u(x, f) = u(X, f), (2. 54)

y (x, f) = y'(x, f) (2. 55)

The time derivatives holding X fixed must be trans-
formed to time derivatives holding x fixed. To
first order in u

+~), C&~&DC+~~,B &DA)- "I.
(2. 46b)

In order to bring the equations into a more tract-
able form we define a deformation variable, the
displacement u, by

u(X, f) = x(X, f) —X, (2. 47) yQ y +ya! i

(2. 56)

(2. 57)

(2. 58)

where the vectors are now referred to a common
Cartesian coordinate system. Since the normal
photoelastic effect is linear in the elastic variable,
we can regard the displacement u as small and re-
tain only terms in the expansion linea, r in u. For
an undistorted material the displa. cement u will be
zero; from Eq. (2. 47) we see that this means that
the designation of the material points, denoted by
X, is just their undistorted positions in the spatial

Ps

Though from this point on u and y will be used, we
will for simplicity of notation omit the carets.
Also, at this point we can identify x with z, the
position in the laboratory coordinate system. With
the aid of Eqs. (2. 45)-(2. 59), Eq. (2. 31) becomes
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. 8~~ az 8 ~ 8~I P
P; gg 2~@ +9 3 4,I.f ~@ NB. tt P, P ~Ng Y P. P P ~ tery ~3 g ~ (3,0)

8ja $] g+Q g)+Q c)p By+~ g $y E] y+~ Q f gy By 2~ Hg,

—I ' IH" u -Z ' ff,"I, (youl g-/@a I+y u 5 -y~u 6 )-3Q Isola~"gy" 2Q II I&yp'e

8

where &III, ls the llsllRl Pel'IIllltRtioll symbol, Rnd Eli. (2, 40) becomes

tl=1, 2, . . . , fII 1 -(2.60)

08 I] v v
P

m' 3 =~ q" yIEI, I+~ If"e;Ia st' &a ++ ""If,",Iy,",,+2IO'ale, „,u, „.+5 "018„'(y,,y', +y, y', ,)(6,p„-6„6,„)
P P Cf Rvg

+~ ~age(ye, &4e+y~u4«)+ ~ Cgl{2ye, IuI.a+yI uk«+yheuA~ yI~N~S& yI, aug, I)

+ —Q II Ilffqq, (y~~ p1, +y~~uI, ,~)(5II6~ —5I~6II) +2ZI 'nEPggly, ,gyI, +2+ ' ~g1oII(yg, aug, e+ysus, es '
2 f2 e,8 C

(2. 61)

ID these two equations oDly fox'ces involving Rt Inost
bvo fields have been retained. AH summations over
Greek-letter superscripts range ovex 1, 2, . . . ,N-1
The first hvo force terms on the right-hand aide of
Eq. {2.60) are of kinematic origin, while the next
three arise from the inter'a, ctlon energy, Rnd the
reIQainder arise from the stox'ed energy, The fix'st
two fol'ce terms 011 the right-hand side of EIl. (2. 61)
arise fx'om the interaction energy and the remainder
arise from the stored energy.

The right-hand sides of the field eIluations (2. 12)
and (2. 13) must also be expanded in terms of u.
To do this me have, to first order in u,

1/a(z, t)=1- v u(z, t) {2.62)

Therefor 6

e,V E(z, t)+ V p(z t) = V [p(z, t) V u(z, t)j,
(2. 63)

SE(z, t) Sp(z, t)

= ——[p(z, t)V u(z, t)]+ V&& p(z, t) &
ef

(2. 64)
T'he N-vector matter equations represented by
EIls. (2. 60) and (2. 61) along with the field eIlua-
tions (2. 16), (2. 19), (2. 63), and (2. 64) form the
basis for a study of fhe photoelastic effect.

HI. WAVE EQUATION

The photoelastic effect has been studied in at
least three types of experiments: The oldest
method is the Mea, surement of induced birefrin-
gence in a medium subjected to a static uniform
load. The other t%o xQGthods, described Rbove,
Rx'6 BrH, louin scattering Rnd RcoUsto-opfic scat-
tering. %e choose to treat the problem in the form
of acousto-optic scattering, though the nonbnear

polariza, tion that me derive i.s equally applicable
to the ofhex' experimenta, l appr'oaches.

Consider Rn input optical %ave Rf RD RngulRx' fre-
quency ~o RDd RD input Rcoustic wave Rt RD angular

frequency ~&. These cRD, in geDex'Rl, Mix to give
all orders of suID and difference frequencies
((Oo+ Q)g, (do + 2(0 @, 2(go + (og, . . . ) by llltel'Rc'tillg olle
or more times with various orders of nonlinearities.
The term photoelastic effect, as used here, will
x'Gfex' to the lowest-order mixing of the two input
%'aves to yield Rn output frequency of either ~o+~~
ol ~0- ~A. In ox'dex' to 8elect oUt R particular fre-
Iluency component we expand each of the fields u,

Ey and 8 in R Fourier 86r'ies of the form

E(z, t)=2 E' &(z t m n),
Sky g- ~ ccI

Z(z, t; m, n)=Z, (z;m, n)e " o'""&", (3.2)

Z(z; -m, -n) = Z*(z; m, n) . (3.3)

The solutions for acousto-optic scattering are
It is fortunate that an itera, tive tech-

nique can be used for solution of thi. s problem,
that is, the (m, n) = (1, + 1) solutions can be obtained
from a ttneur problem in terms of the (1,0) and

(0, 1) solutions which have been obtained'o separately
and independently of the (1,+1) solutions. The
iterative technique can, in fact, be applie'd to a
great variety of nonlinear optical problems of cur-
rent interest. It 18 liInlted by two RssuIQptlons:

(a) Depletion of the input of pump waves is neglig-
ible, that is, lower-order (in m, n indices) fields
entex higher-order equations only as waves of con-
stant amplitude; (b) variation of the linear proper-
ties of the medium by the nonlinear interaction is
negligible for the solution of the linear pxoblem, ox'

more generally, products of i fields can be neglected
in the solution of a, problem of order 0 =

I m l + l n l

for all l &k. The first assumption vill be violated
if a combination of the interaction strength and in-
tera, ction length is too large vrhile the second vrill
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be violated in interactions such as the self-focusing
of light.

The u, y~, E, and B fields in the form of Eqs.
(3.1)-(3.3) can now be substituted into Eqs. (2. 18),
(2. 19), (2. 60), (2. 61), (2. 63), and (2. 64). For no-
tational convenience we consider the (m, n) = (1, 1)
problem only; the (1, —1) problem is handled
analogously. We obtain

(I/po)Vx B(z; 1, 1)+i&0(deE(z; 1, 1)

+i~, Z. q y (z;i, 1)=I(z;1,1),
Vx E(z; 1, 1)—i(deB(z; 1, 1)=0,

—(d'm" y". (z 1 1) —q"E,(z; I, 1)

+2K ""H"y',(z i, i)

(3.6)

(3.7)

V ~ B(z; 1, 1)=0, (s. 4)

&OV ~ E(z;1, 1)+Z q V y (z;1, 1)=Q(z;1, 1),
(s. 5) —2&' "H,„„.u, „(z;1,i) = G, (z:i, i), (s. 9)

+""H",„u, ,(z;1, 1)=Z', (z;1, i), (3. 8)
—&u&m u&(z; 1, 1) -Q„( ~ )H . y~ (z 1, 1)t

where
F", (E; 1, 1)--—(2td~td„m'u&(0, 1))",&(1, 0)+ w„m'u&(0, () )( &((, 0)

—i(dzq"a;»u&(0, 1)B„(1,0)+Zq~ "y& (1, 0)E&, &(0, 1) —i(doZ q~ e,»y& (1, 0) B«(0, 1)

-Q '«'O'H(, '()[y()(1, p)u, ,(0, 1) —y«(1, p)u, ((0, 1) —y)(1, 0)u«((0, 1)6)«+y)(1, 0)u) «(0, 1)5(,]

—3 Z ' '+H", ~~,"y«(1, 0)y",(0, 1) —2Z ' 'H)«~y~(1, 0)u, ~(0, 1)
B,v 8

+ interchange of (1, 0) and (0, 1)
~

e'&"o' "» ~ = E~( (1, 1)e'"o'"&' (3.10)

G. (z 1, 1)=G,(i i)e«&o'&»'

I, (z; 1, 1)=-', [f[(do + &o„]2 q y( (1, 0)u»(P, 1) + i(d&[5«6&„5,„6»-][2, q y„(1,0)u»(0, 1)

+Z„q y' &(1, 0)u, (0, 1)] + interchange of (1, 0) and (0, 1)]e"""'"(f '

(S.11)

=f,(i, i) e'&'~'"~', (3.12)

Q(z; 1, 1)=-', [Z, q'y", , (1, p)u, ,(p, 1)+Z, q'y', (1, 0)u, „(0,1) + interchange of (1, 0) and (0, 1)]e""& '"o' ' ~

Q(1 1) f(«g+tg)

QPg = 4)o + 4)g ~

(s. is)

(s. i4)

In Eqs. (S.10)-(3.13) the derivative notation now

means multiplication by the product of the imaginary
unit and the appropriate wave vector. In Eqs.
(S.4)-(3.9) the linear terms have been grouped on

the left-hand side and the nonlinear, driving terms,
involving products of two fields in this case, placed
on the right-hand side. It should be noted that in

the definitions of the nonlinear driving terms in

Eqs. (3. 10)-(3.13), interchange of (1, 0) —(0, 1)
requires the concurrent interchange ~ —„where-
ever the frequencies appear. The explicit expres-
sion for G(1, 1) was omitted since it will not be
needed. The dependence on z given in Eqs. (3.10)—
(3. 13) ha, s arisen from the assumption that the in-
put optic and acoustic fields are plane waves
of constant amplitude characterized by wave vec-
tors ko and k„, respectively. We are thus neglect-
ing the depletion of the input optic and acoustic
waves in the photoelastic interaction.

It should be noted at this point that the two scalar
Maxwell equations (3.4) and (3.5) are redundant.
Equation (3.4) is just the divergence of Eq. (3.7)
and Eq. (3. 5) combined with Eq. (3.6), with the
time dependence retained, gives a relation that can
be called the conservation of nonlinear charge:

QB(z, 1f, 1)
( i i)

8$
(3.15)

The solution of the system of Eqs. (S.6)-
(3.9) can be simplified by observing that because
the output wave is an electromagnetic wave, the
linear term in Eq. (3.8) involving ('"H is of order
{v„/vo) - 10 " times the magnitude of the dominant
terms in the equation and so may be neglected (v„
and eo denote velocities of acoustic and optic
waves in the medium). Note that the neglect of the
(' "H term in Eq. (S. 8) uncouples the equation for
u from the remainder of the equations and shows
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&(';((u) = f," ((o) . (3. ia)

From E(ls. (3. 6) and (3. 17) we see that the total
linea. r susceptibility is given by

X„(u))= Z q"r ",.l((o)q' . (3. iS)

Equations (3. 6), (3. 7), and (3.17) can be combined
to yield the wa, ve equation with a driving term

(c/ct)(() [EI I(zy 1 1) E( (I(z' 1 1)]

—((;,((d, )E,(z;1, 1) =(p({z;1,1)/«, , (3. 2O)

where ((,&(~) is the dielectric tensor given by

((;,((d) = 6;,(cu)+ X;;(~) (3. 21)

and (p((z; 1, 1) is the nonlinear driving polarization
given by

(p,. ( z; 1, 1) = «,5 q" 7"„'{(d(()F,"( z; 1, 1) +
iI;(z; 1, 1)

Py0 (dg

(p (1 1) ei(ko +1~) ' I (3.22)

The general solution of the inhomogeneous equa-
tion (3. 20) is the sum of the general solution of

the homogeneous equation, called the free wave„

and a particular solution of the inhomogeneous

equation, called the forced wave, Each of these
terms can contain parts corresponding to the ordin-

ary and extraordinary waves. Usually only one of
these can be phase matched at a time. Phase
matching here is synonymous with satisfying the

Bragg condition. %e thus wish to consider only

one of these waves in a given geometry. It must

be one of the eigenvectors of the free wave and only

the projection of the forced wave on this eigenvec-
tor will contribute to the phase-matched or Bragg-
scattered output.

The plane-wave eigenvectors of a free-wave
electric field h' ' propagating in the direction s
with a refractive index g must satisfy

[6;( —s,s, ] (',"' = {1/n')((;,((u)((",", (3.23)

'=&/ )&I,

8 =c/g/~,
(3. 24)

(3. 25)

that the G(1, 1) function plays an insignificant role
'111 dl" Ivillg the outpllt optlcRl field. Defllle +g(, ((8)

by

«0Z((Y,&(m)[2 ' 8(,", —((I m 6 "6((,]=5 "6„.
(3.16}

Hence E(l. (3. 6) gives

y,"(z; 1, 1)= «OZ„Y,";((((8 ) [ q~ E,.( z; 1, 1)+ F;"(z; 1, 1)] .

(3. iv)

Since Y,".
&~ is the inverse of a quantity which is sym-

metric upon simultaneous interchange of (i —j)
and (v —p. ), we have

k is the wave vector of a free wave and 8 refers
to the three possible eigenvectors corresponding
to the ordinary wave, the extraordinary wave, and

the nonpropagating solution (infinite refractive in-
dex). Since the electric field eigenvectors are not

an orthogonal set, it is convenient to introduce also
the elect;ric displacement eigenvectors L)' ', They
sa.tisfy

[6„-s,s,] [ ((- I( (d)],„n,(e' = (1/n')nI"

and are related to 8' ' by

~,((() ~ ( )g ((((

(3. 26)

{3.2'7)

Though the electric displacement elgenvectol 8 also
do not form an orthogonal set, S"' and S' ' taken
together form a biorthogonal sets whose normal-
ization can be chosen so that

g(~) . ~(q) (3. 26)

Denoting the free wave that is phase matchable

by j we have

E(z 1, 1)„„=C'I'(('('(s,(d ) e'"((' I, (3.29)

where C"' is an arbitrary sealer constant, k~ is
the wave vector of the free wave, and s~ is defined

by

s, =k, //i,
/

. (3. 3O)

The forced wave can be expressed in terms of
the eigenvectors of the free-wave electric field
that propagates in the direction of the forced wave

as

-(-
) g h"'(s~, (gs)(g("'(s~, (ds) ~ 6'(1, 1)

«(Ig.k i'/tk i'-1)

& ei(vo +fr~) ~ R (3. 31)

(3. 32)

Qf the three terms in the forced-wave expansion
only the (p = $ term need be retained.

If the diagonal elements of the dielectric tensor
in its principal coordinate system are denoted by

x„K2, x„ then in this system

8'(" = s(/{g'( —((()Ã, ,

&((" = (((s(/(n'( ((()fi, , —

{3.33)

(3. 34)

(3. 35}

hl E(ls. (3.33)-(3.35) the summation convention over
repeated llldlces is llo't followed. E(luat1ons {3.33)-
(3. 35) are useful for biaxial crystal classes and

propagation in general directions. For propagation
111 pl'lllclpRl plRlles, E(ls. (3.23) Rlld (3.26) should

be re-solved. The eigenvectors for uniaxial crys-
tal classes can be found by a careful limiting pro-
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(»).ke)» = (ke -ko —kg)» =0, (3.37)

where t stands for the components tangential to
the input plane, and

»») g'"(sr, ») ~ (p (1, 1)
e0(lko +k„l /lke l

—1) (3.36)

Letting n denote the component of a vector along
the inward normal to the input surface, we have
near phase matching

E(z; 1, 1) = (- 2i/&0)g'»'8»' ~ »p(l, I)

x(lk +k„l3/lke l' —1) '

xsin(-'Ak z)e'"e'o""~''' ' (3 39)&n

H(z 1, 1)=(-2ic3/0) )kex g«)h»») ~ a (1, 1)

x(lko+k&I'/lk I' —1}'

cedure from Eqs. (3. 33)-(3.35) or by a direct
procedure given previously.

Since we are interested in the radiation in direc-
tions close to that at which phase matching and
hence where a fairly intense output occurs, we
can neglect the "reflected" electric field at the fre-
quency ~~ in the boundary condition at the input
surface of the material medium. We thus require
that the projection of E(z; 1, 1) on g'»)(s)„, &u») },
which is the scalar product of E(z; 1, 1) with
2» '(s)„0)0), be zero at the plane input surface.
Hence

E(zr, 1, 1) ~ X)»»'(sz, »)
=o=c»»)~'»)(s»0 ) ~ g'"(s») e'"''"

g»»)( ) . (p(I ] )e'»'kQ «4) ' IP

e0(lk +k~ l'/lke l
' —1)

where zJ, are the coordinates of the plane input
surface, the origin of them being taken to lie in
the plane. Since Eq. (3.36) is good only near phase
matching, it is a good approximation to take

(s»rt ») g (SB&»') I

even though the propagation directions are slightly
different. Two conditions result from Eq. (3. 36):

at distances near enough to the input surface so
that pump depletion is negligible and at directions
close to the phase-matching direction. Except
for the latter condition Eq. (3.41) applies to input
waves having arbitrary orientations with respect
to the anisotropic medium. Phase matching oc-
curs in this plane-wave geometry when

(w, )„=(k, -k, -k„)„=0, (3.42)

+2 &3 ))II.",) y3(I, O) },,(0, 1)

3g Q qP TP P(»d ) (3,0)ffPSry3 (I 0)j)r (0 I)
3 ~3 ~3~

——3«3&3)~ q'y 3(I, 0)u3. )«, » ~ (4. I)

Solutions of the linear problems (m, n) =(1,0) and
(0, 1) in this notation are readily obtainable from
Eqs. (3.4)-(3.9}, with the nonlinear driving func-

, tions set equal to zero, and have been discussed
previously. 0 The results relevant to the present
development are

y', (I, 0) = e0 Z„T',", (0)0)q"z,(I, 0), (4. 2)

since the boundary condition has required the tan-
gential components to vanish already. The Poynting
vector, remains finite and in fact reaches its maxi-
mum under this condition.

IV. SYMMETRY OF NONLINEAR POLARIZATION

It is apparent from the wave equation (3. 20) or
the Poynting vector given in Eq. (3.41) that the
interaction strength is governed by the nonlinear
driving polarization 6 (I, 1) given by Eq. (3. 22)
with (3. 10) and (3.12). By estimating magnitudes
of the various terms in F"(1, I) and I(1, 1) we find
that for the frequencies used in photoelastic studies
and for crystals presently studied only force terms
in FP(1, 1}arising from the stored energy and the
first term given in I(1, 1) are significant (see the
Appendix). Therefore

p (1 1}= (3f0) Z q T»~(»03)( H)bmP

P3 Pr l
(~3 0)~MB g (3,0)P P, g j;

kb ntl ink UbJ + mt bk

x sin(-'sk ~ z) e"~
Bn

(3.4o)

where terms of order (k~ ~ z )
' have been neglected.

The Poynting vector is thus
where

3 P»»PKPP(0)~)QP
xT,';(»0„)""If,'„u, , (O, 1), (4. 3)

S(z 1 1) = ' [(g'»))'k —(g"' k ) g»»)]
& pCOg

(ka +ko + ~&' ~ an
(3.41)

This expression applies within the material medium

a=k„/Ik„l, (4. 4)

and terms in Eq. (4. 3) of order (v„/v0)3= 10 '0

times the others have been dropped. The term in-
volving a arises from the piezoelectrically created
longitudinal electric field which is in the direction
of a. As there does not seem to be ariy way of pre-
venting this field by the use of boundary conditions
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in the usual manner the acousto-optic scattering
is done, we have included it here. If photoelas-
ticity is studied by the use of static loads on crys-
tals, boundary conditions can be imposed which
will eliminate the piezoelectrically created electric
field and hence this term would then be deleted.
The expression we will obtain for &)'(1, 1) by the
use of Eq. (4. 3}will be specific to acoustic waves
because of the presence of a. Because of its pres-
ence the static limit cannot be obtained directly;
it can be obtained only through the solution of an
appropriate boundary-value problem. Equation
(4. 1) can now be expressed as

2d" a"o"x
8 oao)(„(o&„)a,

xZ, (1, 0)u, , (0, 1),
where

X"'"'""= —-'X& 1(~o) 52)
kl

—( &o) ~ T& (&B)TB"l(&o)q q
Po &8~2&

x ((2, 0& Huo 5 (21 0)HuB 5l b mk+ ml bk

(4. 5)

(2, 0) Huo 5 (2.0)Huo 5 + 2 &2, 1&HuB )kb ml mk bl + mbkl

+2'2o ~ Tl (o&2)Tol(&do)
Po &283 t88 F 8 y

XTry(M ) u u (3'0&HuBy (1,1)Hu (4 5)ce (dA q' g mbc ekl ~

dtdo!OO4lg 3 2 p TPu (~ )TBv(~ )
Po P 8 ~8 188 &8 &

XT& (o&~o)q q q
uo(3 u0)HuB&

e38) = —oo ~ Tse(&d~)q '
Hea) ~ (4. 8)

+ el8") ~&)) (0 (4. 9)

(4. 10}1 j
SB& 2( 8 l+ llyo)

The quantity d&; k" is the direct electro-optic
tensor expressed in the form of the optical mixing

tensor. It relates two input electric field ampli-
tudes to a nonlinear polarization by

(4. 11)

where
D=1 if uo =a

= 2 if uo &+~. (4. i2)

The y, &„,
" is the true fourth-rank photoelas-

ticity tensor representing what we will call the

direct photoelastic effect. The second term in

Eq. (4. 5), which we will call the indirect photo-

elastic effect, exists only in piezoelectric crystals.
The quantity e " is the conventional piezoelectric
tensor relating the strain Skl to the polarization
P by

&l(0, 1) =~,q'x";(o, 1) = oxlo(~~)EB(0, 1)

It is related to the more conventional Pockels
electro-optic tensor r; J k by

d 2 o ~= — l(ll(&oB)3'), K, (&dp), (4. iS)

where the Pockels electro-optic tensor relates
the change in the inverse dielectric tensor to the
electric field causing the change by

(« ')&l=~&lBEB (4. i4)

The factor of 4 in Eq. (4. 13) arises from D = 2 and
from d, 2 o,"relating to one of two (&oo + 0&„) Fou-
rier components while ~,~ is tradionally quoted
as a static value (0&„=0).

Because of the presence of the acoustic wave-
vector direction a in the term in Eq. (4. 5) repre
senting the indirect photoelastic effect, it does not
transform as a simple fourth-rank tensor and
hence cannot be represented as such. It is instead
a fourth-rank tensor function of the acoustic
wave-vector direction. Because of this the indirect
photoelastic effect has different symmetry than the
direct effect. Furthermore, the value of its ef-
fective susceptibility in Eq. (4. 5) can vary even
for a particular set of the four tensor indices de-
pending on the direction of the acoustic wave vec-
tor. The indirect effect does possess symmetry
upon interchange of A and l and also upon inter-
change of the i and j indices provided ~~ and ~o
are also interchanged simultaneously. Since these
frequencies are so close together, for all practical
purposes there is symmetry upon interchange
simply of i and j. Table I lists the possible non-
zero components of the indirect photoelastic effect
that can arise from an arbitrary direction of the

acoustic wave vector for the various crystal classes.
The indirect photoelastic effect: can make a sig-

nif icant contribution to the total effect for certain
geometries in some nonferroelectric crystals such
as n-HIO3. For instance, for an acoustic wave
propagating in the [011] direction in &2-HIO3,

IP,2,211 8) &
0. 009 or about 10% of the reported

value" of P&»~. For an acoustic wave propagating
in the [110]direction, Ip3232l„«, , = 0. 022, a still
larger value. Since p3$3$ has not yet been mea-
sured a percentage comparison cannot be made.
For an acoustic wave propagating in the [111]direc-
tion, )p3~p ) „d~„,= 0.013, a photoelastic coefficient
whose direct contribution vanishes because of sym-
metry requirements. These values are based on
measured values for the piezoelectric coefficients, "
constant-stress dielectric constants altered
through the piezoelectric coefficient to give the
constant-strain dielectric constants appropriate to
high-frequency acoustic waves, electro-optic co-
efficients, ' and optical dielectric constants. "
Though this theory as presently formulated does
not apply to ferroelectrics, it is clear that an in-
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TABLE I. Possible components of the indirect photo-
elastic effect in contracted notation for various crystal
classes. X indicates components which can be nonzero
for a general acoustic wave-vector direction. Isotropic
substances, cubic classes m3, 432, and msm, hexagonal
classes S/m and 6/mmm, trigonal classes 3m and 3,
tetragonal classes 4/mmm and 4/m, orthorhombic class
mmm, monoclinic class 2/m, and triclinic class 1 are
nonpiezoelectric and so possess no indirect photoelastic
effect.

Cubic 23 or 43m Hexagonal 6m2or 6

oooo o o xxooox000000XXOOOX
0 0 0 0 0 0 0 0 0 0 0 0OOQXXX000000
OQOXXX000000

Q Q XXX XXQ Q Q X'

Hexagonal 622 Trigonal 3m or 3

0 0 00 0 0 XXXXXT
0 0 0 0 0 0 XXXXXX
0 0 0 0 0 0 XXXXXX
0 0 0 XXO XXXXXX
0 0 0 XX 0 XXXXXX

000 0 0 XXXXXX
Tetragonal 42 m Tetragonal 422

000007000000000000000000
0 0 0 0 0 0 0 0' 0 0 0 0
0 0 0 XXX 00 0 XXQ
0 0QXXX 00 0 XXO
0 0 0 XXX 00 0 0 0 0

Tetragonal 4 Orthorhombic mm 2

XXO XXX XXXXX O

XXQ XXX XXXXXQ
0 0 0 0 0 0 XXXXXO
XXO XXX XXXXX 0
XXO XXX XXXXXO
XXO XXX 0 0 0 0 0 0

Monoclinic m or 2 Tricli

%XXXXX XXX
XXXXXX XXX
XXXXXX XXX
XXXXXX XXX
XXXXXX XXX
XXXXXX~ XXX

Hexagonal 6mm or 6

XXXXXO
XXXX 0

XXXXX 0
XXXXXO
XXXXXO
0 0 0 0 0 0

Trigonal 32

TXO XXX
XXOXXX
0 0 0 0 0 0
XXO XXX
XXO XXX
XX 0 XXX

Tetragonal 4mm or 4

rx x x x x 0
XXX XXO
XXXXXO
XXXXXO
XXXXX 0

0 0 0 0 ~O

Ortho rhombic 222

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 XXX
0OOXXX
0 Q 0 XXX

Dlc ~

XXX
XXX
XXX
XXX
XXX
XXX

direct photoelastic effect of the form given in Eq.
(4.5) will exist in ferroelectrics also. In fact,
theindirecteffect can be comparable in magnitude
to the direct effect in ferroelectric LiNbO3, par-
ticularly for the p»3, coefficient.

After suitable subsidiary measurements have
been made the indirect photoelastic effect can be
removed from the tota1 susceptibility, represented
by the large parentheses in Eq. (4. 5), which is
measured in an acousto-optic scattering experi-
ment in a piezoelectric crystal. The remaining
susceptibility represents the direct photoelastic ef-
fect and is a fourth-rank tensor which possesses
the symmetry of the crystal group. It also has
symmetry upon interchange of i and j to the extent

)("s"o""= —as0 P Ttm(~s)Tat(~o)e q
Ps +8~»

)(((40)Ifn8 5 (8,0)Hn8 5 (8, 0))(1)L85l b fftk Ab ml + mf M

(8&0)ffn85 ) (4 16)

Note that the first term on the right-hand side of
Eq. (4. 15) involves directly measurable tensors
of a lower order and as such could be regarded as
an indirect effect. %e choose, however, to include
it in the direct effect. The susceptibility of Eq.
(4. 15) can be related to the Pockels photoelastic
tensor by

Xt 1 at
= 8 t(tm ((t) s)Pmn(at) t(nl ((t) 0) ia (4

where p &»& is synonymous with the photoelastic
tensor of Eq. (l. 1) and the factor of —,

' arises since
P „~»&, like r, , above, is quoted as a static value.
Similarly, we can define a tensor p „&»&, which has
no analog in the Pockels formulation, by

&a~a~~
Xt 1 at

= 8 "t ((t)S)pmmn(»] t(n1 ((t)O) (4. 18)

The antisymmetric tensor of Eq. (4. 16) can be
more readily understood if ' ' 'H is eliminated from
Eq. (4. 16) with the use of Eq. (3. 16). Therefore

Xt y at02

x (T(; (~s) [s0~'om'T,'t'(~, )+6"'5„]

T r ((t) t) ) [so (t) o)tt" T ga ((d o) + 5" 51al

that the difference of the frequencies |d~ and eo is
negligible. Examination of Eq. (4. 6) shows, how-

ever, that the direct-effect susceptibility is not
symmetric upon interchange of A; and l, unlike the
Pockels phenomenological formulation of Eq. (l. 1).
Thus the strain, which is the symmetric combina-
tion of displacement gradients, cannot be used here
as the independent variable to describe elastic de-
formation. Rather, the displacement gradient it-
self is seen to be the natural measure of elastic
deformation relevant to the photoelastic effect.
This represents a departure from the view, held
since the work of Neumann'(in 1841)that the strain
is such a measure.

It is useful to divide the susceptibility of Eq.
(4. 6) into parts symmetric in )'t and I, indicated
by parentheses around the subscripts, and antisym-
metric in 0 and l, indicated by brackets around the
subscripts:

+geoeg 1
Xt 1 at 0 Xt 1 (+0)6at

Tnn (~ )T8v (~ )qvqP (8, 1)rfn8
P8P888V

+3&o ~ T(m((ct))
P8088tl'8 0818

&T8v (& )T) n(~ )
n n (0,0)Ifn8) (1,1)ffn

bg 0 ce a O' 9' mbc eel )

(4. iS)
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+T«r" (Cdo) [«3(dam'Tgr' (ada)+5'" 6r, ]

—Tir (irido) I&orrram T «(ada)+5 5 «]]'

(4. 19)

It is seen that the four terms involving either co~0

or ~~ are almost exactly canceling. Since the re-2

mainder from this near cancellation is of order
&riz/irido times the dominant terms it can be ne-
glected. Hence

tdgugug & I

Xr yr«r] = ~ trier (rrra) ~J«rrr«(rrra) ~yr

+ rrr (& o) ~ «
—rr«; (rd 0) ~ i] (4 2o)

Note that, to this approximation, this antisymmet-
ric susceptibility can be calculated from the di-
electric tensor alone. " Equations (4. 18) and (4. 20)
can be combined to yield an antisymmetric part of

the photoelastie tensor

P; r «r" = 36rr

(irido)]rr

~r«[& (rd o)]«r ~rr

+ [rr '4&a)] r 5«r - [rr '(ro, )]r„5„). (4. 21)

Contributions to the nonlinear polarization of Eq.
(4. 5) from the antisymmetric susceptibility given

by Eq. (4. 20) will arise only from the antisym-
metric combination of displacement gradients,
which forms the mean rotation tensor

(4. 22)

We thus see from Eqs. (4. 20) and (4. 22) that the

antisymmetric susceptibility arises from the rota-
tion of the linear optical anisotropy, that is, the
dielectric tensor, within volume elements in the

acoustic wave. Since rotation occurs only in acou-

stic waves possessing a shear component, as seen
from Eq. (4. 22), only antisymmetric susceptibility
components that combine with shear-wave compo-

nents ean occur.
The number of antisymmetrie components which

can exist in various crystals can be determined

from either Eq. (4. 20) or (4. 21). The components

of the dielectric tensor in these equations must

be expressed in the rectangular crystallographic
coordinate system. For crystals of orthorhombic

or higher symmetry the principal coordinate sys-
tem of the dielectric tensor coincides with the

crystallographic coordinate system which makes
the determination very simple. Isotropic sub-
stances and cubic crystals have no antisymmetric
components since they are optically isotropic
(optical activity is neglected in this paper). All

uniaxial crystals (hexagonal, tetragonal, and tri-
gonal systems) have four nonzero antisymmetric
components. Biaxial crystals of orthorhombic

symmetry have six. Crystals of monoclinic sym-

metry have one principal axis fixed in the x~ erys-
tallographie direction; the orientation of the other
two principal axes depends on wavelength. Four-

TABLE II. Nonzero components of the antisymmetric
photoelastic tensor, Eq. (4. 21). The quantity pmn 2~ nkvd

&&p~~&& j, where m is thenormal contraction of the first
pair of indices, -is plotted. Nonzero components, indi-
cated by a dot, are joined by a line when equal. All
components are zero for isotropic substances and cubic
crystals.

Hexagonal,

tetragonal,
trigonal
systems

0 0 0
0 0 0
0 0 0

'y0 0
0 ' 0
0 0 0

Orthorhombic
system

0 0 0
0 0 0
0 0 0

0 0
0 ' 0
0 0

Monoclinic
system

0 ' 0
0 0 0
0 ' 0

0
0 ' 0
~ 0 ~

Yriclinic
system

teen nonzero antisymmetric photoelastic compo-
nents result for crystals of this symmetry. The

principal axes ean have a general orientation with

respect to the crystallographic axes in triclinic
crystals. Thirty-six antisymmetrie components
result in this case. These results are summarized
in Table II.

Though the rotational effect may be very small
in weakly birefringent crystals, it can be com-
parable to the ordinary strain contribution in

strongly biref ringent crystals. For instance, for
calcite in the visible,

(P2332 P2323)/3 (P2333+P3323) = 98%%uo (4. aS)

if the measured value" of p»«» is used for the

denominator.

V. ORIGIN AND DISPERSION OF PHOTOELASTIC

SUSCEPTIBILITY

Since we have discussed the origin of the anti-

symmetric part of the direct photoelastie effect
as well as the indirect photoelastic effect in Sec.
IV, our remarks in this section will concern only

the symmetric part of the direct photoelastic ef-
fect. The susceptibility representing this portion
is given by Eq. (4. 15). Examination of that equa-
tion indicates that there are three major contribu-
tions [minor contributions were dropped in passing
from Eq. (3. 22) to Eq. (4. 15)] to the symmetric
susceptibility. The first term on the right-hand
side of Eq. (4. 15) represents simply the change

of the number of oscillators per unit volume due
to the compressional and dilatational effects present
in longitudinal acoustic waves. Note that the fre-
quency dependence of this term arises from a single

susceptibility factor and that it has a higher sym-

metry than the remaining terms.
The second group of terms on the right-hand side

of Eq. (4. 15), distinguished by a frequency depen-
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dence determined by two susceptibility-like factors,
contains ""H. The tensor constant "'"H repre-
sents the internal direct, or one-step, mixing of
the acoustic and optic fields. It has the lowest
symmetry of any term in Eq. (4. 15). Its compo-
nents with p, = P can be interpreted as the contribu-
tion fx'om the p, th oscillator arising from the defor-
mation-altered resonant frequency. The compo-
nents of ""Hwith p, 0 P represent the contribution
from the deformation-altered oscillator strengths
arising from the interaction of the pth and Pth os-
cillators caused by the deformation.

The last term in Eq. (4. 14) represents an internal
or microscopic two-step contribution to the sym-
metric part of the direct photoelastic susceptibility
since it involves both(i') H md(3 0) H. It ls phys
icRQy distinguishable from the other conlibutions
by its dispersion which is given by a product of
three susceptibility like factors and by its symmetry
which differs fxom that of the "H term. It arises
from the mixing of the polarization. induced by the
input optical field via ' ' 'H with the internal dis-
placement produced via '"H by the input acoustic
field. This internal two-step contribution does not
occur in all materials; symmetry conditions can
cause both ' 'H and ' 'Hto be zero for some
crystals. Such is the case, for instance, for crys-
tals possessing the rocksalt structure. Converse-
ly, ' ' 'H and" 'H need not be zero in a nonpiezo-
electric crystal even though by Eqs. (4.7) and (4. 8)
' ' 'H and""H give rise, respectively, to the elec-
tro-optic and piezoelectric effects. This is true
because symmetry operations affect the "post"-
superscripts of the H's via Eq. (2.44) as well as
the subscripts. As an example, ' ' 'H and ""H
are both nonzex'o for crystals of the diamond struc-
ture.

An important result of the present theory is its
prediction of the form of the frequency dispersion
of the photoelastic susceptibility. Four things con-
cerning this are important: (i) The various ' '0)H

by their nature are frequency-independent quanti-
ties; (ii' all frequency dependence arises from the
dynRmicRl chRrRctex' of the equations used and Rp-
pears only in T;& (&f)) factors; (iii) contributions to
the direct photoelastic susceptibility having differ-
ent symmetry with respect to lower indices are
shown to possess different dispersion; and (iv) the
number of '"'"'H components present in Eq. (4. 15)
that must be fit to experimental values depends up-
on the crystal symmetry and the number of internal
coordinates (number of oscillators) which are im-
portant to the experimental results.

A proof of the correctness of Eq. (4. 15) could be
furnished by detailed agreement of the predicted
dispersion with experiment. There is not, how-
ever, a great deal of data available at present on
dispersion of the photoelastic tensor elements,

(8,0)IIu8r O
(1,1)II& Oabc eel (5. 1)

f 2, 0)ff0lr f 2, 0)~ 50r5
bc bc '

The latter aQows Eq. (3. 16) to be simplified to

(5. 3)

[20 f2, 0) err]-1

[2 f2. 0) furr/ r])i2

(5. 4)

(5. 5)

With these simplifications Eq. (4. 15) becomes

0)
= 2(5050»~

1 I i r)2

(5.5)

Even in norrQal-mode coordinates '~'"H need not
be diagonal in )), P space; it is, however, sym-
metric upon interchange of p. and P simultaneously

especially in spectral regions and materials where
the dispersion is great. Of the few available
the study by Gavini RIld CRx'donR is the most ex-
tensive in scope and successful in interpretation
and hence we wish to consider their work in the
framework of the present theory. %'emple and
Dioomenieo have recently summarized photoelas-
tic dispersion data and drawn attention to the im-
portance of excitons in causing strong dispersion
in the photoelastic tensor elements.

To demonstrate our statement that the present
theory can account for the dispersion of the photo-
elastic tensor components we will show that Eq.
(4. 15) encompasses the successful dispersion analy-
si,s of Gavini and Cardona. They accounted for the
strong dispersion encountered near the exciton ab-
sorption edge in various alkali halides. They found
it necessary to consider the three excitons that cor-
respond to the three valence-band maxima at the
center of the Brillouin zone, two of which are de-
generate in the absence of stress and one which is
separated by the spin-orbit splitting. They also
considered an interband (valence-to-conduction-
band) oscillator which contributed constant amounts
to the photoelastic tensor components, its disper-
sion in the measured region being negligible. Thus
in Eq. (4. 15) we take the Greek-letter superscripts
to represent normal-mode coordinates and to have
values one and. two for the exciton oscillators de-
generate in the undeformed state, three for the ex-
citon oscillator separated by the spin-orbit splitting,
and four for the interband oscillator.

For the rocksalt structure (m3m) we have
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with interchange of i and j. The parameters
(q") C" and u", corresponding, respectively, to
the yth oscillator strength and resonant frequency,
are not free parameters in fitting to photoelasticity
data. They can and should be determined by the
dispersion of the optical dielectric constant. From
Eqs. (3. 19), (3. 21), and (5. 3) we have, for this
purpose, in this crystal structure

~ i& (td) = & s I
& + Z (0") &

y

(5. ~)

There is left in Eq. (5. 6) a large number of
undetermined ' '"H components even for the rock-
salt structure. There are three independent com-
ponents

i,j,k, 1=1,1, 1, 1;1,1, 2, 2;1,2, 1, 2

with respect to the lower tensor indices and there
are ten independent combinations of values of
""H for p, , P (reduced from 16 because of sym-
metry upon interchange of p, , P). This means we

still have 3 x 10= 30 independent parameters.
From a knowledge of the energy bands from which

the excitons are formed, Gavini and Cardona de-
rive relations which allow expressing ' '"H values
(for a given set of lower indices) denoted by

p, /=1, 4;2, 4;3, 4;1, 1;2,2;3, 3

to a single parameter they call a. The values of
""H for p, , P=1, 2;1,3;2, 3, aretaken as negli-
gibly small and the value of '~ "8 for p. , P =4, 4,
is related to their parameter C. Further it is
assumed by them that the effective interband
oscillator frequency is very large compared to
the exciton oscillator frequencies. In this manner

Gavini and Cardona, and we as well, reduce the

number of unknowns to two for a given set of ten-

sor indices. Thus the present theory is also able

to account for the fine dispersion fit found by those
authors and to do so on the same physical basis.

VI. CONCLUDING REMARKS

The present work points up the dangers of phe-
nomenological theories. The I'ockels phenomeno-

logical formulation of photoelasticity expressed in

Eq. (1.1) contains five physical statements: (a)
The effect depends only on the strain as an indepen-
dent variable; (b) P,», is symmetric upon inter-
change of k and l; (c) p;», is an ordinary tensor;
(d) p;», possesses the symmetry of the crystal;
and (e) p,», is symmetric upon interchange of i and

j. The rotation effect invalidates (a) and (b) and the
indirect photoelastic effect invalidates (c) and (d).
Thus statements (a)-(e) apply only to the symmetric
part of the direct photoelastic susceptibility given

by Eq. (4. 15). Nonetheless, it has been believed
over the years that the Pockels formulation had

been properly tested experimentally. " Clearly
more experimental work is needed in strongly
piezoelectric crystals and in strongly birefringent
crystals to verify the modifications of the Pockels
formulation that have been presented here. It is
also worth noting that on the basis of this work the
recent phenomenological formulation of nonlinear
photoelasticity is clearly in error for birefringent
and piezoelectric crystals.

We showed in Sec. IV that the measure of elas-
tic deformation relevant to the photoelastic effect
is the displacement gradient, not the strain or the
stress as believed previously. It is worth remark-
ing at this point that this statement applied only to
the largest contributions to the photoelastic effect,
the ones sizable enough to be measurable within
present-day accuracy. Other much smaller con-
tributions to the photoelastic susceptibility, such
as that arising from the first and second terms on
the right-hand side of Eq. (3. 10), depend on the
first and second time derivatives of the displace-
ment as well as gradients of the optical electric
field. It should be remembered that materials and
circumstances may be found in the future where
these contributions will be measurable. For such
materials additional measures of elastic deforma-
tion, the time derivatives of the displacement
will be needed for photoelastic studies.

The equations developed in Sec. IV form the
basis of a study of dispersion in the photoelastic
tensor components in regions where absorption is
negligible. If photoelastic dispersion were studied
in the restrahlen region, for instance, loss in the
lattice oscillators would have to be included in the
theory. %e leave this for a future study.

Since wave-vector dispersion has been omitted
from the treatment of photoelasticity in this paper,
care must be exercised in applying the results ob-
tained here to optically active media. If such is
done, effects caused by deformation-induced
changes in optical activity as well as normal opti-
cal activity must be avoided in making comparisons
with this theory. Stress can induce optical activity
in crystals which normally do not possess it.

Because an indirect photoelastic effect can be
very large in ferroelectrics, it will be important
to generalize this treatment to include ferroelectric
crystals. We leave this for a later paper.
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APPENDIX

We wish to make an order-of-magnitude estimate
of the various terms in F" (1, 1) of Eq. (3. 10) and

in l(1, 1) of Eq. (3. 11) in order to determine which
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should be kept in the nonlinear polarization 6' (1,1)
of Eg. (3.22). From Eqs. (3. 8) and (3.9) with the
nonlinear terms set to zero it is possible to make
the following estimates:

(8~0)H B 3
tlat (tP g ~

&Oga}H - ~o 3

(&y&&71 / 0 R)&/2VgQPg ytPl 8l

(Ai)

(A2)

(A3)

where R denotes the value characteristic of some
resonance, ionic or electronic, of the crystal (dif-
ferent superscripts, which have been omitted hex'e,

will correspond to different resonant values). We

also estimate

(2y 1)H (Bp0)H

{3po&H (2eo&H/

(A4)

(A6)

where a is a typical primitive unit-cell dimension.
From the linear problems (0, 1) and (1,0) the fol-
lowing estimates are possible:

y{0,1) =[~~(m')"'/~ (m")"']u(0, 1}, (A6)

u {1,0) =[v~~s(m')'"/v. ~.(m')"']y (i, o), (A7)

E (1,0) = [ur „m"/q" ]y (1,0), (A8)

E{o,1)=[~gq (m')"'/(o„eo(m")"']u(0, 1), (A9)

B {I,o) =[~sm "/q'vo] y (I,0), (Aio)

B(o, 1)=[v ~ q" (m')"'/c'~„e, (ms)"']u(0, 1)

(Ai 1)

The charge density q can be eliminated by using

its relation to the change in the dielectric tensox
~~ below and above a resonance according to

a~=(q )'/&0m (os (A12)
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