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is considered. The notation used is that of Koster, "
and the chlorine ion is taken to be at the origin of
the unit cell. In the table, n; is the number of
times the jth irreducible representation occurs.

The figure in brackets after a representation l.abel
is the degeneracy of the representation, and if no
figure is given the representation is singly degener-
ate.
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The dynamic interaction between electromagnetic waves and transverse optical phonons in
dielectric crystals has been studied by means of the Green's-function method. Emphasis has
been given to the line shapes of the absorption bands at finite temperatures. The spectral func-
tions for the photon and phonon fields are found to consist of the superposition of symmetric and
asymmetric Lorentzian lines even if the frequency dependence of the energy shift and damping
functions is neglected. The source of the asymmetry is the anharmonic coupling between the
transverse photons and transverse optical phonons. General expressions for the energy shift
and the damping functions are derived. The possible mechanisms that may occur in the physi-
cal process of Baman scattering are examined in detail, and expressions for the corresponding
scattering amplitudes are developed. In the limiting case of absence of dispersion of the elec-
tromagnetic waves in the medium, thebare excitation spectrafor both fields are alsodiscussed.

I. INTRODUCTION

The excitation spectrum of interacting polaritons
in dielectric crystals has been recently studied'
by means of the Green' s -function method. In a
dielectric medium and for certain values of wave
vectors of the electromagnetic field, the polariton
spectrum arises from the interaction between
transverse photons and transverse optical (TO)
phonons. The polarization operator for the inter-
acting polariton system has been calculated in
successive approximations and the excitation spec-
trum has been discussed in detail. The polariton
spectral function arising from polariton-polariton
interactions is found to have a Lorentzian line
shape, while asymmetric broadening will arise
only when the frequency variation of the damping
function is taken into consideration. %e refer to
I for details as well as for polariton literature.

Benson and Mills have recently developed a
theory of light scattering from polaritons in the
presence of lattice damping. Their calculation
is based on the assumption that the lattice anhar-
monicity is the dominant factor in the damping
process and the anharmonic coupling between the
electromagnetic field and TO phonons has been
completely ignored. For the process of Raman
scattering, they found that the spectral functions
for the photon and phonon fields are described by
Lorentzian lines. Asymmetric broadening results
only when the frequency dependence and the varia-
tion of the linewidth with respect to the scattering
angle are taken into account. Barker3 studied
the Raman scattering spectrum of To phonons in
GaP. He found that the TO phonon mode showed
considerable asymmetric broadening. 3 The pur-
pose of this study is to show that the line shape
of the spectrum arising from photon-phonon in-
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teractions is always asymmetric. The source of
the asymmetry is the anharmonic coupling between
the photon and phonon fieMs. Whenever the lat-
tice anharmonicity makes an important contribu-
tion to the damping process, the contribution
arising from the anharmonic photon-phonon cou-
pling is also substantial and results in the asym-
metric broadening of the spectral line.

This paper is arranged as follows. In Sec. II
we make use of the Hamiltonian obtained in I to
derive the byson equation for the coupled photon-
phonon Green's functions. General expressions
for the photon and phonon Green's functions are
developed and compared with the results derived
from previous studies. The excitation spectrum
is discussed in Sec. IH in successive approxima-
tions. The spectral functions for the photon and
phonon fields are found to have an asymmetric
line shape. The asymmetry is caused by the
photon-phonon anharmonic coupling. As an ex-
ample, the possible mechanisms that may occur
in the physical process of Raman scattering are
discussed in Sec. IV, and the scattering amplitudes
as well as the components of the polarization op-
erator that contribute to the processes in question
are calculated in the appendices. FinaBy, the
excitation spectrum is examined in Sec. V for the
special case where the electromagnetic waves in
the medium suffer no dispersion but only scattering.

II. DERIVATION OF PHOTON AND PHONON
GREEN'S FUNCTIONS

The Hamiltonian for a dielectric crystal, con™

sisting of N unit cells in volume V with r atoms
per unit ce11, ean be taken in the form of'

@l+$Cr++lr &

where Rt, R„, and X&„are the Hamiltonians for
the lattice, the free electromagnetic field, and
the interaction between them, respectively. The
lattice Hamiltonian is known to be given by'

1~ 0R, =—~ (u q(-A „)A-„)+ Bn)B-„))
4g kt

+g g V„(k,j„k,j„.. . , k„j„)
fan)'2 k ]g $ 2 ~ ~ ~ 2 +2 g ft

(2)

where the first term describes the free phonon

field, while thesecondis the anharmonic interaction
between them. &kj is the bare phonon energy of0

the harmonic phonon fie1d with wave vector k and
polarization j. The operators are A.z =ak&+ ak-&

and B» = aQ —
akim, where ak, and a+ are the phonon

creation and annihilation operators, respective1y,
which satisfy Bose statistics. The Hamiltonian
for the free transverse electromagnetic field is

&„=QCkb21b21, (3)
RX

where b.„,and bf, are the creation and annihilation
operators, respectively, for a photon with wave
vector k and polarization A. (= I, 2). ck is the en-
ergy of the radiation fieM, and we have assumed
a system of units where h= 1.

The photon-phonon interactions are described
by the interaction Hamiltonian'

0 1/2 2
Z ~ Qfg ~(dK,„=——Q — K, (kX)A.„,B„+ Q —A21A2,
2 „)„g ck 4 ~), ck

~2 2,1„2@,p, (k14, k2 j2, k2 j2, , k.j 1)Ar,,11Bz2),A22(2'
' ' Ar, 1

1

+2 2.
tk 2 ky)tg2 k2)t, 22

w)32 ~ ~ ~ k ffjf ~ 2

gn(k1~1 y k2~2t k2f2y ~ y known-2) 2 1 A2 1 Alt j At g 2i (4)

where A21 = b2„+b2„, and 2'&(kX) is the coupling con-
stant defined by E1I. (8) of I and satisfies the rela-
tion

where ~~ is the plasma frequency. The first term
in (4) describes the dispersion of the electromag-
netic waves in the medium, while the functions

4.(k1~1, k2j 2

where F», is the row vector

(Ga)

gn(»~1, k2&2, k2 j2, ~, k.j. 2)

are the anharmonic coupling functions describing
photon-phonon scattering processes and their ex-
plicit expressions are given in I.

To diagonalize the Hamiltonian (I), we introduce
the retarded double-time Green's function in the
matrix form~

G(k, t —t')= ((Y„;Y„))
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yb (t) = (Ah(f) B (f) A' (f) B. (f)) (6b) G(k; ) = (I/2 ) &
[I- „I-, ] ), ,

and the angular brackets in (6a) denote the average
over the canonical ensemble appropriate to the
total Hamiltonian K. 8(t) is the usual step function
and the operators F»& and I'"„» are in the Heisen-
berg representation. In what follows, the time
arguments of the operators will be suppressed for
convenience. The Fourier transform of the Green' s
function (6a) with respect to the argument t satis-
fies the equation of m oti on

Goo(k; ~)G(k' ~) = & + &&Pa. ; I g.&&, (8)

where the unperturbed Green's function G22(k; td)

is given by

Using Eqs. (2)-(4) and (7), we derive the equa-
tion of motion for the Green's function G(k; td) as

G,',(u; hatt) =
—CI2 —tdp/ck

- ck .0

0 2+t g1(k, X)((o- /cfp)'

;~,,(k, ~)(~t1,/. Ip)'" 0

0 0 0
kj

and The function F+& is defined as

F" (10a)

where

E1(kA) = -2 Q Qg„(kt j1,k2jp, . . . , k„,j„„-k)Bk,t,Ak 1
. A-„

n&8

+ 4 z +en(k1~1 k2 j2 t ' ' ' k„-1j -2 k~)Ak111Akkt 2 Ak„1p p (10b)

P2(kJ) 2++An(k1 1tk2J2t ' ' ' t k„-1Jn-2t kJ)Ak111Ak2p2 Ak„1J„2

P2(kg) 2 ~& Zl [pt'v (k1J1t k2J2t ' ' y k 1Jn 1, , kJ')Ak»-, Ak»2
n&2

I

+ (pt-2)gn(k1A1, kkA2, k2 j2, . . . , k„,J„2—kj)A„k Ak~2Ak t2
~ ~ ~ Ak 1)

(10c)

—(n —2)f„(k,A» k j»2. . . , k„,jn» -kj)A-„,, B» A-„, .A&, ]. (10d)

Considering the equation of motion for the Green' s
function «Ek», Fk»» with respect to the argu-
ment t', we find

«P~k, y~k&& = I(1/») &[P~k, y ~.] &«

+ «Pk»t. Pk»»)Goo(kt ~) (11)

Substituting expression (11) into (8), we derive
the Dyson equation

[G20(k, e) —Iltk(k, td)]G(k; &u) = J, (12)

where the polarization operator II»(k, ur) is de-
fined by

Iit„(k, (u) =P(k; (u)[IiG (k, (u)P(k, )], (13)

and the function P(k, &o) is

P(ki ~) = &I/»)&[Pktkt I R~yk] &t=t ~ + &&Pktkt -Pk»&& .
(14)

For frequencies ~ far from the zeros of the de-
nominator in (13), we may expand the denominator
into power series, and retaining only the first
term, w e have

11„(k,td) =P(k, ~) i '. (16)

Substituting Eq. (16) into Eq. (12), we obtain

[G22(k; td) -P(k, td)I '] G(k td) =f". (16)

The system of equations (16) shall be used to ob-
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tain the components of the Green's function G(k; &o)

describing the excitation spectrum arising from
photon-phonon interactions. In deriving (16) we

have confined ourselves only to the diagonal part

of the Green's function with respect to the phonon

polallzatlon index g. To include nondiagonal coIl-
tributions we refer to I and Eq. (42) of L

Taking the matrix elements of (16), we have

((A" ' A~ )) =—D p(&) {f& - c & —(o - c)'sP (k (o)]D- ((u) —Z Xg(k&)(u- [(u- + P4s(k (u)]+ ckA. ((o)]
'

=—[&use(k, (o) -csOs]-',
m

«&~; D~&& =— (d
(&A„;A~&&,

eke ck

&(Af&, Ati&» = —([&us&+Ps4(k, u&)] [e —c Is —&os —c»sq(k, ro)]+ Z&q(k&)urs~] [&o e(k, v) —c )'s ] 'Dg(&u), (19a)

«Ds~ ~ mls~ &&
= - 'B~s~+P4s(k ~)][~'- c'&'- ~~ —c»si(k ~ ~)l+ c»ss(k, ~)P4i(k, ~)] [~'~(k, ~) —c'~'] 'D;,'(~).

(19b)

x4sl, + P4s(k, ~)]DPI(~)-~Psi(k, ~)

+ —IA;((o)D s, ((o),
ck

(2o)

and the function D»(&u) is given by

Dsg((u) = [(u —Pss(k, (o)] [(u —Ps4(k, (u)j

—[&fg+ P4s (k ~)l [~fg+ Ps4 (k, ~)] (-"1)

In E(p. (1V)-(19), e(k, (v) may be defined as the
frequency- and wave-vector-dependent dielectric
function

3

e(k, &u) =1-Q- -s- Z&&(k~)&u~
QP 4)

P„(k, ~) = P,', + ~ &&E,(k~); E',(B.)&),

Pss(k &) =Pss+ ~ &&Es(kj); Es(kj)&&,

P, (k, )=P'„"«E,(kj);E',(kj)»,
P„(k, )=.«E,(»);Ets(~~)&&,

P~(k, (u) = P 4s+ v ((Es(kj); Est(kj))) .

P,(k, ) =P'.,"«E, (k~); E,'(kj)&&,

P4i(k &) = P 5+ v «Es(ki); E[(k~)&&,

X,(k~) = ~,(B)—s(cu/~I', )'"P,'„

(22a)

(22b)

(22c)

(22d)

(22e)

(23a)

(23b)

(23c)

The components of the function P(k, v) appearing
in expressions (1V)-(21) have the following form:

Ps, =&[E,(kA), 8„-] ), , = 8 Q Q g„(k,j„ksjs). . . , k„s, j„s,kX, - kA}(A„) As ) ~ ~ A„) ),

Pss=&[Es(kj) fist] &~.~ =-P44=-&[Es(kA»Ig] &~.~

=4K Z(n-2)4. (ki&»ksjs . k.~i.~ kj~-&i)&Af ~Af g

P4s =
& [Es(kj), Bs~ ] ),.;= 4 Q Q [n(n —1)V„(k)jq, ks js, . . . , k„sj„.s, Tg, —kj) &Af, ) A„) ~ ~ ~ A„~ )

n&3 11 v. R nang

+ (n —2)(n —3)g„(k,k„ksks, ksjs, . . . , k„~j„~,kj, -kj)&A„-,~,AI ), AI ) A.„( )

—( -n)(2-n)y3„( Xk„jk„.. . , kj„, j,k- j)k{ „-A„a+, A;, A-„, )j,
P,', =&[E,(kX), a„-', ] ), , = P,', =&[E,(kq}, a-„,] &. ..

= —4 Z Z Q„(k,j„ksjs, . . . , k„sj„s,kj, —kX)(Bf q As ) ~ ~ ~ A.„) )
n&8 1 1 3 3 n 8&n-3

+6 Z Z (n —2)g„(kg&g, ksjs, . . . , k„sj„~,kj, —kP.}&A„„A„q ~ ~ ~ As ~ )
n&2

n p f» ~ ~s np p n~1 n~3

(24c)

(24d)

Psg=&[Es(~j), &„„]&,.p-——([E~(kX),As)]$. ..=4 Q Q p„(k,j„ksjs, . . . ,k sj„s,ky;kj)&A-„~As ) ~ ~ A„) ) .
(24e)



2'754 C. MA VHO YANNIS

D„=,(~) = (~'- ~») II —~'~(&)) '

where
0

g;,( )=, „P„(k, )+P„(k,&u)

kg

+ [P«(k, )+P«(); «)))

(25a)

(25b)

In (25b) we have retained only linear terms in the
P's. If we are now allowed to expand (25a) into
power series and keep only the first term in the
expansion, we have

Dg~&(v) =(cv —e„&)-' [1+Z»(v)j .
Substituting (25c) into (20) and then the resulting
expression for c(k, ~) into (17), we have

(25c}

((A„,;A), „))= —& —c k —+~ —ckPg) (k, (u)
ck

-1

co —cA

(25d)

The expression (20) for the dielectric function
e(k, (d) describes the physical process arising from
photon-phonon interactions in a dielectric medium.
For example, the third term in (20) describes
coupled excitations of the polariton type. Its im-
portance depends on the magnitude of the coupling
function x&(kX) or the renormalized one X&(kA)
given by Eq. (23c). The same term in (20) includes
anharmonic effects to all orders for the coupled
photon-phonon system. The fourth term in (20)
represents direct scattering processes arising
from the anharmonic coupling between electromag-
netic waves and phonons of the medium. It is an
entirely nonlinear effect caused by the absorption
or scattering of the photon kA. by the assembly of
phonons. The function A„((d) in the last term of
(20) consists of terms which are quadratic and
higher order in the P's; it makes a negligibly small
contribution to e(k, &), and, therefore, it shall
be discarded.

Expressions (17)-(21) are reduced to those
recently derived by Benson and Mills, if all the
anharmonic coupling functions between the elec-
tromagnetic and the phonon fields are neglected,
i. e. , when the coupling functions

t((k),k„k j22, . . . ) and g„(k,k„k2X~, k3$3y )

are taken to be equal to zero and only the bare
phonon anharmonic function V„(k,j„k,j~, . . . ) is
retained.

In order to make a connection between the ex-
pression for the Green's function (17) and the cor-
responding one for the polariton field derived in
our earlier work, ' we write the function D„;(&) as

If we now transform all the terms in expression
(25d) into the polariton representation, the derived
expression is identical with the polariton Green's
function given by Eq. (25) of I. Rewriting Eq. (17)
in the form of (25d), we have taken all the (d-de-
pendent terms into the denominator; that is, ex-
pression (20) for the dielectric function has been
linearized through the Eq. (25c) and, therefore, we
have approximated the line shape of the function
(17) with that of (25d), which is obviously described
by a modified I orentzian curve. The expansion
(25c) is applicable provided that the function Z»((())
is nonsingular and varies slowly with &. In a
similar fashion the phonon Green's function (19) can
be transformed into the equivalent Green's function
in the polariton representation. Therefore, our
earlier work in I is a linearized version of the re-
sults derived in the present study.

We consider now the special case which occurs
when the first term in the expression for the in-
teraction Hamiltonian (4) is equal to zero, i. e. ,
when the quantity X&(kX) is negligibly small and

can be taken to be zero. Then the photon kA. suffers
no dispersion in the medium but only scattering,
which is caused by the third and fourth nonvanish-
ing terms in the Hamiltonian (4). In this case, the
photon and phonon Green's functions (17) and (19)
are no longer coupled and they are given by

((A„-„A-„,)),= (cu/~)[~'- c'a'- ~,'- cf P„(k,~}]-',
(26)

((A;, ;A;, )),= (I /)7) [oP„-,.+ P34 (k, ~)]D=„',.((u) . (27)

We shall now discuss the excitation spectrum
arising from photon-phonon interactions in succes-
sive approximations by using the general expres-
sions for the photon and phonon Green's functions
derived in Sec. II.

A. Static Approximation

The excitation spectrum in the static approxima-
tion is defined when all dynamic contributions in
the expression for the polarization operator are
neglected, i.e. , when all thee Green's functions
((F;;F, )}with i, I =1, 2, 3 in expressions (22) and

(23) are discarded. In this approximation the
Green's functions (17) and (19) take the form

The expressions (26) and (27) represent different
excitation spectra. In view of (22a) and (10b), ex-
pression (26) describes the physical processes
where the absorbed photon kX is converted into
phonons, as well as photon-photon scattering pro-
cesses with the emission or absorption of phonons.
The excitation spectrum of (27) arises from phonon-
phonon interactions and phonon-phonon scattering
processes through the emission or absorption of
photo ns.

III. EXCITATION SPECTRUM
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«Ag„A/l, » o = (ck/v)[(d'«o(k, (d) —c'k'] ',

«~l7 ji (71 » p g) ((d) (d[ 4. P4$

Ckp02
« II-g,'&-'g»'=- " " +- ((d!~+P4s) „' ' -I + Do ." [(d'«o(k, (d) -c'k'] ',

(28a)

(2sb)

(28c)

where
2

«o (k& (d) = 1—

1 g Xg(lo()(d„-'g((df)+P44) ck
(d Q7

D"
g ((d) = (d —(d y

—(d"
y P44 —Poo ~

0 2 02 0 0 02
(29b)

o( )] ( p dl(d'«o(k (d) l

p
d&'d Q = Clap

(31b)

In this approximation, the Hamiltonian may be

Expression (29a) for the dielectric function is a
well-behaved function of &, i. e. , for (d-~,

«o(k, (d) - 1 —(dpo/(d' —(ck/(d') P,'„
while for & - 0 and k- 0,

~o(» ~) = I-~
I
~~(~) I'/Dfo~(~) (29c)

1

If the energy of excitation (dip is determined from
the pth solution of the equation

(d Eo (k) (d(7p ) —c k = 0~ (»)
then we may expand the denominators in (28) in
power series, and retaining only the first term
in the expansion, we have

«Al X' Al(X )) = [(Ck/v)&l ((drp)]((d —(dI p) ', (3»)
where

written as
7(:po, „,= const+ Z (d g, e„,o(";p, (32)

kp

where ngp and gyp are the polariton creation and an-
nihilation operators with wave vector k and band
index p, and where ren stands for renormalized.
From (28), we derive the following expressions for
the occupation numbers:

¹ltX((d(7p ) &Al7XAl7X& (Ck/(d(7p ) Al7 ((d(7p) 1(7p 1 (33a)

N!g ((d;. ) =- &A, A(„& = ((d!g/(d;, ) ~, ((d«, ) ri;. , (33b)

lr,j
where

X «((d(-, p) = 1 —X!((dl-,p) and (7(",p
= cotho P(dl-, p.

Here P = (ffs T) ', where Ifs is Boltzmann's con-
stant and T the absolute temperature. In deriving
(33) we have retained only linear terms in the
P

In order to evaluate the energy of excitation (0'fp

through Eq. (30) in a self-consistent manner, one
has to calculate the functions P;, , which are given
by expressions (24). This can be done, as has been
suggested in I, by decoupling the correlation func-
tions in (24) into products of photon, phonon, and

mixed occupation numbers NQ. p +$jp p +qj. p and

&A;,A&&, respectively, which are given by Eqs.
(33). For example,

Psi0

21

P33 =80

=4K (tl4(qj', —qj', 10. , kj )Ny~(te—rms withn&4),
6

=8K g4(qj', —qj', I&, —kX)N~. +(terms with n&4),
~I& p

p4 ( qX' —q j', kj, —k j ) (A, .A4, .) 'ol + (terms with n & 4),
qj'x'

(34a)

(34b)

(34c)

Poo —4 Q [((tl4(q j —qX & —W ) &II«(, A-&, ) + 2g4'(qX —qj,kj —W ) &A@~.A,.&, )' ']+(terms with n &4),
(34d)

P44 =8 Z [6V4(qj', —qj', kj, —kj) N-, +g4(qX', —qX', kj, —kj)N~l„,

+.$4(qX', qj', k j, —k j) &—Bpt~. A~l. )]+ (in terms with n & 4).
I

(34e)

The energy of excitation +pp must be derived final-
ly from Eq. (30) by computation. In this approxi-
mation the excitation energy capp, as well as the
dielectric function «o(k, (dl-, p), is a real quantity
and temperature dependent.

The bare photon and phonon Green's functions
(26) and (27) in the static approximation become

«Al-, l; A(-, l, » ~~ = (ck/(() ((d' —c' k2 —(do —ckP2o, )
0 2 2 2 2 0 -1

(36a)
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0
4)Q

«&~1, &l;&)» = —,D9( )

0 0

11 DR (~)

(35 ) (3Vc)

(3Vd)

In this approximation, the Hamiltonian takes the
form

X~qq = collst+ 2 fl elf)lit) l 1+~ (()jl Qtl gal, (3Ve)
kX

«

and the functioll P43 ls givell by expl'esslon (348)
mlth the last terDl t8ken equal to zero. IQ UHs

approximation expressions (35) describe the bare
renox'malized photon and phonon fields, x'espec-
tively, mhich are independent of one another.
From (35) we derive the following expressions
for the occupation Qumbex s:

(3'7a)
&A)(1A(1&, = (Ck/ Q)-1)%1

0
&&)l&~l&g =((dg;/&1;)libel,

0.
&&'l&11}o=(&ll/&1 }till

where 'g)(1 = co't112 p Q)(1) Rnd Q)(1 Rlld (()),J Rl 8 the
renormalized energies of excitation for the bare
photon and phonon fieMs determined from the
solutioQS of the follomlng equations, x'espectively:

mllere 5~ ~ 5j}t Rnd Qp)„y Q~ Rx'6 the nem photon Rnd

phonon cl eatlon Rnd RIHlllHlatlon operRtox's describ-
ing the renormalized photon and phonon fields, re-
spectively.

B. P40t:OA=PhoI10fl I 1Ilc 848pcs'

To study the line shapes arising from photon-
phonon interactions, me make use of the spectxal
function Z-„((d} given by the relation

J„'-(&u) = —2(e~ —1) 'Imo(k; (d),

where Im stands for the imaginary part and G(k; (d)

is the Gx een's function for the physical process in

question.
TRkillg the 1111RglllR1'y pR1 ts of (19) Rnd (1V) fol'

the phonon and photon Green's functions, respec-
tively, me find

1 8„"(M) I'„-(N) —[M'Re~(k, QJ) -c'u']I'„-((d)/8„-((0)
ll ReD)-„(&u) f~'Res(E, &o}-c')t']'+ I'„-'{(())

. &I » &0 I'i(&o) —[&o Re&(k, (0) -c k'] ImD„",((0)/ReD„l(&o)
[v' Re&(k, (d) —c')t']'+ I",'-((o)

(38)

(39)

I"„-((u)=ck ImP„(k, (o)+ [(d'-c'k'- (v~2 —ck HeP„(k, (u)]
™"',—;+2X,'{k&)(d„-', (40a)

8)",(&o) = [(0)l+ReP„{k,~)][&a' ck' ~ -~ kcReP„(k, (d)]+Z Xl(k&)(d„-1+ImP43(k, &u) P„(k, &o},

I'„-(~)=ck[~„-l+ReP„(k, (d)]lmP2, (k, ~) —[~'-c )t; —(d~ -ck ReP„(k, ~)]ImP„(k, ~),

&ma;, (t«) =t«;, Im(I'««(k«)«P(l7, t«)«, «
- [&«(«, 1«)+&««(«, t«)]),

"l~

(d 1 ~ Xl (k~)) (()),l [(())",l+RBP4l(k) (d)] &k I ~
)

(d yy kg

The phonon shape function (38) is proportional to the

expression fox the absorption coefficient or to the
phonon scattering cross section, mhile the photon
shape function (39) via (18) is proportional to the
scattering cross section for the electro-optic ef-
fect.

The first term in (38) and (39) describes a Lo-
rentzian line if the frequency dependence of the
damping function I""„(~)is neglected. This will be

the case for frequeQcies QP deterxnlned fx'oxn the
solutions of the equation

&u'Re&(k, &u) —c~k~=0 .
«

Asymmetries mill axise only mhen the fxequency
dependence of the functions (d'Res(k, ~), B)",((d), and
I')",(w) is taken into consideration. The second term
in (38) and (39) produces asymmetric broadening to
the spectx'al lines fox' fx'equencles M, which do not
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satisfy Eq. (41}. This term disappears if the an-
harmonic coupling between the electromagnetic and
phonon 'fields is neglected, i.e. , when the coupling
functions

wet %lolls
0

y„(k,X„k~„.. . ) and g„(k,&„k,~„k,j„.. .)

are discarded. Therefore, expressions (38) and
(39) indicate that the spectral lines in question are
broad and asymmetric, and the extent of the asym-
metric broadening depends not only on the frequency
dependence of the functions &u'Bee(k, &o), 1"p(&o),

f'"„(~), and B;(&o) but also on the value of the quanti-
ties i'f((o)/ReD-„, (&o) and 1m', (~)/ReDt"„(~). Con-
sidering expressions (40), we may deduce that the

line shape described by (39) is more asymmetric
than that of (38), since ImD„"&(v) & I'

t",&(&u).

Expressions (38) and (39) are applicable in the
whole range of frequencies co. If we make the ex-
pansion

(o'Ree(k, (o) —c'k'= &f'(v„",)(co' —v„-',), (42)

d[&o2Rez(k, (u)]
A. pf )= 2

P ~-v-
. - ip

then (38) and (39) may take the approximate form

where the frequencies vip are determined from the
pth solutions of Eq. (41) and

(( . . t ))-1 f "( } .( .)
I'"( ) —( —,)I' ( )/&"( )

ReD ((g) k» (~2 p2 )8+fz(~)
Lp pY

ck I ~ TI((d) ((0 Pj's)ImDjg(4))/ReDpg((d)
(44}

where I'f(e) = &f(v»)1'f(~). This approximation in-
dicates that the center of the spectral lines is in the
neighborhood of frequencies vip and that in the range
of frequencies &- v» the function aP Res(k, &o) varies
smoothly with ~ and results in screening the damp-
ing function Z'f(&u) by the factor &-„(p-„,).

%e now proceed to discuss how to calcula. te the
expressions appearing in Eq. (40). A rigorous cal-
culation of the Green's functions involved in the ex-
pressions for the components of the polarization
operator Pz (k, &o) can be done only by evaluating
them by means of the total Hamiltonian (1). Un-
fortunately, this is an impossible task, as has been
discussed in I; therefore, following I, we shall
evaluate Pz(k, e} in successive approximations.
For example, in the case of polariton-polariton
scattering the Green's functions in Eqs. (22) can
be transformed in the polariton representation and
then the resulting polariton Green's functions can
be calculated in the lowest approximation by means
of the zeroth-order Hamiltonian (32). The photon
and phonon operators Ag& and Ag&, Bgz can be trans-
formed into the polariton operators by the relations

1/2

Quip

j./3

(d «~p

j./2
p, ;»= o &;(w;,), 8&=ip~, B;, , (45c)

%'Ilere A~p= + qp+0 ~ and B~p= &~p —& ~p, Since the
maximum value of the transformation coefficients
in (45} is unity, which occurs in the absence of dis-
persion for the mode with wave vector q [for the

If we take n= 3 in expressions (10), we have

Z, (k~) = —2 P y, (kq„k@„-k~)a,„,A-„„,
+4 Q gg(kgXg, k2ja, —kX) A„~,Ag ~

&2(kj) =2 Q $3(k, &g, kgj2, -kj)A"„),,A- ),
&3(kj) =2 + [3VS(kg jg, kpj~, -kj) A-„„,Ag ~

+gs(k, kg, kgAp, -k j)Af, ,~,A„~

(46)

(4'I)

—43(ki~» kaja~ -k j}Aa,~, &~, g, ] (48)

Expressions (46)-(48) indicate that the polariton
mode kp may decay into two modes: one photon and
one phonon, two photons and two phonons. A ques-
tion arises here whether or not these modes are
dressed by the electromagnetic fieM of the medium.
If there is a strong dispersion for the polariton
mode kp, one may expect that the modes arising
from the decay of the polariton mode kp are
dressed, i. e. , the polariton kp decays into two
polaritons. In this case the photon and phonon
operators in expressions (46)-(48) have to be trans-

mode in question the first term in the Hamiltonian
(4) is equal to zero], we conclude that the effect of
dispersion is to screen the bare anharmonic coupling
functions, resulting in the reduction of the absolute
value of the scattering amplitudes. This is in
agreement with the results of I. As an example, we
shall now discuss in detail the possible mechanisms
that result in the physical process of Raman scat-
tering. The scattering amplitudes will be considered
only in the lowest approximation, which is sufficient
to describe the physical processes of our interest.

IV. RAMAN SCATTERING
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A@ = JLt. -&A~ B~& = p.~&B-& (49)

where p~&= (e-;/&~;)'~, p~&
——I/p»;, and &-& is the

renormalized excitation energy for the bare phonon,
which is determined from the solutions of Eq. (37d).
The coefficients p,;, and p,;, deviate from unity
mainly at high temperatures. After applying the
transformations (45) and (49) into the E's in (46)-
(48), the resulting Green's functions ((E;;F, )) can
be evaluated via the Hamiltonian

ICO= const+Q (u"„,uf, of, +~) Gg;n»t ~5g, . (50)

The scattering amplitudes for, the process in ques-
I

formed into the polariton representation via rela-
tions (45), and then the resulting two-polariton
Green's functions ((E„Et)) can be evaluated in the
lowest approximation by means of the zeroth-order
renormalized Hamiltonian (32). The quantities that
contribute to the expressions for the damping func-
tions Pz(&u) and Q(&u) are calculated in Appendix A.
It is shown that the bare anharmonic coupling func-
tions are now screened by the field of the scattered
modes, since the larger the dispersion, the smaller
the transformation coefficients p in (45) and, there-
fore, the smaller the scattering amplitudes of the
anharmonic coupling functions. Considering that
the damping function I„(e) in (43) and (44) is also
screened by a factor X-„(vp,), one may conclude that
the spectral width arising from the decay of the
polariton kp into two polaritons will be very small
and hence difficult to measure. However, in the
case of weak dispersion for the mode kp, there is
a possibility of a detectable width arising from
polariton-polariton scattering.

A more favorable process than the one discussed
previously is the physical process where the polar-
iton kp decays into another polariton k&p, through
the emission or absorption of the bare phonon
k2(= k -k, )j2. Physically, this process indicates
that the phonon k, j& suffers no dispersion; i. e. , the
coupling function tc»(k, &,) is very small or close
to zero and can be neglected, though ka=k -k& is in
the range of wave vectors in the polariton regime.
In this case, the k&p& mode produces screening
through (45), while for the bare phonon mode we
have

~f~=V-&. , u =-( k/&-)' '. (51)

Using relations (46)-(49) and (51), the Green's
functions ((F, ; F ~)) are calculated in Appendix C
by means of the Hamiltonian (37e). The expres-
sions for Mf, &((o) given by (Cl) consist of three
terms. Inthe range of frequencies, & corresponding
to the energies of the polariton mode k p, the first
and second terms in (Cl) describe the conversion
of the polariton k p into two phonons and two pho-
tons, respectively, while the third term represents
the scattering of the polariton mode k p into one
phonon and one photon. Similar processes are de-
scribed by expressions (C2) and (C3). A compar-
ison between the first term of (Cl) and the first
term of (C2) indicates that both terms describe
similar physical processes and, therefore, are of
the same order of magnitude. Considering that

ImM"„, (e) = ImD-„;(&u),

ImP„(k, ~) =1m((E,(k~); F",(6))),
and that the expressions for Im ((E,(k&); Et(kA))) and
Im ((F,(kj); F,(kj))) are responsible for the
asymmetric broadening of the spectral lines de-
scribed by (38) and (39), we conclude that, for the
detailed study of the line shapes arising from pho-
ton-photon interactions, not only the lattice anhar-
monicity but also the anharmonic coupling of the
electromagnetic field must be taken into considera-
tion. Since the renormalization factors p, ;,. and jU, ~),

are of the order of unity, the physical process in
question is the most favorable.

V. PHOTON-PHONON SCATTERING

We shall now discuss the excitation spectrum
for the bare photon and phonon fields described by
(26) and (27), respectively. Taking the imaginary
parts of (26) and (27), we have

tion are given by the Eqs. (Bl)-(B7) in Appendix B.
Finally we consider the physical process where

the polariton kp decays into two bare particles. In
this case the scattered bare phonons and photons are
only renormalized by their own fields to account for
small static corrections. The phonon operators are
transformed according to relations (49), while for
the photon operators we have

ck ck Im P2 q (k, a) )
w [ k' ck ReP (k e)j +[ck ImP, (k, v)j (52)

1 [v „-~ + Re P3» (k, (u) j Im Dp, (co ) + Re Dp; (ur ) Im P,» (k, ~ )
[Re D„; ((o)j'+ [Im D-„, ((o )j'

t

(53)

The photon spectral function (52) is roughly a Lor-
entzian line centered at the maximum frequencies
co, which are determined from the solutions of the

equation

&u —c k —or~ —ck Re P~, (k, e ) = 0 (54)
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with a linewidth of the order of Im P2, (k, &o} in en-
ergy units, provided that Im P2, (k, (d) «ck and the
functions RePz, (k, &o) and ImP2, (k, (d) vary slowly
with co in the region of the maximum frequencies.
In the case of Raman scattering, for n=3 and for
frequencies ~ in the neighborhood of the solutions
of Eq. (54), the function

I P„(k,~)=vlm((E, (kX);F', (k~)))

is given by the imaginary part of expression (C2).
It consists of two terms describing the physical
process where the absorbed photon decays into two
phonons and into one photon and one phonon, re-
spectively.

The phonon spectral function (53) is an asym-
metric Lorentzian line even when the frequency de-
pendence of the functions ReDf, (&o), ImD)„(&o}, and

Im P,4 (k, &o) is neglected. The asymmetric broad-
ening in the line shape described by function (53)
occurs at frequencies &u for which Re D» ((d}W 0.
It is caused by the damping function

ImP„(k, &u) = rim((E, (kj); F (kj)))

which arises from the anharmonic coupling between
the electromagnetic field and the phonon field.
Considering that the functions Re Dk& ((0 }, Im D-„& (&o ),
and ImP~, (k, (d) are also varying functions of &o,

one should expect the line shape of the function (53)
to be asymmetric. For the process of Baman
scattering and for frequencies + in the range of
frequencies corresponding to the phonon mode kj
the expressions for Im D» (ur} = Im M» (&o) and

Im P~, (k, (d} are given by the imaginary parts of
(Cl) and (C3), respectively. They describe pro-
cesses where the phonon kj decays into two phonons
or two photons as well as the scattering of the
yhonon kj into another phonon k2j2 with the emission

or absorption of a photon.

VI. CONCLUSION

The present study is concerned with the line
shapes arising from photon-phonon interactions in
dielectric crystals. General expressions have been
developed for the spectral functions of the photon
and phonon fields, respectively. It is shown that
the line shapes for the fields in question exhibit
asymmetric broadening. The asymmetry is mainly
due to the anharmonic coupling between the elec-
tromagnetic and the phonon fields. Additional
asymmetries will arise when consideration is given
to the frequency dependence of the energy shift and
the damping functions as well as the variation of
the shape function with respect to the scattering
angle.

Raman scattering processes have been discussed
in detail. The spectral functions (38) and (39) can
be used in the same spirit to study higher-order
processes than for n =3. In the present study, no
quantitative estimates have been made for the cou-
pling functions causing the asymmetric broadening
of the spectral lines. The extent of the proposed
mechanism depends on the crystal structure, the
anharmonicity of the lattice, the temperature, and
the strength of the external electromagnetic field.
Explicit expressions for the anharmonic coupling
functions are given in I, but only numerical calcu-
lations made on real crystals will reveal the im-
portance of the proposed effect. To our knowledge,
there is nothing known in the literature about the
anharmonic coupling functions $„and g„. Numeri-
cal computations of the results derived in the pres-
ent study and comparison with the observed data
are highly desirable.

APPENDIX A

We shall calculate here the Green's functions (22) for the physical process of resonance Raman scattering
where the yolariton k p decays into two polaritons. %e need to calculate the following expressions:

M-„, (&o) = ~v0((( F(kj); F, (kj))) +((F,(kj); F, (kj))) + (&a/co(, ) [((F,(kj); F', (kj))) +(( E, (kj); F', (kj))) ll, (Al)

((F,(k&); F(kk)))((»F2(kj); F~(kj))), and ((F~(kj); Fs(kj))). For n= 3 the expressions for F,(k &),
F[,(kj), and F,(kj) are given by Eqs. (46)-(48). Using (45), we transform the F's into the polariton repre-
sentation, and then, substituting the resulting expressions into (Al), w'e evaluate the two-polariton Green's
functions by means of the Hamiltonian (32}. We find

»»»(»»)=k»»LZ([k, (k», k», —k, »»)(»»», ~ »», , ) —2»»k. (k», k», —k, w)]
11 22

+[& (k»k3» —k»(()}(v)k,« —(dkz, 2)
—2&v& (ka»k2» —k»&)l 2» . . »3—(j P1

—+g2P i
(A2)

where

~. (k&, ka, -k, (d}= ~43(k&i kaja -kj) V gk... I'(&k.,g,n, +&k ~,pp)
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p yz (kz„kzj„—kj) $3 (kzjz, kl&1, —"j)Ok, kp, Okzkzpa (Okl jlpl »ajapa+ O[[1&lpl "kz~apz)

+(~/~„-) y;(k„k, —k)[Q, (k, „kzjz, —kj)P; ...O +0 (ll j k&1 kj)Ozark J

V, (k„k„-k)=3m, (i,j„k,j„-kj)O;,&„,O', l...+~3(i Pl. i 2'2* k-j).O'»11Okaka 2

(Asa)

(A3b)

5, (k„i(:„-k, {()) = Vz (kl, ka, - k) [(t)3 (l11&1 &22 2
—kj) Ok, kl p, Okzlzpz

0
k (t)3(kzjz, kl 1 kj) Ok k pz Ok J p ] +(&/&kl) [ 43 ( 1 1 aja j) Okikl 1 Ok Jap "2Japz

(A3c)

Similarly,

~((p, (zz). p,'(icy))) = mz([t. , (f„k„—3) (td,"„,+am...) —ptas, (Ki, s, —")) s
47 (47klpl+ M k2p2)

{() —(&k,p, {)1)Tapa) j
2 21.,(k„i„-k)= pz(k, q„kzg»-»)Ok, l.p. Ok l... + 2'(kl"1 kzja -»)O'k ~ Ok 3 ~

+43(~ljl, l1aja, -»)43(kaja kljl -»)Ok, ~.p. Ok, ~.p. OqlzpzO~lzpz

+ 4gz()11)11 l1aja)»)Z3 (~aja I 1) ) OklklplOklllplOkzkzpzOkzdzpz

2
1.,(k„kz) - k) = 2/3 (%1jl, kz ja) —») gz (ill~1) l12 ja) —») P k, g, p, Ok, k, p, Okzpa pa

+ 43(kljl kaja»)g3 (k2 ja ~1 1 )Ok J Ok J (Ok J

)i((+2(~~j) +2(&i)&& =» [I ez(»&1, &2 ja, —~f) O',.„,Ok, ~...I

'

+ [t 3(kl~l ~z jz —l1j)43 (kz j2 ~l~l) kj) OklklplOkakzpaOklJlpl OkgJap J

!

QP~& —(d+» p

('klP U k)P~2 ({d- + ~- )2 kapa klP1 (d2 ({()- {()- )"apa "3'2

m{{S',(ic();p,(icj)))=2K ([S.( „a,— )( (,,+"(,.) — .(» a -")[ „a („. ,~. )s

~,(kl, ka, -k)=2I &3(ll, ka, -i)l +
I &3(kl~l kaja -»OkkplOqlzpzl

"2'a

~ ~ + ~

+ 43(&1&l, l12gz, - ling)4'3 ("asa kl&» "AOk, k, p, O-kakapzOkll, p, Okalapa

j,(q„k„-k) = Vz(k„k» -k) [pz(k, z„kzja, —kj) Ok"...p, O;,&2»
+ 43(kasa) kA) -l1AOq~zpzOq~lp, ~ ~ (Asb)

Tailing the real and imaginary parts o& expressions (A2)-(AV), we ha«

lmM„-, (~) =lmD„-, (~) = a~„-,Z! f&, (l „iz, -i, ~) [[)(&+&;...+ ~a.p.) - ~("-"'.p.
—

+ 2&.(kl) ka) —")~)[~(~+ ~k p, + ~kzpz)+ ~(~ ~klpl kae)~~("klpl+"kapz)

+(a (k„k„-k,~)[&(~+~„", —~k, ) —~(&- {dk,„+~k;p, )~
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lmS's4(k, ~) = vfm(P'z(kj);&z(kj)&&=Z [I As(ki~i, kz jz, -kj) &k,k,p, &k, g,p, l'+ As(kg&g, kz j„-kj)

xmas (kz jz, kgXg, k—j)pk k p pp k, Pk, g p, Pk y p ] (('Ok p~+ '0j pz) [&(&+&k p, + +kzpz) —&(& —&k p
—~kzp )]

+ (sl„—nk, ) [&(~+~l p ~kzpz) —&(~ —~k + & )]} ~ {Alo)

fn view of (A2), {A4), and (AV), the expressions for

imp„(k, ~) = ~lm((Z, (k~);Z,'(k~)&&»d lmI'„(k, ~) = elm((+s(kj);&s(kj)&&

can be obtained from Eg. (AQ) if we make the replacement of the «n«tons &kg, (k~, kz, —k, &)»d
~»4, (k„kz, —k, &o) by I,,(k„kz, —k), I,(k„kz, —k) and 8,(k„kz, -k), 8,(k„kz, —k), respectively.

APPENDIX 8

%e consider the physical process where the polariton kp decays into the polariton k& p& with the emission
or absorption of the phonon kzjz. In this case expression (AQ) is applicable if we replace ur„p and gk- p by

~ ~ ~
k2P2 k 3P3

vp &
and qp &, respectively, as well as the coupling functions 6, and 6, by the expressions

I p&,=& = es(k~4, kzjz, -»)Vk, k,»l (lkz~z+lkqz)+I2&s(k~ji, kzjz -kj)&k, ~, ~kzJzl

0
+3(v/&ufy)Vs(kali, kz2s —kj)ps(kg~i, kzjz —kj)pk, g l k&qv&Pkzyz &'

0~,=~ =(&/&kg) 4s(kg% kzjz -kj)Pk, k, ,&k g &kg

+2i's(k~S~ kzfz -kreis(ki 4 kzJz -ka)&k ~, &k, k,~,~is~a ~ (B2)

Similarly, the coupling functions I „L„8„8„and&mI's4(k, ~) t»e th«orm

I.=I -=
I ps(kiA kzjz "~)&k,&,Pk, &zl +

I 2gs("~~~ "zjz-"")&k,k, p, &seal
Pk

I,,=I = 2ps{ksjs, kzjz, —k~)gs(&g&g, kzjz, —
k~)Pk~g~Pkqkqppkzgz ~

8 8
I
2i s(kg j$ kz jz, -6')i;,), uk„zl '+

I es(kA. , kzjz ~~)i k k

8, =8 =2Vs(kgjg, kajz, -kj)Qs(kg~&~ kzjz~ kj)Pkp,-p, &k,s,&kzjzl"i z&z ~

lmS„(k, ~)=Fly, (&,~„kgz, -kj)uk, k...Vk-, ~,

Xoqk +ilk-, ) [&(~+~- +&k ) —&(~ —&k p
—&i & )]

+('Ok g
—%7gpq)[~(++ ~kgp~ ~kz&a) ~(+

appal+ kz&z ]] '

(B4)

APPENDIX C

Using (4Q) (5l) and (46)-(4S), we evaluate the Green's functions th«appe» in th«xpre»ion «r
Mf~((g) given by {Al) by means of the Hamiltontan (2'f e)

Mkq((o) = 2m(ofgZ ( S&s(k,j„kzjz, -kj) Pk,y, Pkzyzl

&G,(ksg(, kzgz, (g)+ Igs(kqk~, kzXz, —kj) pk k Pk k I
G,(k(X), ksXz, (u)

+ —'
I ps(k~y, „kzgz, -kj) pk „ I

z [(pz + pz~ ) G+(k&X» kzgz, &o)+2(v/ru„&) G(k, X» kzyz, e)]J, (Cl)

v ((E,($ ); E,'(kX) &) = v Z{I Ps(k, j„kzj„-B)
I

z [ Pk~, g,
Pz G,(k,j„kzjz, (o) + G (k, j„kzjz, (o)]

+12gs(ks~i kzjz -~) l k-,~, ~f...l
G (»&» kz jz ~6 (C2)

v((Fz(Tg); &z(kj)&)=~+Itts(kg~&, kajz —~) &k,~, ~k,k, l
G {"i&i kzjz &) (CS)



2 ~f ~, +&ty
G,(kgjg, k3jg, ~)= (—nf g +age) 2,- . =-. 3 +(age —ngg )

1 1 ~ 3 (0 —(Q)j +(dj t2a

(df g
—(Ofy

(d —(QJ j» —(df y )
(C4)

Gtk, X~, ksj2, ro) =
2 q. +

7I' &d (flj&g& + &jg&) & (fig &g& &f2'&)

The functions G,(k,X„kzk3, +) and G, (k,k„ky2, ro) can be derived from G, (k~j„ksj3, ro) given by (C4) if we re-
PIR|'8 +kggy& +t3j'3& +gyp & Rk3jg~ RM. ~fy)g) +egg ~p +jggg, ~f2)3, Ag()(y Ag~)„~ RQd'gg ))~ A~()„I, I'espeCtlVelp'. The fQQC-

tion g&g„-& (( E3(kj); Q (kj)) ) can be obtained from (Cl) if we take p~ and 0 k~X„k3j2, ~) in the last term of
(Cl) equal to zero.

The real and imaginary parts of expressions (Cl)-(C3) are obtained by replacing the functions
Gy(kg jap kQ jsy (0)p Gy(k/X/y kpk2g (0)p Gy(k/Xfy kp jpy (0)p and G'$fXgy ks jap (0) by their real and imaginary parts, re-
spectively. The real parts of the G's are given by the principal values of (C4) and (C5), while the imaginary
PRX'tS RX'e glVeQ 5P

ImGq(kgjg, kggsq (0) = (Vg g
+ lip y ) [6(c'd+(dg» +(dg g ) ~((0 &j»~ &jg~)]

'~&a~~ "'»i)[~( '"»» 4~3) '("-"~»~'~»~3)~

ImG(kg jap k2 j2$ (0) (ng»$ + ngg2) ['6((0 + (tPj(»$ ++j3$2) + ~((u +t»f ~L'»2)l
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