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Quadrupole Arrangements in Solid Hydrogen and Nitrogen
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A group-theoretical classification of all possible quadrupole arrangements in a crystal is
carried out following the method of Opechowski and Guccione for the classification of spin
arrangements in magnetic crystals. The method is applied to find possible quadrupole ar-
rangements in the various phases of solid orthohydrogen and solid nitrogen. It turns out
that the quadrupole arrangement in the cubic phase is T& with axially symmetric quadrupoles.
In the hexagonal phase there are two possible arrangements with very low energy. One is
C 6„, wherenone of the quadrupo]. es are axially symmetric, and the other is C6&, where some
are and some are not. The quadrupole arrangement of lowest energy in the tetragonal phase
of solid nitrogen is D4& with non-axial-symmetric quadrupoles.

I. INTRODUCTION

The phase transitions in solid hydrogen and
solid nitrogen have been intensively studied during
the past few years. They are believed to be mainly
due to the. quadrupole-quadrupole interaction be-
tween the molecules. ' ' At high orthoconcentrations
(& 6O%) the molecular structure of solid hydrogen
changes from hcp above the transition temperature
to fcc below it. The transition temperature depends
on the or'thoconcentration, being about 1.6'K for
normal hydrogen. The change in the crystal struc-
ture is accompanied by an onset of ordering of the
orthomolecules. A similar situation exists in solid
nitrogen, whose molecular structure is hcp ( the

P phase) above 35. 6'K, and fcc (the o. phase) be-
low that temperature. Solid nitrogen is known to
have also a high-pressure y phase. At 20. 5 K
and 4015 atm Schuch and Mills' found its molecular
structure to be body-centered tetragonal (bct).

The knowledge of the ordered structure of the
molecules in the ground state in each of the various
phases is of particular interest. Experimental
evidence exists' which supports a T„structure
in the cubic phase and a D4„structure in the te-
tragonal phase. Assuming each molecule to be
represented by an axially symmetric quadrupole,
a generalized Luttinger and Tisza method for
minimizing the quadrupole-quadrupole interaction
energy was able to predict these two structures. '
For the hexagonal phase, however, the experi-
mental situation is not clear.

The purpose of the present work is to predict
the ground-state configuration of the molecules
in the crystal in each of the various phases. This
will be done in two steps:

(a) We shall consider a group-theoretical class-
ification of all possible quadrupole arrangements
in a crystal, following the method of Opechowski
and Guccione' for the classification of spin ar-
rangements in magnetic crystals. A "possible"

quadrupole arrangement is an arrangement of
quadrupole moments associated with the molecules
of a crystal which does not violate any symmetry
principles.

(b) We shall calculate the quadrupolar energy
of these arrangements in order to find the one
with lowest energy. Since in many cases symmetry
considerations do not require the quadrupoles to
be axially symmetric, we shall explore whether a
deviation from axial symmetry may further min-
imize the quadrupolar energy.

II. INVARIANT QUADRUPOLE ARRANGEMENTS

The problem of classification of all possible
quadrupole arrangements is analogous with the
problem of classification of possible atom arrange-
ments in a crystal. The latter classification is
provided by the theory of space groups, and a cat-
alog of all possible arrangements is given in Ref.
11. The classification of all possible quadrupole
arrangements is also similar to the classification
of all spin arrangements in a magnetic crystal,
a, problem which has been solved by Opechowski and
Guccione' using the theory of magnetic groups.
Since quadrupole moments are invariant under
time reversal, the theory of space groups is suf-
ficient to classify all possible quadrupole arrange-
ments.

We will not attempt to give a catalog of all pos-
sible quadrupole arrangements. In what follows
we modify Opechowski and Guccione's classifica-
tion scheme' to derive a method of classification
of all possible quadrupole arrangements based on

the theory of space groups.

A. Ordered and Disordered States of a Molecular Crystal

The quadrupole moment of a system of charges
can be represented by a symmetric second-rank
tensor with zero trace. ' In general, there are
five independent components.

We consider a crystal made up of like molecules
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with nonvanishing quadrupole moments. In analogy
with the paramagnetic state of magnetic crystals
we define the disordered state of a molecular crys-
tal as one in which the molecular positions are
fixed in the crystal, but the molecules are disordered
in such a manner that the time-averaged va, lue of
their quadrupole moment is zero. The moleeules
of a crystal in such a state are identical, and one

may consider the position of each molecule as a
point in the crystal and define the space group of
the disordered crystal in the same manner as a
crystal made up of identical atoms.

The ordered state of the crystal can be defined
as the state in which the molecules are ordered in
a specific manner about their positions in the crys-
tal, thereby defining at each molecular position a
definite quadrupole moment tensor. Let us consider
this ordered state as a spatial array of points, the
molecular positions, to each of which we associate
a quadrupole moment tensor. By so considering
the ordered state we have an analogy with the mag-
netic state of a magnetic crystal, where the spin
vectors are associated with the positions of the
magnetic atoms.

B. Definition of Simple Crystals

In order to familiarize the reader with concepts
used in Ref. 10, a short summary of them is given
in this section. An ordered crystal whose molecular
positions are of space-group symmetry E is par-
titioned into "simple crystals" consisting of mole-
cules whose position vectors can be obtained by
applying all elements of the space group E to any
one molecular position vector r. The simple crys-
tal is said to be generated by E from r. Crystals
can be considered as consisting of a certain num-
ber of simple crystals. No two simple crystals
have molecules in common, and the elements of
E permute the molecules of each simple crystal
among themselves. We consider now only simple
crystals.

If a simple crystal generated by E from r has
no two position vectors equal, then r is called a
general position vector; otherwise it is called a
special position vector.

A position vector r is characterized by its "site
space group" F(r) which consists of all elements
of E that generate the set of position vectors r + t,
where t is a primitive translation. The point group
B(r) of F(r) is called the site point group.

If E is decomposed into left cosets relative to
F(r), one has

F =F(r)+ fg ~v(g )]F(r)+ ~ ~ +[g„~v(g„)]F(r),

where v(g) is the nonprimitive translation associa-
ted with the rotation g. Each coset generates a
different set of position vectors:

r+t; g,r+v(g, )+t; . . . ; g„r+v(g„)+t .
For a fixed t we have a set of position vectors
whose components for each space group E and r
are given in Ref. 11. The components of these
position vectors are called the coordinates of
equivalent positions, and the site point group R(r)
is called the point symmetry. Each set of equiva-
lent positions defines a single simple crystal.

C. Definition of Invariant Quadrupole Arrangements

A quadrupole arrangement in a molecular crys-
tal is given by associating a quadrupole tensor Q
with each molecule, i.e. , Q (r;) is defined at all
molecular position vectors r; of the crystal. A
quadrupole moment tensor is invariant under time
reversal and therefore in order to define an in-
variant quadrupole arrangement we need to specify
the transformation properties of Q (r;) only under
the space-group-symmetry elements.

The symmetry element f = (g lv(g) +t] when ap-
plied to Q (r;) acts as follows: (i) It transforms

Q (r, ) from r, to fr, =gr;+i(g) +t (ii) It t.rans-
forms the components of Q according to

f Q =M(f) QM ~(f),

where M(f) is a matrix denoting the transforma-
tional properties of Q under the rotational part
g of the space group element f. We then have

yQ (fr, ) =M(t') Q (r,.)M-'g)

and a quadrupole arrangement is invariant under
f if for all i we have

fQ(r, ) =Q (r, )

and the largest group E which leaves the quadrupole
arrangement invariant is called its space group.

D. Construction of All Invariant Quadrupole Arrangements

The method of eonstrueting all invariant quad-
rupole arrangements is similar to that given for
spin arrangements by Opechowski and Guccione. '
Let E be the space group of the molecular positions
in the ordered state. We classify all invariant
quadrupole arrangements which can possibly exist
in a molecular crystal by showing how to construct
for a given crystal a11 quadrupole arrangements
invariant under an arbitrary subgroup L of E.
Each arrangement invariant under L ean be char-
acterized by specifying the location and value of
a certain number of quadrupole tensors. The num-
ber, possible location, and value of these quad-
rupole moment tensors will depend on F, L, , and

Let L be the subgroup of E under which the
quadrupole arrangement is invariant. It is assumed
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TABLE I. The number of independent components and
matrix form of the quadrupole moment tensor invariant
under each of the 32 point groups. The trace is always
zero. The case of one independent component corre-
sponds to an axially symmetric quadrupole with its sym-
metry axis lying along the s axis.

Point grouP Number of
components

C~ C2 Cp,

C2y D2 D2I

C4 S4 C4I, C4„DM
D4 D4g C3 C3g C3„
D3 D~ CSI, C6 Cy,

Dsa Ceo D6 D@

T TgTgOOg

Quadrupole moment
tensor

(Qxx Qm Qxx)

(Q„Q„, Q„j

Q„~@~0
0 0 Qxx j

/Q„„o o

(0 0 Q~ j
t'--. Q, o o i

o o"
Q j

that in an ordered molecular crystal of space-
group symmetry I' there are only two cases to be
considered: (a) L is identical with F. (b) L is a
space group belonging to the same crystal system
as I'. The number of possible cases is much
smaller than in the classification of spin arrange-
ments in magnetic crystals.

It is assumed that the symmetry group L is one
of the possible space groups, for it is physically
improbable that the atoms of a crystal belong to a
Bravais lattice system of higher symmetry than
it is required by the crystal point-group symmetry. '3

For example, consider a crystal of molecules
composed of two atoms with the molecular positions
forming a simple cubic molecular lattice generated
by F = 0„' from r = (0, 0, 0). We consider the arrange-
ment with all molecular axes along the g axis.
Such an arrangement has as its symmetry group
L the semidirect product of the point group D4&

and the translations of a simple cubic lattice. This
group is a subgroup of 0„', but it is not a space
group. This arrangement is physically improbable,
and one expects that any weak external distur-
bance, such as heating, would shorten or lengthen
the s edge of the cubic cell, consequently changing
the molecular lattice from cubic to tetragonal.
One can classify the above arrangement as belong-
ing to a crystal system lower than cubic. This is
the space group D4I, of the tetragonal system, where
the unit cell has been doubled in the z direction.
We would then have an invariant quadrupole arrange
ment of symmetry L =D4„of the tetragonal system
on a molecular lattice generated by I' =0„' of .the

cubic system. Such an arrangement, for the rea-
sons stated above, is physically improbable. With-
in the framework of our model a similar argument
rules out the possibility of the orthorhombic C~„
arrangement considered recentlyin the literature~4 ~7

for hexagonal solid orthohydrogen. In fact, there
has been no experimental evidence to date supporting
the C&„structure in solid hydrogen.

Let us now consider the two cases in detail:
(a) If r is a general position vector we assign

at r an arbitrary quadrupole moment tensor q (r).
To the remaining positions we assign

q (fr) =M(f)Q(r)M '(f),
thereby defining a quadrupole arrangement invari-
ant under the space group I". This method of con-
structing a quadrupole arrangement is called the
standard prescription. '

If r is a special position vector, then the above
standard prescription may lead to contradictions.
Let R(r) be the site point group of r. The necessary
and sufficient condition for the existence of a
quadrupole arrangement invariant under the space
group E in a simple crystal generated by I' from
r is the existence of a quadrupole moment tensor
invariant under R(r) '0 For e. ach such quadrupole
tensor, the standard prescription defines unambig-
uously a quadrupole arrangement invariant under
p

In Table I we give the matrix form and number
of independent components of the quadrupole mo-
ment tensors invariant under each of the 32 point
groups. The number of independent components of
a rank-two symmetric tensor has been given in
Hef. 18 and the explicit form of such a tensor has
been given in Ref. 19. Table I has been adapted
from these references.

From Table I we see that when the site group
R(r) is not one of the point groups T, T„, T~, O, and

O~, there exist quadrupole moment tensors invari-
ant under R(r) with which one can construct in-
variant quadrupole arrangements using the stan-
dard prescription. If R(r) is one of the above five
point groups, we conclude that no invariant quad-
rupole arrangement exists in the simple crystal
generated by Il from r.

(b) Let I, be a three-dimensional space group
and a subgroup of E. Following Ref. 10 we de-
compose I' into right cosets relative to I-:

F = L +Lf2+ ~ ~ ~ +Lf„,

where n is the index of the subgroup I. of I'. We
also decompose the position vectors of the simple
crystal generated by I' from r into sets of position
vectors relative to L:

Fr =Lr +Lfar + ~ ~ +Lf„r .
Sets of position vectors generated by two different
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TABLE II. Subgroups of 0I, belonging to the cubic sys-
tem with the same fcc lattice or with a simple cubic lat-
tice (sc) containing one-half of the translations of the
original fcc lattice.

Subgroup

0g
03 Tp~ T2

0„' 0
T2

Pi 02 Ti T2 T&6 T&i

Ti T4

Index

1
2

8

16

Lattice

fcc
fcc
sc

fcc
sc
sc

right cosets from the position vector r are either
identical or have no position vectors in common. '
We may write this decomposition as

Fr =Lr+Lf2r+ +Lf„.r,
where n' & n and no two sets of position vectors
have position vectors in common. We can interpret
this by saying that the simple crystal generated
by F from r may be considered as composed of
n' interlocking simple crystals generated by L
from position vectors r, far, . . . ,f„.r.

We now assign quadrupole moment tensors to
each- of the n' simple crystals independently, using
for each the method described in case (a). Each
quadrupole arrangement invariant under L in a
crystal generated by F from r is uniquely character-
ized by giving the n' quadrupole moment tensors
Q (r), Q (fmr), . . . , Q (f„.r). We derive all invariant
quadrupole arrangements by choosing these n' quad-
rupole moment tensors in all possible ways.

We have given a method of constructing quadrupole
arrangements invariant under L in a simple crys-
tal generated by F from r. The simple crystal is
considered as n' interlocking simple crystals gen-
erated by L, a subgroup of F, from n' position
vectors r, fear, . . . , f„.r If some o.f the site point
groups R(f,r) are among the five point groups T,
T„T~, 0, 0„, then we have a "partial" quadrupole
arrangement invariant under L; to the interlocking
simple crystals with such site point groups no
quadrupole arrangements can be assigned. If all
the site point groups are among these five point
groups, we conclude that there is no quadrupole
arrangement invariant under L in the simple crys-
tal generated by F from r. As we are interested in
the classification of quadrupole arrangements in
the ordered state of a molecular crystal, we will
not consider any partial arrangement among the
possible quadrupole arrangements.

There is also the possibility that the quadrupole
arrangement constructed to be invariant under L
will in fact be invariant under a higher symmetry
group. The symmetry of a quadrupole arrangement
is defined as all elements of F that leave the ar-

rangement invariant. The elements of L are of
course among such symmetry elements, but there
may be additional elements of F, not contained in
L, which also leave the arrangement invariant.
Quadrupole arrangements constructed from the
group L and actually invariant under a higher sym-
metry group will be classified under the higher
symmetry group. If all quadrupole arrangements
constructed from L are classified under higher
symmetry groups, we will consider that there are
no quadrupole arrangements invariant under L in
the simple crystal generated by F from r.

III. SPECIFIC EXAMPLES OF GROUP CLASSIFICATION

In this section we shall use the above procedure
to find invariant quadrupole arrangements in crys-
tals whose molecular positions are on fcc, hcp,
and bct lattices.

A. fcc Lattice

The symmetry of the molecular positions is 0'„.
We construct all quadrupole arrangements invari-
ant under 0„' and all the space groups L belonging
to the cubic system which are subgroups of up to
index 16 of 0„. These subgroups are given in Table
II and have been derived using tables of the sub-
groups of space groups given by Ascher and by
Neubuser and Wondratschek. '

The molecular positions form a single simple
crystal generated by F =0„from the position vec-
tor r = (0, 0, 0). We first take L =F which corre-
sponds to case (a) above. The site point group
R(r) is 0„, and using Table I we conclude that there
is no quadrupole arrangement in the simple crys-
tal generated by 0', from r=(0, 0, 0), that is, in-
variant under 0„.

Taking L =0, T„, T~, or 7, we again conclude
that there is no quadrupole arrangement invariant
under L in the molecular crystal under considera-
tion.

Taking L =0'„we find that the simple crystal gen-
erated by F =0„from r = (0, 0, 0) can be considered
as two interlocking simple crystals generated by
0„' from the position vectors r~=(0, 0, 0) and rm
= (0, -'„-', ). The site point groups are R(r, ) =O„and
R(rn) =D4"„', where the superscript (x) denotes that
the fourfold axis is about the x direction. We con-
clude that we have a partial quadrupole arrange-
ment with no quadrupole moments on the first of
the two interlocking simple crystals. Similarly,
taking L = T„' we also derive a partial quadrupole
arrangement.

Taking L = 7'. „, we have a single simple crystal
generated by T6 from r = (0, 0, 0) with site point
group C~&'" =S6""", the sixfold rotation-reflection
axis being along the [111]direction. The axially
symmetric quadrupole Q (000) is given in Table I
in a local coordinate system attached to r = (0, 0, 0),
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where the symmetry axis lies along the [1111di-
rection. The quadrupoles at the remaining equiv-
alent positions are derived by applying the sym-
metry elements (Cz„(~ —,'0), (C2, (0 —,

'
—,'), and

(C~, ( —,
' 0 —,') to Q (000). The quadrupole arrangement,

which is axially symmetric in this case and in-
variant under T„ in a simple crystal generated by
0„from r = (0, 0, 0), is shown in Fig. 1. In the
same manner, but taking I- =0„, one derives a
second invariant quadrupole arrangement. These
results are summarized in Table III.

There are no additional quadrupole arrangements
among the groups I, considered. Quadrupole ar-
rangements constructed from I =0, T„, and T'
are in fact invariant under 0„, and those from
I- =0' and T„are invariant under 0„'.

(aj

Xg

xy
o(-K~4)
~ (

M2 W)

(
1 l

)
~~( o-~+)
o, (+-+~)
~4 (-+ 0 +)
o, ( 0+Q)4)

B.hcp Lattice

A single simple crystal is generated by I' =D,„
from r = (3 3 —,'). We consider quadrupole arrange-
ments invariant under I' and all subgroups of the
hexagonal system with the same hexagonal lattice,
denoted by Hi, or with hexagonal lattices H2 or
H3 containing one-third or one-fourth the trans-
lations of the original hexagonal lattice. These
lattices and the coordinates of the molecular po-
sitions in their respective unit cells are shown in

Fig. 2. The subgroups considered are listed in
Table IV, and the possible invariant quadrupole
arrangements derived are listed in Table III. We

shall now describe some arrangements which will
later prove to be of interest.

For I.= C,„(H2) we have a single simple crystal
generated by I. from r = (-,', 0, —,') and site point group
R(r) = C,' '. The form of the quadrupole tensor

Q (r) is given in Table I, where the local coordinate
system is that of the two axis and two mutually

perpendicular axes in the xz plane. Se note that

symmetry considerations do not necessitate an

axially symmetric quadrupole moment. A possible
quadrupole arrangement invariant under L is shown

(cj IV%

(
) 1 1

)

~* (+-++)
o3 (++/)
~. (-+-+ $)
o, (-++ +)
~. (+4~)
o, (++~)
~ {

2 M W
)

3

FIG. 2. Positions and primitive translations in the
xy plane of (a) the hexagonal H1 lattice, which contains
two molecular positions per unit cell; (b) the hexagonal
H2 lattice, which contains six molecular positions per
unit cell; (c) the hexagonal H3 lattice, which contains
eight molecular positions per unit cell.

in Fig. 3.
Taking L =C6„(HS) we have two interlocking simple

crystals generated by I. from r, = (-„-',, —,') and r3
(3 6 ) with site point groups R(r, ) =C~„and R(r2)

=C,".Q(r, ) is an axially symmetric quadrupole
with its major axis in the s direction, and Q (r2)

FIG. l. Axially symmetric quadrupole arrangement
invariant under Tz in a simple crystal generated by OI,

from r = (0, 0, 0). The heavy lines represent the molec-
ular axis, which is also, the symmetry axis of the quadru-
pole. There are four different orientations of the molec-
ular axis, namely, along the [1l1], [ill],

[llew],

and

[ l l lt directions.

FIG. 3. Quadrupole arrangement invariant under
&(3„(02) in a simple crystal generated by D6&. The heavy
lines represent the projection of the molecular axes on
the xy plane. The axes are all at an angle 0 to the xy
plane, being tilted down towards the center of the figure.
The quadrupole moments are invariant under a site point
group C, and consequently are not necessarily axially
symmetric.
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TABLE QI. Lj.st of the quadrupole arrangements invariant under subgroups I of E in a simple crystal generated by
E from r. The number of interlocking simple crystals, the position vectors r~, the site point groups B(r&), and the sym-
metry elements are included. The orientation of the rotation axis in R(r;) when not in the g direction and the three
twofold axes of C» and D2~ are given by superscripts.

(o, o, o) Oa

Dy, (Hl)

D,'„(82)

D66(82)

C2g~(H2)

c~&„pn)

D,'„(82)

(o, o, o)

(0, 0, 0)
2 1 1(3, 3, 4)

(-,'. o, ~)

(3, 0, ~)

(-,', 0, ~)

(1
~

(3, 0, @)

(o,

0, 4)

C8

C(2)

Cb,e, 2)
2Q

C(y, g, 5)
25

(c~ I 0-,'$), (c,„i—,'o,'~
(c„l0-,'-,'), (c~ l -.'0-,')

(C„l oo-,'}

(cd l 002)

(C„l oo-,')

CSa. C2~

(c„t oo-,')

(0, Csa

(k, g, 4)

(C„l oo-,')

(g, g, 4)

(- —-)

(g, -6, z)

(g, 3, ~)

DsI

C(y, g, i)
2'

C(xy, g, 3)
20 Css

(c~ l oo-,')

(c„loo-,')

(o, o, o) (o, o, o)

(o, o, o)

(o, o, o)

(o, 0, o)

'(C l
111)

l
111)

(C I
-'-'-')
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TABLE IV. Subgroups of D&~ belonging to the hexag-
onal system with the same hexagona1 Hl lattice, to the
hexagona1 lattice H2 containing one-third the translations
of the original hexagonal lattice, or to the hexagona1
lattice H3 containing one-fourth the translations of the
original hexagonal lattice.

Subgroup Lattice

D8 C8a

DO

C8 Cu
6

D6h
4

D6 C8)f,

D6 C8If
6 2

C6 C3I
6 1

C8 C&z
6 1

D,„C,„1,4 4

31 C8.2@3 8

D3„C6„1,4 4

H2

FIG . 4. Quadrupo1e arrangement invariant under
C6„(H3) in a simple crystal generated by D6&. The heavy
lines represent, the mo1ecular axes on one of the two inter-
locking simp1e crystals and lie on the xy plane. The mo-
lecular axis at ri [see Fig. 2(c)] is at an angle ft) with the

xy axis. The quadrupole moments of these molecules
are invariant under a site point group C~ and consequently
are not necessarily axially symmetric. The quadrupole
moments of the second of the simple crystals are axially
symmetric about the g direction, andthemolecularaxes
have not been drawn.

takes the form given in Table I for the point
group'C, where the local coordinates consist of the
z axis and two mutually perpendicular axes in the

xy plane. A possible quadrupole arrangement in-
variant under L is shown in Fig. 4.

C. bct Lattice

A simple crystal is generated by the space group
I" =D4„ from r = (0, 0, 0). We consider all subgroups
of I' of the tetragonal system with the same body-
centered lattice and the simple tetragonal lattice
containing one-half the translations of the original
lattice. These subgroups are listed in Table V,
and the invariant quadrupole arrangements derived
are listed in Table III.

Taking I- =D4„we have a single simple crystal
generated by L from r=(0, 0, 0). The site point
group is D2I, with the twofold axes along the xy,
7y, and z directions. We note that symmetry con-
siderations do not necessitate an axially symmetric
quadrupole moment. The quadrupole arrangement
invariant under L is given in Fig. 5.

IV. QUADRUPOLE ARRANGEMENTS OF LOWEST
ENERGY

Many of the quadrupole arrangements that are
allowed because of symmetry considerations are
not energetically possible. Some may even have
a positive energy. Our purpose in this section is
to look for the quadrupole arrangement of lowest
energy. A generalized Luttinger and Tisza methodv

has been used by several authors ' ' to minimize
the quadrupole-quadrupole energy in a number of

crystal structures. This is done by dividing the
crystal into a number of sublattices, with all the
quadrupoles on a given sublattice being equal. This
meth(id, however, has been applied only to axially

TABLE V. Subgroups of D4117, belonging to the tetragonal
system with the same bct lattice or with a simple tetrag-
ona1 1attice (st) containing one-half of the translations
of the original bct lattice.

Subgroup

D4„
17

D4 C4& C4„

D1,4, 8, 7, 9, 12,14, ig
41t

S4 C4

Di, 2, 3,4, 5, 8 D1,2, 5, 8
2d

1,2, 3,4 Ci, 4, 8, 7
4A 4v

$1 Cfg 3
4 4

Lattice

bct

bct

st

bct

st

symmetric quadrupoles. Nevertheless, we have
seen in previous sections that in many cases sym-
metry considerations do not impose on the quad-
rupoles the restriction of axial symmetry. Thus
it seems reasonable to check whether a deviation
from axial symmetry may yield a lower quadrupole-
quadrupole energy of the crystal. The interaction
energy of two general quadrupoles, which are not
axially symmetric, may be written (see Appendix)
as the interaction energy of two pairs of axially
symmetric quadrupoles, each pair representing
one of the two general quadrupoles. In the local
coordinate system $, p, 0 of a quadrupole, its tensor
is diagonal with

Qw+Qn~+Qn = o

If the quadrupole is axially symmetric with the 4

axis being the symmetry axis, then we have

1
Qgg=Q. .= —

z Qpg .

We then define Q-=Q«as the value of the quad-
rupole moment of the axially symmetric quadrupole.
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FIG. 5, Quadrupole arrangement invariant under B4~&4

in a simple crystal generated by D4~&7 from r =(0, 0, 0).
The heavy lines represent the molecular axes, which lie
along the xy and xy directions. The quadrupole moments
are invariant under a site point group D2I, and consequent-

ly are not necessarily axially symmetric.

In order to find how the energy changes when a
quadrupole deviates from axial symmetry, we
shall assume that Q«changes to ——', Q +b and Q»
changes to ——,

'
Q —&, where & is either positive

or negative.
The present calculations of the quadrupolar

energy per molecule have been done in the same
manner as described in Ref. 9 and include inter-
actions of molecules with separations up to 300 A.
The energies, which will be given in units of K,
have been multiplied by the quantum-mechanical
correction factor' '~ of ~s.

A. Ground Stlte of SoM Hydrogen

We shall consider the case of pure orthohydrogen
where all the molecules in the crystal have a
quadrupole moment. Below the transition temper-
ature the molecular positions form a fcc lattice,
while above it they form a hcp lattice. The lattice
parameters were taken from known data on solid
normal hydrogen as a=5. 312 A for the fcc phase
and a = 3. 761 A, c = 6. 105 A for the hcp phase.
The value of the quadrupole moment of the axially
symmetric orthohydrogen molecule vias taken
from Ref. 22 as Q=0. 1368&&10 '6 cm .

As is shorn in Sec. ID A, there are two pos-
sible quadrupole arrangements for the fcc lattice,
namely, O„and T„. In both cases symmetry con-
siderations require the quadrupoles to be axially
symmetric. The 04 arrangement is excluded be-
cause it has a positxve energy. The T~ arrange-
ment has an energy per molecule of —7. 10 'K and
is shown in Fig. 1. There axe four sublattices,
with the molecular axes in each sublattice lying
along a different body diagonal of the unit cell.
This arrangement has already been found to be
the one with lowest energy when one minimizes
the interaction energy of axially symmetric quad-
rupoles, ' and it is in accord with experimental
results. "

The hcp lattice is divided into either six sub-
lattices, the 02 arrangement, or eight sublattices,
the H3 arrangement (see Sec. III 8). The hexa-
gonal arrangement with the lowest energy that
could be found for axially symmetric quadrupoles
is C8„(H3). This arrangement, is shown in Fig. 4.
Two of the sublattiees have quadrupoles along the
z direction, while the quadrupoles of the other
six sublattices lie on the xy plane with Q = —2V '.
The energy per molecule of this arrangement is
—6.42 'K. Symmetry considerations require the
two quadrupoles along the z direction to be axially
symmetric, while the six quadrupoles which lie
on the xy plane may deviate from axial symmetry.
Let us denote a,s the local q axis the direction on
the xy plane perpendicular to the f axis of each of
these six quadrupoles. Figure 6(c) shows that the
energy is lowered from —5. 42 to —6. 79 'K
when Q„gQ changes from ——,

' to —1. The energy
is further lowered to —V. 32 'K at Q«/Q = —1
when P changes from —2V' to —21', as is shown
in Fig. 6(b).

Another arrangement which seems to have a
rather low energy when the quadrupoles are not
axially symmetric is C~6„(H2). This arrangement
is shown in Fig. 3. There are six sublattices
with the molecular axes tilted at an angle of ~

=45' above the xy plane. Let us denote as the
local g axis of each quadrupole the direction
perpendicular to its 5 axis, so that the q axis also
makes an angle of 45' with the xy plane. Figure
6(a) shows that the energy is lowered to —V. 4V 'K
when Q»jQ = —1.

The fact that the transition from the hcp phase

-4.0

"5,0

bE

"5.5
0

-6.0

-6.5

I I I

-).0 -09 -0.8 -0.7 -0.6 -0.5
a»/g

/

FIG. 6. Energy per molecule as a function of Q„„in
hexagonal solid orthohydrogen for the following arrange-
ments: (a) C ~6„(H2) with 8 = 45'; (b) C 6 &(03) with Q = —21';
(c) C26&(83) vrJ. th Q = —27'. For comparison, the energy
in the cubic Tz arrangement is -7.10'K.
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FIG. 7. Energy per mol-
ecule as a function of (qt)~ in
the tetragonal D@, arrange-f4

ment of solid nitrogen. For
comparison, the energy in
the cubic TI', arrangement,
at about the same tempera-
ture and pressure, is —33.9
'K.

-40 1 I 1 I

-1.0 -0.9 -08 -0.7 -06 -0.5
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Below 35. 6 'K solid nitrogen exists in the fcc
z phase. However, at high pressure it transforms
into the bct y phase. From Ref. 5 we obtain the
following data: At 3785 atm and 19.6 K solid
nitrogen is still cubic with a =5.433 A, while at
4015 atm and 20. 5 'K it is tetragonal with a
=3.957 A and c=5. 109 A. The value of the quad-
rupole moment of the axially symmetric nitrogen
molecule was taken from Ref. 23 as Q = —0. 3165
)& $0-16 cm2

The quadrupole arrangement at the & phase is
T„' as in fcc solid hydrogen. Using the data given
above the energy per molecule is calculated to be
—33.9 'K.

The quadrupole arrangement of lowest energy at
the y phase is D4, for axially symmetric quadrupoles
and it remains D4„even when the quadrupoles de-
viate from axial symmetry. The D4„arrangement
consists of two sublattices and is shown in Fig. 5.
This arrangement was also confirmed experimen-
tally by x-ray diffraction. However, the extent to
which the quadrupoles deviate from axial symmetry
has not been determined. Using the lattice param-
eters given above for the y phase, Fig. 7 shows
that the energy is lowered from —26. 0 to —38.4
'K when Q«/Q changes from ——,

' to —1. Here we

denote the local q axis as the direction on the gy

plane perpendicular to the g axis of each quadrupole.
We see that the energy of the tetragonal arrange-
ment when the quadrupoles are axially symmetric
(- 26. 0 K) is much higher than that of the cubic

to the fcc phase when the temperature is lowered
is believed to be mainly due to the quadrupole-
quadrupoleinteraction' implies that the energy of
the hexagonal arrangement must be higher than
—7. 10 K, which is the energy of the cubic arrange-
ment. We can conclude that the deviation of the
quadrupoles from axial symmetry cannot be very
large in either the Ce„(H3) or the C6„(82) arrange-
ment, since Q,JQ must be greater than about
—0. 95, as can be seen in Figs. 6(a) and 6(b).

B. Ground State of Solid Nitrogen

arrangement (- 33. 9 'K). Thus it seems unreason-
able that the quadrupoles should remain axially
symmetric in the tetragonal phase. It is seen from
Fig. 7 that Q„„/Q must be less than about —0. 8'7

in order to have the energy of the tetragonal ar-
rangement lower than that of the cubic arrange-
ment.

V. CONCLUSIONS

In this paper we have. considered a classifica-
tion of all possible quadrupole arrangements in a
crystal, using the theory of space groups. This
has been done by following the method of Opechow-
ski and Guccione' which uses the theory of mag-
netic groups for the classification of spin arrange-
ments in magnetic crystals. The number of pos-
sible cases in the quadrupole classification is
much smaller. than in the analogous spin classifi-
cation. In addition, many of these arrangements
are not possible from an energetic point of view.
We have also seen that as far as symmetry is
concerned there are many cases where the quad-
rupoles need not be axially symmetric.

We have applied this method of classification to
find the quadrupole arrangement of lowest energy
in the various phases of solid orthohydrogen and

solid nitrogen. The quadrupole arrangement in the

cubic phase is T„with four sublattices where sym-

metry considerations require the quadrupoles to be

axially symmetric. In the hexagonal phase there
are two possible arrangements that have very low

quadrupole-quadrupole energy. One is C6„, with

six sublattices, where none of the quadrupoles are
axia11y symmetric. The other is Cs„with eight sub-

lattices, of which six have non-axial-symmetric
quadrupoles. From data on solid hydrogen near
the hexagonal-to-cubic transition, we have con-
cluded that Q„„/Q of the non-axial-symmetric quad-

rupoles must be g —0. 95 for both C~~„and C2+,

where Q is the quadrupole moment of the axially
symmetric molecule. In the tetragonal phase of

solid nitrogen the lowest-energy arrangement is
D4„with two sublatticep where none of the quad-

rupoles are axially symmetric. From data on solid

nitrogen near the cubic-to-tetragonal transition, 5

we have concluded that Q„„/Q must be & —0. 87.
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APPENDIX: MUTUAL ENERGY OF TYCHO QUADRUPOLES

Any arbitrary potential Q can be expanded as

8 0 spa Bpoy=y, + x '+y '+z
sx By sg



QUADRUPOLE ARRANGEMENTS IN SOLID ~ ~ ~ 2715

a B'40 B'&o
+ ~ ~ ~ +2+ + ~ ~ ~ + ~ ~ ~
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The potential energy E of any charge distribution
p(x, y, x) is

E=Jlooo~=o fp&~+ Bgo
8X

pxl&+ ~ ~ ~

B2
px dT+'''

2 BX

(A 10)

where X,„, X„, X„, etc. , are direction cossnes,
the tensor then becomes

1
qi( q(( 6'((+ 2Q~li ~1( ' (A11)

where I is the unit matrix. Transforming to a new
coordinate system x, y, z (laboratory system) by
means of the orthogonal matrix

X XS„X2„
yl &3, &2, ~i,
g A. sg A. 2g A. 1

B 0+o pxgdT+''')+
BxBy

Similarly, we have

1 ~
pq((=q((~o(+2Q &'((, &'(( (A12)

%e define the charge distribution tensor as

q„„=J px d7, q,„=f pxy d7, etc. (A3)

The first term of Eq. (A2), which is the monopole
term, is independent of orientation and vanishes if
we assume that the quadrupoles are neutral. The
second term also vanishes if we assume that there
are no dipole moments. Then we have

B'4oE= —~ q]j (A4)

where x„-=x, x, -=y, x, =-z, and i, j run over x, y, z.
Similarly, the potential (t, due to a system of
charges p, is given by

1 r 8 1

k l 8xk 8x l &0
(A6)

where k, l run over x, y, z. Hence the potential
energy is [from Eqs. (A4) and (A5)]

E =
4

Z q((q, (
—

i

. (A6)
$ jkl Xf Xj Xk Xl XO j

The qk, belong to the quadrupole which produces the
potential Q, and the q(& belong to the other quadru-
pole which sits in the field g. E is the mutual en-
ergy of the two quadrupoles.

We shall now see how Eq. (A6) is simplified for
axially symmetric quadrupoles. Take axes $, q,
P in the quadrupole. These are its principal axes.
In this coordinate system the tensor is diagonal.
Suppose the quadrupole has axial symmetry about
the f axis; then we have q«=q„„~q«. The conven-
tional definition of a quadrupole moment is based
on

(A14)q(( ~qoo ~q((, Q((~Qoo, Q((+ Q..+ Q((= 0

Thus the charge distribution tensor [compare with
Eq. (A9)] is

(o„o o) t'oo o) (ooo)
q„„0 =q«&+& 0A 0~+-', 10 0 0

00 BJ'

I

where

A —= —$(2Q((+ Q((), B=--
o (Q(( —Q(().

(AI6)

(A16)

If the quadrupole is axially symmetric, then A = 0,
8 = Q. Using the transformation (A10), the tensor
becomes

1 1
qh j qgg~f j+ ~ A~2k ~2j + 2 8~1$ ~1j y

and similarly for the other quadrupole. %e thus
obtain

for the other quadrupole. Using the fact that
V (I/ro) =0 and V2(t(0=0, Eq. (A6) for axially sym-
metric quadrupoles becomes

E~QQ ZX X X1f 1j 1k 1l BX 8X 8X 8Xi jkl Xf Xj Xk Xl VO

(A13)
where the quadrupole which produces the potential
Q is Q, and the other quadrupole which sits in the
field Q is Q. In our usual problem Q= Q . Equation
(A13) can be shown to be equivalent to the formula
for the quadrupolar energy given, for example, in
Ref. 9, within a normalizing factor.

Now let us consider a quadrupole which is not
axially symmetric. Here

Q„=f p(3)' —r')dv

with a normalizing factor. Then we have

Q =Q((= 2(q(( q(() ~ Qoo= Q((= 2Q(( ~

Thus'the charge distribution tensor is

(q 0 0 ) (0 0 0}
0 q„„0

~

=q((I+- 0 0 0
(0 0 q(J, 0 0 Q(

(AV) I 4
E =~ AA Z A.2( A 2( A.a(, A 2(

f jkl x& 8xj8xk8xl y'0

8 1+~ AI3 m X2] X2j A. 1k X1l-
f jkl 8x~ BxjBxk Bx,

84
+'ur EA ~ "((~u &2( ~2(

f jkl 8x]Bxj8xk8xl f 0)
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s'
+$ BB m X„X,t Xg~Xq,

f gk'l 8+]~xg~xyexs 'P 0]

(A18)

For axially symmetric guadrupoles Eq. (A18) re-

duces to Eq. (A13). We have seen that any non-
axial-symmetric quadrupole can be written as a
combination of two axially symmetric quadrupoles
A and 8, with their symmetry axes along two dif-
ferent principal axes of the original quadrupole.
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Properties of Crystalline Argon, Krypton, and Xenon Based upon the Born and Huang
Method of Homogeneous Deformations. I. Zero-Pressure Thermal and Elastic Data *
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The thermodynamic properties of solid argon, krypton, and xenon have been calculated for
a two-body central force potential. Anharmonic contributions due to thermal expansion have
been taken into account via a quasiharmonic calculation based upon the Born and Huang method
of homogeneous deformations. The nonarbitrari1y adjustable parameters of the Morse poten-
tial have been obtained from the solid-state bulk properties in a recursive refinement pro-
cedure. For those thermal properties sensitivity dependent upon the dilatation of the lattice
the calculations become valid only for temperatures less then 3 Tz.

I. INTRODUCTION

Born and Huang' (BH), via a perturbation expan-
sion of the partition function, have developed the

thermodynamics of a stressed harmonic lattice.
The lattice potential energy is expressed as a dou-

ble expansion in terms of the normal modes of the

harmonic Hamiltonian and the parameters of a
homogeneous deformation. For strains taken to be
homogeneous deformations, the Helmholz free en-

ergy is obtained as a series expansion (to second

order) in the Lagrangian strain parameters, g, &.

The free energy is given by Eq. 43. 1 of BH. We
have made explicit the formulas of BH applicable
to our model of the noble-gas solids. ~

Our quasiharmonic calculation hence includes the
effect of anharmonicity due only to thermal expan-
sion. Truly anharmonic effects due to three- and
four-phonon processes have not been considered.

Several workers have developed perturbation
theory descriptions of anharmonic phonon interac-
tic;as. More recent advances include the "self-


