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is considered. The notation used is that of Koster,!®
and the chlorine ion is taken to be at the origin of
the unit cell. In the table, »; is the number of
times the jth irreducible representation occurs.
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The figure in brackets after a representation label
is the degeneracy of the representation, and if no
figure is given the representation is singly degener-
ate.
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The dynamic interaction between electromagnetic waves and transverse optical phonons in
dielectric crystals has been studied by means of the Green’s-function method. Emphasis has
been given to the line shapes of the absorption bands at finite temperatures. The spectral func-
tions for the photon and phonon fields are found to consist of the superposition of symmetric and
asymmetric Lorentzian lines even if the frequency dependence of the energy shift and damping
functions is neglected. The source of the asymmetry is the anharmonic coupling between the
transverse photons and transverse optical phonons. General expressions for the energy shift
and the damping functions are derived. The possible mechanisms that may occur in the physi-
cal process of Raman scattering are examined in detail, and expressions for the corresponding
scattering amplitudes are developed. In the limiting case of absence of dispersion of the elec-

tromagnetic waves in the medium, thebare excitationspectrafor bothfields are alsodiscussed.

I. INTRODUCTION

The excitation spectrum of interacting polaritons
in dielectric crystals has been recently studied’
by means of the Green’s-function method. In a
dielectric medium and for certain values of wave
vectors of the electromagnetic field, the polariton
spectrum arises from the interaction between
transverse photons and transverse optical (TO)
phonons. The polarization operator for the inter-
acting polariton system has been calculated in
successive approximations and the excitation spec-
trum has been discussed in detail. The polariton
spectral function arising from polariton-polariton
interactions is found to have a Lorentzian line
shape, while asymmetric broadening will arise
only when the frequency variation of the damping
function is taken into consideration. We refer to
I for details as well as for polariton literature.

Benson and Mills® have recently developed a
theory of light scattering from polaritons in the
presence of lattice damping. Their calculation
is based on the assumption that the lattice anhar-
monicity is the dominant factor in the damping
process and the anharmonic coupling between the
electromagnetic field and TO phonons has been
completely ignored. For the process of Raman
scattering, they found that the spectral functions
for the photon and phonon fields are described by
Lorentzian lines. Asymmetric broadening results
only when the frequency dependence and the varia-
tion of the linewidth with respect to the scattering
angle are taken into account.? Barker® studied
the Raman scattering spectrum of TO phonons in
GaP. He found that the TO phonon mode showed
considerable asymmetric broadening.® The pur-
pose of this study is to show that the line shape
of the spectrum arising from photon-phonon* in-
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teractions is always asymmetric. The source of
the asymmetry is the anharmonic coupling between
the photon and phonon fields. Whenever the lat-
tice anharmonicity makes an important contribu-
tion to the damping process, the contribution
arising from the anharmonic photon-phonon cou-
pling is also substantial and results in the asym-
metric broadening of the spectral line.

This paper is arranged as follows. In Sec. II
we make use of the Hamiltonian obtained in I to
derive the Dyson equation for the coupled photon-
phonon Green’s functions. General expressions
for the photon and phonon Green’s functions are
developed and compared with the results derived
from previous studies. The excitation spectrum
is discussed in Sec. III in successive approxima-
tions. The spectral functions for the photon and
phonon fields are found to have an asymmetric
line shape. The asymmetry is caused by the
photon-phonon anharmonic coupling. As an ex-
ample, the possible mechanisms that may occur
in the physical process of Raman scattering are
discussed in Sec. IV, and the scattering amplitudes
as well as the components of the polarization op-
erator that contribute to the processes in question
are calculated in the appendices. Finally, the
excitation spectrum is examined in Sec. V for the
special case where the electromagnetic waves in

the medium suffer no dispersion but only scattering.

II. DERIVATION OF PHOTON AND PHONON
GREEN’S FUNCTIONS

The Hamiltonian for a dielectric crystal, con-
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sisting of N unit cells in volume V with » atoms
per unit cell, can be taken in the form of'

=301 +3Cr +3C1r (1)

where 3¢;, 1¢,, and 3¢;, are the Hamiltonians for
the lattice, the free electromagnetic field, and
the interaction between them, respectively. The
lattice Hamiltonian is known to be given by

t t
L =;11—iE; wgd(AiinJ + By Bgy)

+2 . X,
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where the first term describes the free phonon
field, while the secondis the anharmonic interaction
between them. ng is the bare phonon energy of
the harmonic phonon field with wave vector k and
polarization j. The operators are Aj;=ayg; +akIj

and Bg;=ag; - akI,, where a{-j and a3; are the phonon
creation and annihilation operators, respectively,
which satisfy Bose statistics. The Hamiltonian

for the free transverse electromagnetic field is

3, =Y ckbiy by, 3)
kA

where b;,‘ and b;, are the creation and annihilation
operatogs, respectively, for a photon with wave
vector k and polarization X (=1,2). ck is the en-
ergy of the radiation field, and we have assumed
a system of units where 77=1.

The photon-phonon interactions are described
by the interaction Hamiltonian!
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where A, = bg,.+b£,t, and K,(E)\) is the coupling con-
stant defined by Eq. (8) of I and satisfies the rela-
tion

"?"‘f@)lzwﬁ, | (5)

where w, is the plasma frequency. The first term
in (4) describes the dispersion of the electromag-
netic waves in the medium, while the functions

¢n(klk1, ijZ) ey knjn-l)
and

nn=
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are the anharmonic coupling functions describing
photon-phonon scattering processes and their ex-
plicit expressions are given in I.

To diagonalize the Hamiltonian (1), we introduce
the retarded double-time Green’s function in the
matrix form®

G(k, t =t")=((Yip; Y1)

= =8t - ) ([Vzn D), Yin)L),  (6a)

T,
where Y3, is the row vector
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Yin(0)=(An() Bh() AL(®) Bi®) (6b)

and the angular brackets in (6a) denote the average
over the canonical ensemble appropriate to the

total Hamiltonian 3¢. 6(¢) is the usual step function
and the operators Yi;, and Y{,, are in the Heisen-
berg representation. In what follows, the time
arguments of the operators will be suppressed for
convenience. The Fourier transform of the Green’s
function (6a) with respect to the argument ¢ satis-
fies the equation of motion
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jwo

wG(k; w)=(1/2m) ([Y3, Y%j) 1 eeer
+ U Vi, 5l Tia ). (D)

Using Eqgs. (2)—(4) and (7), we derive the equa-
tion of motion for the Green’s function G(k; w) as

®)

where the unperturbed Green’s function GOO(E ;W)
is given by

Gor(k; W)G(k; ) =T+ (Fin s Yip ),
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Considering the eTquation of motion for the Green’s
function {(Fij,; Yip)) with respect to the argu-
ment ¢, we find

<<Fijh; Y%j).»: {(1/2’”) ([Fin ) YTLA ]->t=t'
+{Fap; Fin)} Gool; 0). (1)

Substituting expression (11) into (8), we derive

the Dyson equation
6ok, ) =1 (k, w)]G(k; w) =T, (12)

where the polarization operator Hﬂ(ﬁ, w) is de-
fined by

1, (K, w)=P(k; w)[ I+ Goolk, w)P(k, )], (13)

|
and the function P(k, w) is

P(E, w)= (1/277)<[F§n., Y{ll]-)t:t’ +{Fin; F%n» .
(14)

For frequencies w far from the zeros of the de-
nominator in (13), we may expand the denominator
into power series, and retaining only the first
term, we have

(K, w)~P(k, w) I (15)
Substituting Eq. (15) into Eq. (12), we obtain
[Gi(k; w) - P(K, 0)]*]6(K w)=1. (16)

The system of equations (16) shall be used to ob-
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tain the components of the Green’s function G(E; w) of the Green’s function with respect to the phonon

describing the excitation spectrum arising from polarization index j. To include nondiagonal con-
photon-phonon interactions. In deriving (16) we tributions we refer to I and Eq. (42) of I
have confined ourselves only to the diagonal part Taking the matrix elements of (16), we have

|
(Aer; ALY =£7,k- Diy(w) {[w? ~ c*? = wf = ckPy(k, )] Dgy(w) = ? X300}, [wf, + Py(k, )]+ chAg(@)}

=%k- [wi (k, w) —c??]™, (7)

ckn \ck

(Bin; Bo) = - L+(“’) (Ain; ABY, (18)
((Ais; AEJ» =117 {[ng + P34(E, w)] [w? = c?k? = wf - CkPax(i;, w)]+ ?X?(Ek)ng} [wae(ﬁ, w) - c?? ]'lDi;(w) , (19a)

(Bi;; Bk, W= = { ng+P43(k w)][w? - % = Wi - ckPm(ﬁ, w)]+ ckPoy(k, w)Py(k, w)} [wze(l-;, w) = B2 D (w).

).
(24e)

(19b)
I
In Egs. (17)~(19), €(k, w) may be defined as the The components of the function P(k, w) appearing
frequency- and wave-vector-dependent dielectric in expressions (17)—(21) have the following form:
function - 0 - .
2 4 le(k, w)=Pa1+7T<<F1(k>‘);F1(k)\))>, (22a)
-> _ [0) N2 T 0 > >, >,
<l )= = - L XN Pyy(k, w)= Pl n (Fo(R); FUE)Y,  (22b)
- Pay(k, w)=P Y4+ 7 (Fy(Kj); FY(Kj 22¢
x[wg, + Pyg(k, 0)]D3(w) =% Pyy(, ) w 44 N 3 3: 2(k5))), (22¢)
Pyy(k, w)= 7{(F,(kj); F3(kj))), (22d)
: t
+%§/\E(w)p;k;(w)’ (20) Py(k, w) =P %+ (Fy(kj) ; Fi(k)); (22e)
) Pas(k,w =Pgs+7f<<F1(k7\);F3(kJ)>>, (23a)
and the function D3;(w) is given b > . >
ol e g[ v Py(k, w)=P %+ (F(E); Fi(), (23b)
Di;(w)=lw —Pgs(k, w —-Pyuk > -
H sk, Ol lo - Pylle, )] X, (00 = 1, (0) —i(ck/wf) 2PYy,  (23¢)
_ = [wf;+ Pys (&, w)] [wd; + Pgq (, w)]. (21) where
J
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The expression (20) for the dielectric function
€(k, w) describes the physical process arising from
photon-phonon interactions in a dielectric medium.
For example, the third term in (20) describes
coupled excitations of the polariton type. Its im-
portance depends on the magnitude of the coupling
function K,(Ex) or the renormalized one X,(E)\)
given by Eq. (23¢). The same term in (20) includes
anharmonic effects to all orders for the coupled
photon-phonon system. The fourth term in (20)
represents direct scattering processes arising
from the anharmonic coupling between electromag-
‘netic waves and phonons of the medium. It is an
entirely nonlinear effect caused by the absorption
or scattering of the photon kx by the assembly of
phonons. The function Az(w) in the last term of
(20) consists of terms which are quadratic and
higher order in the P’s; it makes a negligibly small
contribution to €(k, w), and, therefore, it shall
be discarded.

Expressions (17)-(21) are reduced to those
recently derived by Benson and Mills, 2 if all the
anharmonic coupling functions between the elec-
tromagnetic and the phonon fields are neglected,
i.e., when the coupling functions

OulBy2y, Ky sy ... ) and g, (khy, Kohg, Kyds, .. .)

are taken to be equal to zero and only the bare
phonon anharmonic function V,(k, j,,kyjs, ...) is
retained.

In order to make a connection between the ex-
pression for the Green’s function (17) and the cor-
responding one for the polariton field derived in
our earlier work,! we write the function Dg;(w) as

A 02, - .
Dij(w)'—‘ (w?. - wi,‘) ! [1- Zij(w)] ! ) (25a)
where
0
Wi, > e
2140 =g | Paslk, @)+ Pyy(k, @)
kJ
w - -
+ oo [Py (k, w) + P, (k, w)]> . (25b)

kJ

In (25b) we have retained only linear terms in the
P’s. If we are now allowed to expand (25a) into
power series and keep only the first term in the
expansion, we have

-1
D7 (@) ~ (@ = wf ) [1+ 37 ,(0)] . (25¢)
Substituting (25¢) into (20) and then the resulting

expression for €(k, w) into (17), we have

T -
{4z 400 = Eﬂ.ﬁ <wz ~ PR - wi = ckPy (K, w)

q -1
—Fo % [w§ ;+ Pys (K, w)][1+2;j(w)]> .
¥

(25d)
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If we now transform all the terms in expression
(25d) into the polariton representation, the derived
expression is identical with the polariton Green’s
function given by Eq. (25) of I. Rewriting Eq. (17)
in the form of (25d), we have taken all the w-de-
pendent terms into the denominator; that is, ex-
pression (20) for the dielectric function has been
linearized through the Eq. (25¢) and, therefore, we
have approximated the line shape of the function
(17) with that of (25d), which is obviously described
by a modified Lorentzian curve. The expansion
(25¢) is applicable provided that the function Z,,(w)
is nonsingular and varies slowly with w, Ina
similar fashion the phonon Green’s function (19) can
be transformed into the equivalent Green’s function
in the polariton representation. Therefore, our
earlier work in I is a linearized version of the re-
sults derived in the present study.

We consider now the special case which occurs
when the first term in the expression for the in-
teraction Hamiltonian (4) is equal to zero, i.e.,
when the quantity X,(k)) is negligibly small and
can be taken to be zero. Then the photon k) suffers
no dispersion in the medium but only scattering,
which is caused by the third and fourth nonvanish-
ing terms in the Hamiltonian (4). In this case, the
photon and phonon Green’s functions (17) and (19)
are no longer coupled and they are given by

((Apr ;43,005 = (ck/m[w? = PR? = WF = ckPyy (K, w)]
(26)

<<Aij ;A'E j>>b =(1/m) [“’% i+ Pas (E, “’)]D;'Elj(w) . @7

The expressions (26) and (27) represent different
excitation spectra. In view of (22a) and (10b), ex-
pression (26) describes the physical processes
where the absorbed photon kX is converted into
phonons, as well as photon-photon scattering pro-
cesses with the emission or absorption of phonons.
The excitation spectrum of (27) arises from phonon-
phonon interactions and phonon-phonon scattering
processes through the emission or absorption of
photons.

III. EXCITATION SPECTRUM

We shall now discuss the excitation spectrum
arising from photon-phonon interactions in succes-
sive approximations by using the general expres-
sions for the photon and phonon Green’s functions
derived in Sec. II.

A. Static Approximation

The excitation spectrum in the static approxima-
tion is defined when all dynamic contributions in
the expression for the polarization operator are
neglected, i.e., when all the Green’s functions
{F,;;F})) with4,1=1, 2, 3 in expressions (22) and
(23) are discarded. In this approximation the
Green’s functions (17) and (19) take the form
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9 2_p%2 (dlwiey (K, w)] ) 2. (T -1

LAt ool ks o @ -l ( 2122 - 1) [wPeo(k, w) - 1]7,
UAgj; Ag; 0 = 7 D¢, () ng + Py, dw? [ 0 (28b)

«Bkj’BEj»o'l m*; [(wu +P 3)([L€£'§Mﬂ-—l> +

kPOZ -
-c——aa-][wzio(k,w)—czkz]”, (28c)

7 Df;(w) D ; (w)
[
where written as
w} 5D, on = CONSE+ 2 Wi, i, 0 (32)
€ (k w)=1- $Cpy ren = CONSU+ L4 Wi, Ui, Ui 5
0 W kp
1
2> 0/ 0 0 where oy, and ag, are the polariton creation and an-
- —15 2 X; (i) u;;, (wg, +Big) C’; Py, (292) nihilation operators with wave vector k and band
@ Dgyw) index p, and where ren stands for renormalized.
DY, (0)=w? - w® — @, PY - P2 (20b) From (28), we derive the following expressions for
ki SWoT Wiy T Wiy s T

Expression (29a) for the dielectric function is a
well-behaved function of w, i.e., for w— =,

ok w)~1-w?/w? - (ck/w?) PY,
while for w0 and k~ 0,
€oll, w)=1- Z|K,(m)| /D¢ (W) . (29¢)
If the energy of excitation wg, is determined from
the pth solution of the equation
wg, €q (B, wg,) —c?? =0, (30)

then we may expand the denominators in (28) in
power series, and retaining only the first term
in the expansion, we have

(A A% »NO= (Ck/ﬂ)lk (wi,)] (w? - wkp) -1 (31a)
where
0 oy s [dlwieg(k w)
(A& (wgo)Tt = Z‘}( Ao’ >w i, (31b)

In this approximation, the Hamiltonian may be
|

P, =4Z> 64 (A7, -7 ,kn, —=%j) N+ (terms with n>4) ,
ai’

Py, =82 2:(47,

PY% =8 Z) b (AN -G7 ,kj, —kj) (AL Ag) @ + (terms with n>4) ,

-q7 ,I;K, —EA)NE-},, + (terms with n>4),

the occupation numbers:

)= (AhAg)° = (ck/wip )\ (WidMg, »  (332)
NE; (wi, )= (AL Az)) 0 = (Wi /wi, )X S (wg,) Wz, (33D)
Ni, (wi,)=( B, Bi;) ° ( ) Mz, , - (530)

where
X2 (wip,)=1- )\3 (wg,) and 7, = coth3 fwg, .

0
Ny (Wi,

Here B= (K5 T)™, where Ky is Boltzmann’s con-
stant and T the absolute temperature. In deriving
(33) we have retained only linear terms in the
P%s,

In order to evaluate the energy of excitation wg,
through Eq. (30) in a self-consistent manner, one
has to calculate the functions P?,, which are given
by expressions (24). This can be done, as has been
suggested in I, by decoupling the correlation func-
tions in (24) into products of photon, phonon, and
mixed occupation numbers Ng., Ng;, N- , and
(Aj )‘Aaj), respectively, which are given by Egs.
(33). For example,

(34a)
(34b)

(34c)

Ph=4 25 [04(37 -0,k —k0) (B Ape) @+ 28, (GV -G 7 kj-Rh) (AL, Ag;.) @]+ (terms with n >4)

qa,g

PYL=8 2J

g,

[6V, (45, =47, k4, —kj) N Lora (@,

+ ¢4 (AN, —=§7,kj, —kj) (B Age )]+ (in terms with n > 4).

The energy of excitation wg, must be derived final-
ly from Eq. (30) by computation. In this approxi-
mation the excitation energy wg,, as well as the
dielectric function €,(k, wg,), is a real quantity
and temperature dependent.

(344)

—‘(.17&,,.1;]., _Ej)Ndl'

(34e)

[
The bare photon and phonon Green’s functions

(26) and (27) in the static approximation become

(Agr; AR 8 = (ck/T) (°

- c?k? - w2 —ckPY)"
(35a)
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0
t 1 wg 2 22 2 0 _
(Agy; AL =;3§%—) ; (35D) B = R —wy = ck Py =0, (87¢)
o8 - Wiy - wly Pls=0. (37d)
9
((Bg;; B, )0 :_1.931.3.!14_3- In this approximation, the Hamiltonian takes the
k55 Bs 100 =7 =y R (85¢)
Dy, (w) form
where chen—conshE Q3 ]l: +E wk,a;, az; » (37e)
Dgj(w)=w? - wf (w} +P%),  (36)

and the function PY, is given by expression (34e)
with the last term taken equal to zero. In this
approximation expressions (35) describe the bare
renormalized photon and phonon fields, respec-
tively, which are independent of one another.
From (35) we derive the following expressions
for the occupation numbers:

too (37a)
(A Apds = (ck/ Q¢ )i
and
t 0~
(Agi Az g = (g5 / @i Mgy
T - 0.
(Bg;Bgy) g =(wi;/ wii iy (37p)

where 7, =cothi B Qp,, and Qf, and &g; are the
renormalized energies of excitation for the bare
photon and phonon fields determined from the
solutions of the following equations, respectively:

where b3, , b;, and @k, @j, are the new photon and
phonon creation and annihilation operators describ-
ing the renormalized photon and phonon fields, re-
spectively.

B. Photon-Phonon Line Shapes

To study the line shapes arising from photon-
phonon interactions, we make use of the spectral
function J3(w) given by the relation

Jp(w) == 2(eP - 1) ImG(k; w) ,
where Im stands for the imaginary part and E(E; w)
is the Green’s function for the physical process in
question.

Taking the imaginary parts of (19) and (17) for
the phonon and photon Green’s functions, respec-
tively, we find

J
1/ Bi(w) \Ij(w) - [w®Ree(k, w) - %% T3(w)/By(w)
~Im (Ag; A“’ = (ReDk,(w)) * [@?Ree(E, w)—c2k2]2+],."‘§(w) = (38)
_ ck\ I'g(w) - [w?Ree (K, w) —c?k?]ImD;,(w)/ReDis(w)
Im (A Af )= ( ) [o? Ree(E, @) —cakz]2+1"§(wk) L, (39)
where
- - ImD; (w) o ImP, (K, w)
T;(w) =ck ImPy (K, w)+ [w?=c2k% - w2~ ck RePy (K, )] R_DZ(_—) +2 X(K N} —I;:—j(—a-)—— (40a)
B;(w) = [wg; + RePyy(K, w)][w?~c2k?—wf-ck RePy(k, w)]+2 XAKNwg; + ImP,,(K, w) Py(k, ), (40b)
ir
2(w) = ck[wY, + RePyy(K, w)]ImPy(K, w) - [w? —c2k? - wf —ck RePy(K, )] ImPy(k, ) , (40c)
Ika,(w) wHIm<P34(k w)+P43(k W) +—g— o [P33(1-{y w)+P44( 1-{: w)]) s (40d)
“k;
2 X2(kN) "-’(i)j [ngJrRer(E, w)] Ckz RePy(E, w) . (40e)

- W, 1
Ree(k, w)=1 —z-d‘% —-(;g”

The phonon shape function (38) is proportional to the
expression for the absorption coefficient or to the
phonon scattering cross section, while the photon
shape function (39) via (18) is proportional to the
scattering cross section for the electro-optic ef-
fect.?

The first term in (38) and (39) describes a Lo-
rentzian line if the frequency dependence of the
damping function I'z(w) is neglected. This will be

ReD;, ((4))

the case for frequencies w? determined from the
solutions of the equation

w?Ree(k, w) -c?k%=0. (41)

Asymmetries will arise only when the frequency
dependence of the functions w?Ree(K, w), Bj(w), and
T';(w) is taken into consideration. The second term
in (38) and (39) produces asymmetric broadening to
the spectral lines for frequencies wz, which do not
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satisfy Eq. (41). This term disappears if the an-
harmonic coupling between the electromagnetic and
phonon fields is neglected, i.e., when the coupling
functions

(;bn(l_{.l)‘b 1??.7'2, . ‘) and gn( 1-’{1)‘1: Ez)‘a, Eajsv, . ')

are discarded. Therefore, expressions (38) and
(39) indicate that the spectral lines in question are
broad and asymmetric, and the extent of the asym-
metric broadening depends not only on the frequency
dependence of the functions w?Ree(K, w), Tz(w),
f;(w), and B;(w) but also on the value of the quanti-
ties f‘;(w)/ReD;,(w) and ImDg;(w)/ReD;,(w). Con-
sidering expressions (40), we may deduce that the

J
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line shape described by (39) is more asymmetric

than that of (38), since ImDj,(w) > I'y;(w).
Expressions (38) and (39) are applicable in the

whole range of frequencies w. If we make the ex-

pansion
W’ Ree(K, ©) ~c®k®= A ) (0?28, (42)

where the frequencies v, are determined from the
pth solutions of Eq. (41) and

1715 [d[@®Ree(K, w)

then (38) and (39) may take the approximate form

gt owa (B o\ Ti(w) = (0% ~vd)Fpw)/By(w)
~Im (A Akf>>~ﬂ<ﬁ§‘bm *k"’rn)> @t TR 43

Ti(w) = (w? = vf,)ImDy,(w)/ReD; ()

- (Ap; Ab ) ~(% 2102,)

where I;(w)=2;(v;,)Tz(w). This approximation in-
dicates that the center of the spectral lines is in the
neighborhood of frequencies v, and that in the range
of frequencies w~ v, the function w? Re€(k, w) varies
smoothly with w and results in screening the damp-
ing function I'z(w) by the factor A3(vz,).

We now proceed to discuss how to calculate the
expressions appearing in Eq. (40). A rigorous cal-
culation of the Green’s functions involved in the ex-
pressions for the components of the polarization
operator P,,(l?, w) can be done only by evaluating
them by means of the total Hamiltonian (1). Un-
fortunately, this is an impossible task, as has been
discussed in I; therefore, following I, we shall
evaluate P,-,(l?, w) in successive approximations.
For example, in the case of polariton-polariton
scattering the Green’s functions in Eqs. (22) can
be transformed in the polariton representation and
then the resulting polariton Green’s functions can
be calculated in the lowest approximation by means
of the zeroth-order Hamiltonian (32). The photon
and phonon operators Ag, and Ag;, Bg; can be trans-
formed into the polariton operators by the relations

12
Ccq 0
uix;a:(z;&: Aa(wap)> y ApT BpeA (45a)

0 1/2
Wz 50 .
H3se= (;‘; ’\a(wap)> » Ay=ikg Az,  (45D)

- Wi —o e —
Hgzp= (;g_ Aa(w39)> » By=tlhy,Bg (45¢)
@ .

where A;,= ag,+2'3,and By,= ag, - ol;,. Since the
maximum value of the transformation coefficients
in (45) is unity, which occurs in the absence of dis-

persion for the mode with wave vector (I [for the

(w2 =vE )2+ F¥(w) ’

(44)

r

mode in question the first term in the Hamiltonian
(4) is equal to zero], we conclude that the effect of
dispersion is to screen the bare anharmonic coupling
functions, resulting in the reduction of the absolute
value of the scattering amplitudes. This is in
agreement with the results of I. As an example, we
shall now discuss in detail the possible mechanisms
that result in the physical process of Raman scat-
tering. The scatteringamplitudes will be considered _
only in the lowest approximation, which is sufficient
to describe the physical processes of our interest.

IV. RAMAN SCATTERING
If we take =3 in expressions (10), we have

Fl(k)t): -2 Z\-/ ¢3(E1.71 ’ Eafz, —E)‘) BiluA'iz iz

+4 7 g5\, Ry jp, —EN) Az As,y,,  (46)
Fo(kj)=2 20 ¢glkih, Kefo, ~KD Appdtyyy,  (4D)
Fy(kj)=22[3 Vy(kyj1, Kaja, "Ej)Ail 314%5 55

+gs(Ridy, Kog, —Kj) Agp Ak,

- bs(kiAy, Koz, —Kj) Agpy Biy s, (48)

Expressions (46)—(48) indicate that the polariton
mode Ep may decay into two modes: one photon and
one phonon, two photons and two phonons. A ques-
tion arises here whether or not these modes are
dressed by the electromagnetic field of the medium.
If there is a strong dispersion for the polariton
mode Ep, one may expect that the modes arising
from the decay of the polariton mode Ep are
dressed, i.e., the polariton kp decays into two
polaritons. In this case the photon and phonon
operators in expressions (46)-(48) have to be trans-
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formed into the polariton representation via rela-
tions (45), and then the resulting two-polariton
Green’s functions ((F;; F})) can be evaluated in the
lowest approximation by means of the zeroth-order
renormalized Hamiltonian (32). The quantities that
contribute to the expressions for the damping func-
tions Tj(w) and I'y(w) are calculated in Appendix A.
It is shown that the bare anharmonic coupling func-
tions are now screened by the field of the scattered
modes, since the larger the dispersion, the smaller
the transformation coefficients p in (45) and, there-
fore, the smaller the scattering amplitudes of the
anharmonic coupling functions. Considering that
the damping function I'j(w) in (43) and (44) is also
screened by a factor A;(vy,), one may conclude that
the spectral width arising from the decay of the
polariton ﬁp into two polaritons will be very small
and hence difficult to measure. However, in the
case of weak dispersion for the mode Ep, there is
a possibility of a detectable width arising from
polariton-polariton scattering.

A more favorable process than the one discussed
previously is the physical process where the polar-
iton Ep decays into another polariton Elpl through
the emission or absorption of the bare phonon
E2(=E—E1)]’2. Physically, this process indicates
that the phonon Eg je suffers no dispersion; i.e., the
coupling function « ja(Ez}\g) is very small or close
to zero and can be neglected, though k,=k -k, is in
the range of wave vectors in the polariton regime.
In this case, the Elpl mode produces screening
through (45), while for the bare phonon mode we
have

Agy=pgiAa;, Baj=lasBay, (49)

where pg; = (wd;/®3;)"'% ;= 1/1g;, and @y, is the
renormalized excitation energy for the bare phonon,
which is determined from the solutions of Eq. (37d).
The coefficients ug; and g, deviate from unity
mainly at high temperatures. After applying the
transformations (45) and (49) into the F’s in (46)—
(48), the resulting Green’s functions {F;; F1)) can
be evaluated via the Hamiltonian

1€%= const+ 2 wi,af,ap,+2) By ;3 ;83 . (50)
ke i

The scattering amplitudes for the process in ques-
il

ck Im Py, (k, w)
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tion are given by the Egs. (B1)-(B7) in Appendix B.

Finally we consider the physical process where
the polariton ﬁp decays into two bare particles. In
this case the scattered bare phonons and photons are
only renormalized by their own fields to account for
small static corrections. The phonon operators are
transformed according to relations (49), while for
the photon operators we have

Apy=undn, sp=(ck/op)2. (51)

Using relations (46)—(49) and (51), the Green’s
functions ((F;; F!)) are calculated in Appendix C
by means of the Hamiltonian (37e). The expres-
sions for M;,;(w) given by (C1) consist of three
terms. Inthe range of frequencies, w corresponding
to the energies of the polariton mode Ep, the first
and second terms in (C1) describe the conversion
of the polariton K p into two phonons and two pho-
tons, respectively, while the third term represents
the scattering of the polariton mode K p into one
phonon and one photon. Similar processes are de-
scribed by expressions (C2) and (C3). A compar-
ison between the first term of (C1) and the first
term of (C2) indicates that both terms describe
similar physical processes and, therefore, are of
the same order of magnitude. Considering that

ImM; ;(w) = Im Dy ;(w),
ImPy, (K, w) =Im ((Fy(kn); Fi(RN)

and that the expressions for Im ((Fy(k\); Fi(kV)) and
Im (( Fy(kj); F3 Kj))) are responsible for the
asymmetric broadening of the spectral lines de-
scribed by (38) and (39), we conclude that, for the
detailed study of the line shapes arising from pho-
ton-photon interactions, not only the lattice anhar-
monicity but also the anharmonic coupling of the
electromagnetic field must be taken into considera-
tion. Since the renormalization factors ug; and ug,
are of the order of unity, the physical process in
question is the most favorable,

V. PHOTON-PHONON SCATTERING

We shall now discuss the excitation spectrum
for the bare photon and phonon fields described by
(26) and (27), respectively. Taking the imaginary
parts of (26) and (27), we have

t ck
- Im <<A1?x;AEA>>b =

t 1
- Im{(Az; Ay Ns = =

The photon spectral function (52) is roughly a Lor-
entzian line centered at the maximum frequencies
w, which are determined from the solutions of the

5 = 52
7 [w¥-c%?-wi-ckReP, (k,w)F +[ckIm Py (k,w)? ~’ (52)
[c.ugj+ReP34 (E,w)]ImD; (w)+Re Dg; (w) Im Py, (E,w) (53)
[Re Dg; (w)F +[Im D, (w)F
f
equation
w? = c%2 - w2~ ck Re Py (K, w)=0 (54)
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with a linewidth of the order of Im P,, (k w) in en-
ergy units, provided that Im P (k w)<<ck and the
functions Re Pal(k w) and Im P,, (k, w) vary slowly
with w in the region of the maximum frequencies.
In the case of Raman scattering, for »=3 and for
frequencies w in the neighborhood of the solutions
of Eq. (54), the function

Im P, (k, w) =7 Im ({ F, (0); F (0)))

is given by the imaginary part of expression (C2),
It consists of two terms describing the physical
process where the absorbed photon decays into two
phonons and into one photon and one phonon, re-
spectively.

The phonon spectral function (53) is an asym-
metric Lorentzian line even when the frequency de-
pendence of the functions Re Dg; (), Im D, (), and
Im Py, (k w) is neglected. The asymmetric broad-
ening in the line shape described by function (53)
occurs at frequencies w for which Re Dy, (w)#0.

It is caused by the damping function

Im Py, (k, w) =7 Im ({ F, &)); F &)Y

which arises from the anharmonic coupling between
the electromagnetic field and the phonon field.
Considering that the functions Re D, (w), Im Di, (w),
and Im Py, (k w) are also varying functions of w,
one should expect the line shape of the function (53)
to be asymmetric, For the process of Raman
scattering and for frequencies w in the range o£
frequencies corresponding to the phonon mode kj
the expressions for Im Dg 5 (w) =TIm M3, (w) and

Im Py, (k w) are given by the imaginary parts of
(C1) and (C3), respectively. They describe pro-
cesses where the phonon Ej decays into two phonons
or two photons as well as the scattering of the
phonon Ej into another phonon Ez jo with the emission
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or absorption of a photon.
VI. CONCLUSION

The present study is concerned with the line
shapes arising from photon-phonon interactions in
dielectric crystals, General expressions have been
developed for the spectral functions of the photon
and phonon fields, respectively. It is shown that
the line shapes for the fields in question exhibit
asymmetric broadening, The asymmetry is mainly
due to the anharmonic coupling between the elec-
tromagnetic and the phonon fields. Additional
asymmetries will arise when consideration is given
to the frequency dependence of the energy shift and
the damping functions as well as the variation of
the shape function with respect to the scattering
angle.?

Raman scattering processes have been discussed
in detail. The spectral functions (38) and (39) can
be used in the same spirit to study higher-order
processes than for n=3. In the present study, no
quantitative estimates have been made for the cou-
pling functions causing the asymmetric broadening
of the spectral lines. The extent of the proposed
mechanism depends on the crystal structure, the
anharmonicity of the lattice, the temperature, and
the strength of the external electromagnetic field,
Explicit expressions for the anharmonic coupling
functions are given in I, but only numerical calcu-
lations made on real crystals will reveal the im-
portance of the proposed effect. To our knowledge,
there is nothing known in the literature about the
anharmonic coupling functions ¢, and g,. Numeri-
cal computations of the results derived in the pres-
ent study and comparison with the observed data
are highly desirable,

APPENDIX A

We shall calculate here the Green’s functions (22) for the physical process of resonance Raman scattering

where the polariton l?p decays into two polaritons.

We need to calculate the following expressions:

My () = 16, {CF5 (&5); F @)D +<C Fy (&); FL (R + (w/wly) [ Fy (sf); FY @)+ Fy G); FLG&HNI}, (A1)

((F1(k)*) FT(kA))) ( Fo(kj); Fiy(kj))), and (( Fy(Kj); FH(KJ))).
Using (45), we transform the F’s into the polariton repre-

F(Kj), and Fy4(Kj) are given by Egs. (46)-(48).

For n=3 the expressions for F,(k7),

sentation, and then, substituting the resulting expressions into (Al), we evaluate the two-polariton Green’s

functions by means of the Hamiltonian (32).

Mg (@) = 208, E([A+ (&,, ks, —E,(.u)((.v;l,,l+w,;2‘;.a)—?..(.uii+ &y, k,, -k, w)] o2

+las &y, ks, —E,w)(wglpl—wgzpz)— 208y, &, ~k,w)]

where

We find

Ni1p1 + M2,
- (“’im +w‘?z"z)
Moz = Ni1e1 (A2)
2 _ ( . )7 ’
W= Wi, ~ Wiy

> > -> > -, > -2
Ai (kli kz, - k, UJ) = l ¢3 (klxlkaJZ) - k]) “‘Elklpl l 2 (“‘%2121:2 + ‘-Lizjzpa)
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+¢g (E17\1, Kyjay = EJ) oF (Ezjz, Elxl; - kj) Kgrgo; Fitgrge, (“1:1/191 Hipgo0p £ Hfljlpl Efzjng)

—_— > - 0 == > > -> - > -, > > -
+2} V3 (kl,ka ‘k)!z*'(w/wfj) Vs (klyka *k)[¢3 (klhlykZJZy "'k])u"k'lklpl “i21292+¢3(k2]27k1>‘1’ _k])ulegozuilllol] ’
(A3a)
Vs (ky, ky, —k)=3V; (E1j1,kzjz, "Ej)“iljlﬂl “ié;apz +8&3 (Elhl,ﬁzxa, "E]')}iilxlpl Hiorgo, (A3b)

A:t (klrka - k’ 0.)) = _‘;3 (klyka - k) [¢3 (k17‘1yEzj2, - E]) “‘I’:,Mol p’fzjgpg
>, > 0 - > - —_
+ ¢3 (Kojz, Kidy, — ki) HEgrz0n uiljm] +(w/wiy) [l b3 (k) Kpip = Kj) Lo K2,500, IJ-'k’zjznzl 2

* % ¢3 (klxukzjz, - k]) ¢§k (ijZy klhly - kj)u‘illlp p‘fzj Po (u'l.(. f1P1 u‘izjgﬁg + “'.k‘l.llpl Fgpi00 )] . (ASC)
1 2 1 272P2
Similarly,

-»A ,F')' *A - ( g > _-> . . _ L N —E nfwl*'nfzpa
n((FL @0); P R0 =222, Ry, Ky =) iy +0typy) = 20 L0 (s, gy = K] S0 = 00

k.. k k - - F o k. -k Ng1e1 — Mg ep
+ [L- (klr ka, - k) (wklpl wﬁzﬁz) 2wL. (klr kz, k)] wz_ (wk‘lﬁl - wfzpz)z> ’ (A4)

L,(Ky, Ky, — k) = | p5(ky iy, Kajzy = KA) ﬁiijlpluiajzpz

|2+ | 24 (kyxy, Koo = EN) g a0, “Ezjzpzl 2
£ Py (K, 1y K, - K003 (ks 7o, iy 7y, - El)ﬁiljlplﬂiljlpx ﬁizjzpzﬂizjzpa
* 4g3(E17\1, ﬁ2]12, “EK) g;(ﬁz]'z, 1217\1; ‘EA) #Elxlpl K& i 0, HEry0, Miyi0, > (A5a)
i*(Eu Ez; - E) = 2¢3(K1j1, Ezjz, - -127\) g:(i;ﬁl’ Ezjz, - E")Hiljlpi RN szlzjzpz
£ 03y 1, Ko oy = B0 g8 (Ra oy Kha, = BN 350, 12,510, (B0, Pipgsy * Py, Bippyoy) » (ASD)
7 ((Fy(kj); F3 (R = 2 23 [ b(&pry, Keda, - Ej) SR I-l’ﬁzjzpzl 2
+ ¢3(E17\1: Ez]'a, - Ej)‘ﬁ;(‘ﬁz]‘z, El"v "Ej) K n oy Fyagp, MR 4,0y #izjzpz]

We - W
k1py kyPy
2
w? - (W , — w2
( kypy TPy

W1py + Digo,
V] z
w? = (W + w3

( Py kz"z)

X ((77;1,,l + My,) + (Mg, = M o)

, Miyoy + Migog .
w? — (Wp , +Wp
( Py "a"z)

TT«F:;(EJ),FJ(EJ)»= 2 2 <[S~(E1’§27 - E) (wilpl"' w'ﬁzaa) - 2w§+(E11E2, - iz)]

nilpl - T’ﬁzaz

3
w? = (wp | —ws
( kypy kyPy

I8 (o, Ty = D)0, = 07, - 208y, Ky, =) =) . e

S*(Ehi;z: - E) = 2' 1—73(E1,E2, - E)} 24 ’ ‘Pa(iﬁu Esza - E) P-El).lplﬁiajzpzl 2
+ g (Ry)y, Kpjz, = &) 05 (k5 2, KAy, - Kj) I“LEIA101“szzpzﬁiljlplﬁizjzpz , (A8a)
8. (i, Kp, = 0 = Vy (&, Kgp = K) [00(Rids, Koz, = K) i agoy P, * B4 ( sz KoMy, ~ K7) #Ezjapzﬁﬁljlpll . (A8D)
Taking the real and imaginary parts of expressions (A2)-(A7), we have

. 0 - -
ImMﬁj(w) = ImDEl(w) = 7761);! E ({A+(k1yk2) - k’ Ct)) [5(0)-!» w;lp1+ wizpz) - 6((1) - wilpl - ‘*’Ezpz)]
+ 24, (K, ky, -k, w)[6(w+ WY o, + Wyp,) 6w - wgp, - Wi, I (12,0, + Miyp,)
+ {A-(Euﬁz, - E: w)[ﬁ(w"' wﬁlpl - wizpz) - 5(0" - wiipf" Wi o )]

272

+ 23 (&, Ty, - K, 0)[0(0+ wgp = @5 p,)+ 0(0 = @}y + 03]} (75, = 17;1,,1)) , (A9
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ImPM(E, w)= ﬂIm«Fz(Ej); Fé(l?j)» =20 | B3 (kydy, Ezjzs -kj) “El).lpl #Ezjzpz[ 2; ¢3(E17\1, Eajz, - Ej)

Xp3 (Rafas Kihyy =Ki) i a oy B0, M5, 1,0, M

2jzpz] {(nil"l + ning)[é(w + wilpl + wigpz) - 0(w~ wilpl - w'izpz)]

2°2

+ (M = M) [6(w+wg, — Wi, p) = (@ = Wi, ¥ w;apz)]} . (A10)

In view of (A2), (A4), and (A7), the expressions for
ImPy (K, w)= rIm{(F,(kA); F{(k\))) and ImP,(E, w):nlm«Fs(Ej)-F;(Ej)))
can be obtained from Eq. (A9) if we make the replacement of the functmns wg JAt(kl,kz, -k, w) and
;A (K, K, - K, ) by L, (K, Ky, %), L.(K,k,,-K)and S, (k,, ks, —K), S (kl,kz, -K), respectively.
APPENDIX B

We consider the physical process where the polariton kp decays into the polariton ffl py with the emission
or absorptmn of the phonon kaj . In this case expression (A9) is apphcable if we replace wg,, 2 and g 202 OY
wkz 3, and 771:2 I respectively, as well as the coupling functions A, and A, by the expressions

A,=A= |5 (KN, Kyjy, —Kj) bg, ).1p1I ( ﬂizszr u;alz)+ | 3V3(Kyjy, Kado, "kj)uxljl “'kzjzl

+3(w/ng)vs(ﬁ1ju Kojo —Kj)o3 (K Ny, Kojs, "Ej)#i,;,ﬂilnpl“%yz ) (B1)
A,=3_= (0/wf)| o5k, Ky 'Ej)#ilxlplﬂizfaﬁisz 2

+3Vy(Kijy, Kofas ~ KoK N, Kafas = Kbty Higay, Py, - (B2)

‘Similarly, the coupling functions L,, I':*, S, :9*, and ImPM(l'f, w) take the form

L.,=L_= |¢3(E1j1’ l_{ajz, “E)\)ﬁiljlﬂi jz‘ 24 l 2g5( E: Ay E?jz —E)‘)Hilx pluizjzl z, (B3)
L,=L = 204(Kyjy, Koj, ~ENgJ(E Ny, Kofp, - K )F‘kljluklxlplﬂkzj (B4)
S.=S.=|8Vy(Kyjy, Kojas — K5 Mgy, Biyapl 2+ | 9a(K, Kada, _kj)uilhlplﬁizjzl 5, (B5)
8,=8.=3Vy(Kyjy, Kojor ~Kip3 Ky, Kd, =R g0y iy i grp Pipsy 5 (B6)

ImPyy(K, ) =2 | po( KAy, Ky, —Ej)ﬂiixlplﬂizjal z
X {(11;1‘,1 +0i,,) [Bw+ WFpp, + Eb;zjz) - 8(w = Wiyp, = &;212)]
(Mg, = Migp)[0(w + Wy = B3,5,) = 8w = Wi 5 + @iy ,)] T« (B7)
APPENDIX C

Using (49), (51), and (46)-(48), we evaluate the Green’s functions that appear in the expression for
Mg;(w) given by (A1) by means of the Hamiltonian (37¢). We find

Mig;(w)= Zﬂng 2 {'3"3(-1;1]'1; Keja, - k) M iy “izjzlz
%G, (kydy, Kada )+ |€3& 1y, Kaho, —K) M, P IZG+(E1)\1, ko)p )
+3]0s(Riny, Kodo, —Ko) e, | [(F, + BEy,) Gullihy Kadp, ) + 2(0/0f) ClipNy, Kodp )], (C1)
7 {(Fy(Rr); Fi(Ex)>>=w | ps(iyiy, Ko —T0) |2 [BE 5 0 25, Co(Riy, Kafa )+ Gy, Koo )]
+] 224k 0y, Keda, — K1) Pz, HEIAII 2G,(Ryny, Kada 0}, (C2)

T(F o(K); FI(ki)) =12 dg(Riny, Kodoy —RN) iy, i, |26 (Riry, Kode, @), (c3)
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where
> 2, - By, + D5 - ~ Bt 1,~ Ot 1,
G.(k Ky7s, = =(P= - . 2 PR — - C4
ks, Kpfp @) T (nkljx * nkzjz) w?- (@4, + wigiz)a * gty M) 0~ (@ k4~ c')Ea’z)z ’ “
- 2w T’ill +‘;’E Ja ‘;’izlg - nii)q
Gy, Koy, ) = ( L2 + = (C5)
o ke 0F = @y +05ys,)" 07 = @y, ~ Digs,)’

The functions G (’pt,, kohg, @ ) and G, (&, Ky, w) can be derived from G, (&, j,, Egjz, w) given by (C4) if we re-
place 7);1“, 77; 2, wkm, Dfgsqr and T, %15, Y Tepng Migrgr Sgngs € kzhz’ and Mgy, Qg5 respectively, The func-
tion mwf, ({ F3(kj); Ft(Kj))) can be obtained from (C1) if we take um and C(i:lxl, Kyjs, w) in the last term of
(C1) equal to zero.

The real and imaginary parts of expressions (C1)-(C3) are obtained by replacing the functions
G, &, iy, Kpfp ), Gy, Kpdy w), Gulkihy, Kyjp w), and G2y, Kyjp, w) by their real and imaginary parts, re-
spectively. The real parts of the G’s are given by the principal values of (C4) and (C5), while the imaginary
parts are given by

ImG*(Eljl, EZjZ’ w) = (ﬁiljl +‘7‘7§232) [6(&) +&3il-’l +(:‘E2!2) - 5(0) - w;m -~ 0.’;232)]
£ Mgy, =i ys ) [6 (0 + wiyy, — 00y,) - 60 = Bhygy *+ Btgin)] 5 (C6)
Ima(EL?'b Egjg, CU) = (;,Eljl +‘T.’i2-72) [5((0 +(:)i111 +(I"i2j2) + 5((.0 - (:);l“ - z’:’iafz)]

+ (5, = Tiy3 ) [8 (0 + Byg, = Diggy) + 0(w = By gy + Digsy)] - (€7
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