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For axially symmetric guadrupoles Eq. (A18) re-

duces to Eq. (A13). We have seen that any non-
axial-symmetric quadrupole can be written as a
combination of two axially symmetric quadrupoles
A and 8, with their symmetry axes along two dif-
ferent principal axes of the original quadrupole.
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Properties of Crystalline Argon, Krypton, and Xenon Based upon the Born and Huang
Method of Homogeneous Deformations. I. Zero-Pressure Thermal and Elastic Data *

G. E. Jelinek
Sandia laboratories, albuquerque, Nese Mexico 87115

{Received 31 August 1970)

The thermodynamic properties of solid argon, krypton, and xenon have been calculated for
a two-body central force potential. Anharmonic contributions due to thermal expansion have
been taken into account via a quasiharmonic calculation based upon the Born and Huang method
of homogeneous deformations. The nonarbitrari1y adjustable parameters of the Morse poten-
tial have been obtained from the solid-state bulk properties in a recursive refinement pro-
cedure. For those thermal properties sensitivity dependent upon the dilatation of the lattice
the calculations become valid only for temperatures less then 3 Tz.

I. INTRODUCTION

Born and Huang' (BH), via a perturbation expan-
sion of the partition function, have developed the

thermodynamics of a stressed harmonic lattice.
The lattice potential energy is expressed as a dou-

ble expansion in terms of the normal modes of the

harmonic Hamiltonian and the parameters of a
homogeneous deformation. For strains taken to be
homogeneous deformations, the Helmholz free en-

ergy is obtained as a series expansion (to second

order) in the Lagrangian strain parameters, g, &.

The free energy is given by Eq. 43. 1 of BH. We
have made explicit the formulas of BH applicable
to our model of the noble-gas solids. ~

Our quasiharmonic calculation hence includes the
effect of anharmonicity due only to thermal expan-
sion. Truly anharmonic effects due to three- and
four-phonon processes have not been considered.

Several workers have developed perturbation
theory descriptions of anharmonic phonon interac-
tic;as. More recent advances include the "self-
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consistent phonon" approximation. ~ " For the

most recent advances in the theory of highly anhar-
monic crystals, one is referred to the work of
Choquard'2 and Nerthamer. '3 The gxperimental and

theoretical status of the noble-gas solids has been
periodically reviewed, and such comparisons can
be found in Dobbs and Jones (1957), ' Horton and

Leech (1963), "Pollack (1964), 'o and Horton
(1966)."

In this investigation, the nonarbitrarily adjusted
parameters of a central force potential are deter-
mined completely from the zero-temperature zero-
pressure experimental sublimation energy, density,
and bulk modulus of the solid in a recursive refine-
ment procedure. The theoretical zero-pressure
thermal and elastic properties of our quasiharmon-
ic calculation are compared with the experimental
data.

II. THEORY

For large lattice dilatation, static lattice terms
(in the energy density expansion) larger than sec-
ond order in the strain begin to contribute signifi-
cantly to the determination of the equilibrium strain
parameters. Since the static lattice potential co-
efficients in the free-energy expansion are given
explicitly by simple lattice sums of the two-body
potential, contributions to seventh order in the
static lattice strain have been included. [Terms
to this order are not always significant (for zero
pressure); however, they have been included to
preclude any possibility of numerical rounding off
errors. ] If one assumes that the third- and higher-
order elastic constants are independent of temper-
ature, then the free energy (BH43. 1) for isotropic
expansion (u, q=uoo=uoo= U; M)o=aqo=aoo= )
given by

F(V, T)=4(v)+Fo(V(& T)+ZF ' U

III. RECURSIVE POTENTIAL REFINEMENT AND
THERMODYNAMIC FORMULAS

The Morse potential is given by

g(r) = &(- exp[- 2c(r r-o)]+ 2 exp[- c(r ro-) $. (2)

Define M&o = (r&/a)o= m&~+n&~+ l&o, where mj, n&, I& are
the position coordinates of any atom in the lattice.
The potential energy for N atoms is given by

e(a)=-,'Xe(-8'Z, e ~"~a+2ag e c"&') (3)

where

ecro

The parameters &, ao, xo, and c are calculated
from the solid-state data by the following recursive
procedure. If at absolute zero ao is the value of a
for the lattice to be in equilibrium then a, =ao
x (1+2U)~~o, where a, is the experimental nearest-
neighbor distance for zero temperature and zero
pressure. Because of the zero-point energy,
a, &ao. The isothermal bulk modulus is given by

z — v'"""
T 8V2

The heat of sublimation at 0'K is Lo. Hence one
iterates the equations

—I o =F(V, T= 0), a, = a() (1+2U) ~

8O (V) 8 )'()( T ))0=
8 V & exyt 8V2

vo T

/

The strain parameter U and contributions to

E(V, T= 0) from the preceding cycle are used in

calculating the parameters of the static potential
for the current cycle. The equations are iterated
until there is no further change in the derived po-
tential parameters.

For the first cycle

~o= I (Vo)+~a R8 ae (v)

Q F(&a)(oo) Uo
2 ~g

where

4)(V) = 4)(vo)+ (I/3! ) Q(vo) U + ~ ~ ~ (1/7! ) 4)q(vo) U~,

@„(vp)=(' ~ )
For the lattice in static equilibrium (a = ao), 4&(vo)
= 0. Since a=ao(1+ 2U)'~, the coefficients may be
expressed as derivatives with respect to the
nearest-neighbor distance a. The second-order
contribution (BH40. 10) has been included in
F' "~~'. The coupling coefficients F' ', F'
(BH43. 1) are appropriate wave vector sums -of

products of eigenvectors, eigenfrequencies, ther-
mal functions, anharmonic force constants, and
phase factors.

Ic —v "+(v)
exyt 8 V2

V IVO

y
V, K,„,

T U~U(T, P)
(6)

yl is the low-temperature ezperimental Gruneisen
parameter. 8 is the 0'K calorimetric Debye tem-
perature. The input data are given in Table I.
The calculated Morse potential parameters are
shown in Table G. It is noted that these potential
parameters are virtually the same as the Morse
potential parameters given by Glyde27 obtained by
fitting the harmonic approximation at O'K in a re-
finement procedure similar to ours.

The equilibrium value of U may be calculated
from
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where V= Vo(1+2U) ~ .
The various thermodynamic functions of interest

here are given by

CT =-T ~ ~-V ~y2

TV(y
P 'V

p

Va
y=

CFPT

C„—C„=C)2 —Cia = Y TCv/T C44 —C44 = 0.S T

IV. RESULTS
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FIG. 1. Temperature dependence of the isothermal
compressibility. Experimental data are from the fol-
io@ring: argon, Bef. 18 (closed circles) and Bef. 26

(open triangles); krypton, Bef. 21 (open circles) and

Bef. 29 (open triangles); xenon. , Bef. 25 (open circles).

Using the Born and von Karman cyclic boundary
conditions we have obtained the normal modes on

a mesh of points evenly distributed throughout the
portion of the Brillouin zone which cannot be further
reduced by the symmetry operations of the lattice
point group. The coupling coefficients for the full
zone have been obtained for the secular determinant
of nearest neighbors.

In the root sampling technique for a small but
finite mesh a relative overweighting of the long-
wavelength phonons give rise to an anomalous rise
in the specific heat at low temperatures. Conse-
quently, in the calculation of low-temperature
properties, the frequency interpolation routine of
Gilat and Raubenheimer3 has been used to obtain
a satisfactory harmonic spectrum. This permits
a more definitive discussion of the thermal data
in the low-temperature limit.

Since the observed zero-temperature zero-
pressure bulk modulus was used in the potential
determination our 0 K compressibilities shown
in Fig. 1 agree with the experimental results;
however, above about —,

'
T& the theoretically pre-

dicted isothermal compressibilities are too high,

being outside the large experimental error limits.
For krypton the theoretical t)r is also higher above
40'K than the experimental data of Coufal, neith,
Korpiun, and LuscherM (not shown).

The volume expansivities are shown in Fig. 2.
For T~ —,

'
T~ (a temperature range corresponding

to rms displacements greater than 4%%up of the

nearest-neighbor distance —see Fig. 3), our theo-

retical expansivity deviates seriously from mea-
sured values, as does that obtained by Klein, Hor-

TABLE I. Experimental input data for potential parameters determination.

Solid

Argon
Krypton
Xenon

3.7555
3.992
4.336~

L0
{cal mole ~)

1846"
2666b
3830

80

(K)

93.3"
71.7'
64. 0~

p~
(10-"cm'dyn-')

3 75
2.91
2.77"

2.4
5c

2.3'

'See Bef. 18.
See Ref. 19.

~See Bef. 20.

"See Bef. 21.
'See Ref. 22.
fSee Ref. 23.

See Bef. 24.
"See Bef. 25.
See Bef. 26.
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FIG. 2. Temperature dependence of the volume ex-
pansivity. Experimental data are from the following:
argon, Ref. 18 (open circles), Bef. 26 (open triangles),
Bef. 31 {open squares), and Ref. 32 (closed triangles);
krypton, Bef. 20 (open circles), Ref. 26 (closed triangles),
Ref. 32 (open triangles), Bef. 33 (closed squares), and
Ref. 34 (open squares); xenon, Ref. 22 (open triangles),
Ref. 25 (closed triangles), Ref. 26 (open circles), Bef.
33 (closed squares), Bef. 35 (open squares), and Bef. 36
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ton, and Feldman3~ in a quasiharmonic calculation.
Both calculations drastically overestAmate the ex-
pansivity. Klein, Horton, and Feldman ~ also per-
formed a low-order anharmonic calculation using
conventional perturbation theory. Their anharmon-

ic result seriously underestimates the expansivity.
This overestimation of anharmonic effects signals
the breakdown of perturbation theory in this tem-
perature range.

The specific heats at constant pressure (C~)
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from the elastic constants ~' (8c') is anticipated
from the potential refinement procedure which
yields the correct zero-temperature elastic con-
stants. (or rather C»+2C, s). The slight maximum
in the 8(T) curves for argon and krypton at low
temperature is due to the negative T' term in the
C„expansiont7 (see also Paper III of this series)
which arises when ~z is used in the low-tempera-
ture fit. An analysis of the long-wavelength limit

1.4
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FIG. 3. Temperature dependence of the rms displace-
ments as a percentage of the nearest-neighbor distance.
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shown in Fig. 4 also seriously deviate from the ex-
perimental results above 3 T&. This overestima-
tion is due to the effect of a /Pr in Eq. (7). Owing
to a negative anharmonic contribution to C& together
with too low a theoretical expansivity, C& for the
anharmonic calculation'~ is too low above —,T&.

Plots of the Debye temperature are shown in
Fig. 5. The theoretical 8(Vc, T) have been calcu-
lated from Cv(Vc) in Eg. (7). Using their measured
volume expansivities, Peterson, Batchelder, and

Simmons (PBS) and Manzhelii, Gavrilko, and

Voitovich (MGV) have analyzed the CI data of
Flubacher, Leadbetter, and Morrisons to obtain
8(T) of argon. Losee and Simmons have rean-, 20

alyzed the C~ data of Beaumont, Chihara, and
Morrison' to obtain 8(T) of krypton for their vol-
ume expansivity data. The xenon 8(T) is that pre-

+dieted from the C~ data of Fenichel and Sermon and

Clusius and Riccoboni' for the pr of Packard and
Swenson~5 and the volume expansivities of MGV and

33Manzhelii, Gavr'ilko, and Kuchnev.
The relative agreement of our 0 K 8 calculated

1.2

pp

TEMPERATURE I KI

ND SERIN

ND RI CCOBONI

THEORY

THEOR Y

Solid

Argon
Krypton
Xenon

149.41
209.25
289.52

3.7105
3.9660
4.3190

Xp

(A.)

3.7746
4.0259
4.3950

1.6006
1.5449
1.3674

TABLE II. Morse potential parameters obtained by the
recursive refinement procedure.

Op
1 I I I I

20 40 60 80 100 120 140 160

TEMPERATURE I K)

FIG. 4. Temperature dependence of the specific
beats. (a) C&/SR static lattice contribution, (b) Cr/SR
quasiharmonic. The experimental data are from the
following: argon, Ref. 38; krypton, Ref. 19; and xenon,
Ref. 24 (open circles) and Ref. 39 (closed circles).
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theoretical 8(po) are all larger than the experimen-
tal resuI, ts. At high temperatures our 8(VO) plots
exhibit the character of a quasiharmonic C„calcu-
lation which approaches the classical limit of 3R

per mole.
The adiabatic elastic constants shown in Fig. 6

are the appropriate second derivatives of the free
energy and as such are not just the I' ""@coef-
ficients but contain contributions from the third-
and higher-order elastic coefficients. Theadiabat-
ic compressibility 3/(C»+ 2C,3) for our model is
compared in Fig. 6 with the analyses of PBS and

MGV and the experimental results of Keeler and

Batchelder ' (KB). There is excellent agreement
up to and above 80'K between the theoretical re-
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FIG. 5. Debye temperature e(V0) plots. The analyses
of the primary experimental data are from the fo11owing:
argon, Bef. 18 (open triangles), Bef. 19 (closed triangles),
Ref. 26 (open circles), Ref. 40 (closed circles), and
Ref. 41 (solid curve); krypton, Ref. 19 (open triangles),
Ref. 20 (open circles), and Bef. 40 (solid curve); xenon,
Ref. 24 (open circles), Ref. 26 (open triangles), Ref. 33
(closed triangles), and Ref. 42 (closed circles).
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of the frequency distribution spectrum
fg(+) = atua+ b&o4] indicates the quartic coefficients
to be positive. Hence, our (harmonic) spectrum
would predict no maximum in the 8(T) curve. This
maximum in the 8(T) curve is an artifact of the
low-temperature fitting procedure and an inade-
quate sampling of the low-temperature volume-de-
pendent contribution. However, for T & 20'K our

2
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I
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FIG. 6. Temperature dependence of the adiabatic
elastic constants and of the adiabatic compressibility of
argon. The experimental data are from Ref. 41 (closed
circles) . The adiabatic compressibilities derived from
experimental data are from Bef. 18 (open circles) and
Bef. 26 (open triangles).
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FIG. 7. Dispersion curves of argon at O'K and krypton
at 79'K. The experimental data. are from the following:
argon, Ref. 50 (open circles) and Ref. 51 (closed circles);
krypton, Ref. 52.

data, it is perhaps more significant that our adia-
batic results are in agreement than that our iso-
thermal results disagree (above 40'K). This point
can be clarified when the elastic data for krypton
and xenon become available.

Our elastic data for argon are compared with
other lattice dynamics models and the experimental
data in Table III. The anisotropy factor A (unity
for an elastically isotropic crystal) and the Cauchy
relation relative deviation factor 5 are given by

/I = 2C44/(C~q —Cq~), 5 = (C44 —Cqq)/C&2 ~

Our model predicts solid argon to be 5% more
anisotropic than the elastic constants measured by
KB. We predict a positive Cauchy deviation com-
parable to the all-neighbor I ennard-Jones model
of Barron and Klein46 (BK). Zucher and Chell ~

(ZC) using essentially the same model as Barron
and Klein included three-body triple-dipole-type
interactions. These interactions yielded elastic
constants resulting in a negative deviation from the
Cauchy relation. This condition, in agreement
with KB, gives evidence of the importance of such
three-body interaction in argon. However, like
other model calculations ' the BK and ZC models
seriously underestimate the low-temperature C&,
elastic constant, and the Debye temperature cal-
culated from these elastic constants is 4 and 8%
lower, respectively, than the calorimetric Ho of

Finegold and Phillips.
The dispersion curves of argon and krypton are

plotted in Fig. 7. Shown also are the argon neutron
scattering relations of Egger et al. ' and
Batchelder et al. " (the latter's measurements on
Ars~ have been converted to a mass of 39.948).
Since the experimental temperature was 4'K the
theoretical results are for the quasiharmonic fre-
quencies corresponding to the theoretically pre-
dicted 4'K volume. The quasiharmonic dispersion
curves of krypton are calculated for the theoretical
dilatation corresponding to the 79'K and O. 3 kbar
data of Daniels et a/. ' The over-all agreement be-
tween theory and experiment seems very satisfac-
tory, with the theoretical curves lying generally
well within the experimental error.

Ref. C(2

TABLE III. Elastic data of crystalline argon at 0'K. The C~& are in units of 10 dyncm

—'(c&& + 2C&2) A 0 x 100 gel
0

Present results
Keeler and Batchelder4~
Barron and Klein46

Zucker and Chell4~

Peterson et al. ~8

Finegold and Phillips
Beaumont et al. ~9

4.48
4.39
3.71
3.59

1.76
1.83
2. 07
2.02

1.84
1.64
2.15
1.85

2.67
2.68
2.62
2.54
2.67

l.35
l.28
2. 62
2.36

+4.55
—10+7
+3.9
—8.4

94.0
90.5
88.3
84. 2

92.0+0.3
93.3 +0.6~

Calorimetric values.
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U. CONCLUSIONS

An over-all considerati;on of the results of our
quasiharmonic and other truly anharmonic pertur-
bation expansion calculations'~ indicates that for
temperatures above 3--,' of the melting temperature
and rms displacements from 4 to 6/o of the nearest-
neighbor distance the apparent breakdown of the
perturbation theory to the low orders considered
results in large positive or negative deviations
from experimental observations. This is aside
from any contributions attributable to defects in the
bulk solid. The following paper in this series is
concerned with equation-of-state calculations of
argon, krypton, and xenon. There we find that for
pressures to 20 kbar the theoretical isotherms are
in exceptional agreement with experiments for tem-
peratures within 7, 2, and 11'K of the zero-pres-
sure melting points of argon, krypton, and xenon,

respectively. In addition, melting lines based upon
Born's mechanical stability criteria are in agree-
ment with the experimental melting curves below
2 kbar.

Thus it is seen that even though the theory may
yield too large a dilatationat temperatures greater
than —,

' T„(for zero pressure), the theory is still
capable of quantitatively correct predictions over
a much wider range of temperature and strain for
other specific bulk properties.
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Properties of Crystalline Argon, Krypton, and Xenon Based upon tile Born and Huang
Method of Homogeneous Deformatlons. II. Equation of State and Melting Lines@
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Pressure-volume-temperature relationships of solid argon, krypton, andxenonfor a Morse
potential calculation are compared to the static data of Stewart and Packard and Swenson.
Theoretical melting lines based upon mechanical instability of the crystal lattice are presented.
It is concluded that within the context of our model below 2 kbar the stability criteriaalone are
an adequate consideration in the melting line predictions for solid argon, krypton, and xenon.

I. INTRODUCTION

In an earlier paper' (hereafter referred to as
Paper I) the author described a stressed harmonic
potential model calculation of solid argon, krypton,
and xenon. Cubic and quartic stress terms in the
crystal Hamiltonian were considered via Born and
Huang's (BH) method of homogeneous deformations. '
The parameters of a Morse potential (see Table II
of Paper I) were determined completely from the
O'K solid-state data by a recursive refinement
procedure [Eq. (4) of Paper I]. The purpose of this
work is to examine the equation of state of solid
argon, krypton, and xenon and compare with the
static data (to 20 kbar). A study of properties a-
long the "melting line" is also presented. (The
"melting line" is based upon Born's mechanical
stability criteria. )

II. EQUATION OF STATE

For our model of solid argon, krypton, and xenon
(see Paper I) the Heimholz free energy was given
as a series expansion in the Lagrangian strain
parameters (in this case, u» = u~~ = u3, = u, u, 3 = u„
=uzi=0) by

E(V, T) =4'(V)+E~(VO, T)+QF' "u+ 2+I" ' '" 'u, —

with

4(V) =@(Vo)+ (I/O!)43(VO)u + ~ ~ ~ (I/7!)@7(VO)u,

The Il' ', I' "~~' anharmonic coupling coeffici-
ents are given by Eq. 43. 1 of BH. The pressure
(P) for volume (V} or vice versa may be calculated
from

where

V= Vo(1+2u) i,
The static equilibrium volume Vo (per atom)
= —,'v"2ao. The values of ao(P=O) are given in Table
II of Paper I. The pressure (volume) dependence
of all the thermodynamic quantities given in Eq.
(17) can be obtained by evaluating Eq. (1) for the P
00 strains [see Eq. (2)]. All the coefficients in
Eq. (1) are evaluated at the zero-temperature zero-
pressure static volume. This means that in the
equation-of-state (EOS) calculations no additional
time-consuming computations of the I' ' or
E~ o'+~' coupling parameters are required. The
EOS data herein presented are for the Morse poten-
tial parameters of argon, krypton, and xenon given
in Table II of Payer I.

Many analytical equations of state have been de-
rived following the development of the theory of the
finite strain of elastic solids by Murnaghan. ' Some
of the more commonly used are those developed by
Birch, ' Gilvarry, s Anderson, ' and MacDonald. '
However, it is not within the scope of this paper to
analyze the theoretical results in terms of such
EOS expressions. At this time, interpretation will
be given only in terms of comparisons with the re-


