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Second-Harmonic Generation and Spin Decoupling in Resonant Two-Level Spin Systems
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A. paramagnetic spin system is intrinsically nonlinear, and especially so at resonance; there-
fore, in the presence of a strong rf magnetic field it exhibits magnetic polarization at harmon-
ic frequencies. We report here a complete set of experimental data on second-harmonic gen-
eration by a resonant theo-level spin system. A theory is also developed, using the density-
matrix formalism, which fully accounts- for the experimental data. It is suggested that these
harmonic signals are convenient to use for the measurement of the transverse relaxation time
in saturated and unsaturated spin systems.

I. INTRODUCTION

Second-harmonic absorption has been widely in-
vestigated from the time the laser became available
as a laboratory tool. A very intense beam of laser
light creates a strong electromagnetic field. In
intense electromagnetic (EM) fields, all dielectrics
without a center-of-inversion symmetry are non-
linear; that is, the polarization is not linearly de-
pendent on the electric field, but contains terms
quadratic, cubic, etc. , in the field amplitude.
These higher-order terms give rise to harmonic
waves in dielectrics interacting with a strong EM
wave. Quantum mechanically, this process may
be described as double (or multiple} quantum ab-
sorption through virtual states and relaxation to
the fundamental state with the emission of har-
monic frequencies.

The magnetic polarization of paramagnetic ma-
terials is similarly nonlinear in strong rf magnetic
fields; harmonic generation is to be expected as
an effect of double (or multiple) quantum transition.
Furthermore, magnetic polarization increases
very strongly at resonance. Resonance thus allows
a relatively weak rf magnetic field to induce amag-
netic polarization that is nonlinear at resonance,
and harmonic effects are to be expected. In order
to have a detectable second-harmonic signal, the
driving rf magnetic field should be strong enough
to bring the spin system to saturation at resonance.
As we shall see, saturation plays an important role
in the multiple quantum processes and harmonic
generation. To be specific, one can think of a
two-level spin system (S = —,') in an external mag-
netic field Ho with a relatively strong resonant rf
field H„(+) present at the same time. The effect
of the rf field saturation is to produce broadening
of the absorption line in first order' and at the
same time to induce double (or multiple) quantum
absorption and, as a consequence, to generate har-
monic signals; that is, the spin system operates

as a frequency converter or heterodyne mixer,
allowing rf power at the fundamental frequency to
produce a polarization with frequencies n , which
produces emission at higher harmonic frequencies,
and, when n =0, to change the static polarization
of the spin system.

A qualitatively different case would be one in
which the splitting of the two-spin levels is twice
the energy of the input photons. In this case, the
spin system is not apparently saturated; still, as
we shall see, it gives rise to second-harmonic
emission.

Harmonic generation by spin systems has been
discussed by Bloembergen and Shen. Our theo-
retical development is implicit in their work, or,
for that matter, in that of Karplus and Schwinger, '
and that of Karplus. Karplus and Schwinger' bring
the calculation of nonlinear effects to the point
where they must consider polarization of the sys-
tem at harmonic frequencies, but they choose to
drop these terms as being irrelevant to the effect
of saturation which they wished to discuss. We
carry out a calculation here that makes explicit
the dependence of the harmonic emission on satu-
ration effects. Since in experiments at microwave
frequencies we can observe the effect of the vector
polarization at the harmonic frequencies only by
its projection on the observing (receiving) cavity
mode, we have also made explicit and carefully
studied the effect to be expected when that projec-
tion is varied. A further contribution that we make
is to consider the effect of intense rf fields on the
transverse relaxation parameter T~.

Double quantum absorption by spin systems, on
the other hand, has been studied especially at low
fields' and calculated theoretically by many au-
thors. ' " Often only the qualitative behavior is
considered because of the difficulty of making exact
calculations of the matrix elements involved.

In summary, we present here a complete set of
experimental data on second- harmonic generation
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the projections M„(2&@)cos8 and M, (2&@}sin8 of the
components of the polarization M„(2(u) and M, (2(u)
are detected.

Figure 3 shows the second-harmonic signal in-
tensity vs external magnetic field Hp for a speci-
men of dilute DPPH (sample No. 1)and Fig. 4 pre-
sents the harmonic spectrum of a sample of ruby
(A1303+0 1% of Cr~O~} with the crystal c axis per-
pendicular to Hp. Two kinds of lines are present
in both harmonic spectra. The ones with a more
or less sharp "dip" at the center fall at those val-
ues of magnetic field at which two spin states of
energy E& and E3, respectively, are in resonance
with the input rf power:

FIG. 1. Block diagram of the spectrometer used for
second-harmonic generation in paramagnetic systems.
Most of the experiments reported here were carried
out at 2700 5400 MHz.

by a resonant two-level spin system. A theory is
also developed, using the density-matrix formal-
ism, which fully supports these experimental data.

II. EXPERIMENTAL APPARATUS AND RESULTS

The experimental apparatus used in the study of
the second-harmonic generation is shown in Fig. 1.
It is essentially the same as the one described
previously, except that a single double-mode
cavity resonant at & and 2 is used, instead of two
cavities coupled by a hole. The sample is located
in a point of the cavity in which both the rf fields
H„(&}and H„,(2&} are maxima. Furthermore,
the geometry of the cavity can be varied so that
H„(&) can be parallel or perpendicular to H„(2'},
and the external magnetic field Hp can be rotated
in a plane in which both H„(&', and H~(2&v} lie.

The pulse oscillator is a triode oscillator giving
a maximum peak power of the order of 1 kVf, with
a pulse length variable from 0. 5 to 5 psec, and
with a repetition rate variable from 200 to 1000
pulses per sec. The low-pass filter reduces by
more than 60 dB any harmonic content of the os-
cillator. Harmonic signals generated by the para-
magnetic samples are filtered by a bandpass filter
with 60-dB rejection at the fundamental. The sig-
nal is heterodyned to 30 MHz, amplified by a nar-
row-band amplifier (bandwidth approximately 1

MHz), detected, and displayed on the screen of a
cathode-ray tube whose trace is synchronized with
the pulse oscillator. The signal is seen in this way
as a peak, the height of which is proportional to
the harmonic signal amplitude.

For most of our experiments, the magnetic field
geometry inside the bimodal cavity is the one shown
in Fig. 2; H„(&u) and H, (&u) are therefore given by
H~((o) cos8 and H~(~) sin8, respectively, and only

Ej —Ep =gp. gHp =Sp = Nco .

We shall call them +- &p lines. The bell-shaped
lines correspond to the magnetic field such that

Eg —Ep =gp3 Hp =Sp = 25;
we sha. ll call them &- —,

'
p lines.

The maxima of the - +p line are 20 dB or more
below the maximum of the &-

& p line. The ratio
of the relative intensities depends, ho~ever, on
the input rf power or, rather, on the saturation
factor.

The peculiar shape of the &-p line, with the
sharp dip at resonance, was observed at 4. 2 'K
in all samples investigated, at least in the range
of high input power levels. In particular, we
observed that in ruby with 0. 1% of Cr3' concentra-
tion and in diluted DPPH(sample No. 1) the dip, more
or less pronounced, is present over the full range
of power available, while in' a concentrated sample
of DPPH (sampleNo. 2) thedipchangesmoredras-
tically with the input power, and eventually, it
disappears at low power levels as shown in Fig.
5. All of the data shown in Fig. 5 are taken at

FIG. 2. Magnetic field
geometry inside the bimodal
cavity of Fig. 1, at the point
where the sample is located.
By rotating the external field
Ho, the angle 9 can be varied
from 0' to 360'.
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FIG. 3. Second-harmonic output power as a function
of the external magnetic field in a sample of diluted
DPPH, sample No. 1. Input peak power approximately
50 %. Measurements are taken point by point.

a fixed value of 8= 36 . We wish to point out,
however, that a variation of the angle 8 has the
same effect as a variation of the input power.
Thus, with an input power of 50 W and 8=36', the
dip is not present in the ~- &0 line [Fig. 5(b) j, but
it appears if we operate at a smaller angle, that
is, 8 = 15'. On the other hand, with an input power
of 100 W, the dip of Fig. 5(c) disappears for angles
greater than 36', that is, 8= VO'. This suggests
that only the x component of the rf field, H, & cos&t,
affects the line shape. We shall see from the the-
oretical expressions for the harmonic polarization
that this angular dependence arises from the satu-
ration factor $ = yH„(T~/T~)

For DPPH, sample No. 1, andfor ruby with 0. 1%
of Cr ' concentration, the linewidth as measured
between the points of maximum signal is roughly
independent of the input power over the full range
of power investigated, while this is not true for
the concentrated sample No. 2 of DPPH (see Fig.
5), though it should be so at very high input power
levels.

For the power dependence, we found that the
maximum of the &-

& +0 lines varies with the input
power to the exponent 2+0. 1. This result is slight-
ly in disagreement, but more accurate, than the

result reported by Boscaino et a/. The quadratic
dependence supports the hypothesis that two-photon
absorption is responsible for the harmonic genera-
tion. For the &- 0 lines, the power dependence
measurements are less accurate because of the
weaker signals, but we find that the harmonic sig-
nal varies approximately as P' ' ' .

The temperature dependence of the harmonic
signal has not b, en accurately measured, but it
can be argued from Fig. 1 of Boscaino et al. that
the harmonic signal of both types of lines decreases
with increasing temperature.

The harmonic signal vs 8 (the angle defined in
Fig. 2) at a given value of the magnetic field for
the &- —,

'
&0 line in ruby with 0. 1% Cr is shown

in Fig. 6. It has a maximum for 8-36', and it
goes to zero at both 8=0' and 8=90 . The experi-
mental points are fitted quite well by the function
(sin8 cos~8)2, for both types of lines.

We should remark that the harmonic signal that
we detect is a pulse that has roughly the same shape
as that of the input pulse at the fundamental fre-
quency, and there is no measurable delay time be-
tween the two pulses. Furthermore, the harmonic
pulse is phase coherent. In order to check the
phase coherence, we derived a second-harmonic
signal from the pulse oscillator. This was sent
through a variable phase shifter and variable at-
tenuator, and finally mixed with the harmonic sig-
nal emitted by the sample. The two signals inter-
fered destructively or constructively, depending
on their relative phase difference. In this way,
we could measure the phase variation of the har-
monic signal while varying the external magnetic
field IJO through the resonance conditions. For
the - +0 line of DPPH, sample No. 1, the phase
variation is shown in Fig 7(a), w. hile Fig. 7(b)
presents the phase variation for the +-

& &0 line.
As a consequence of the phase coherence the har-
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FIG. 4. Second-harmonic output power as a function
of the external magnetic field in a ruby sample with
0. 1% of Cr concentration, crystal c axis perpendicular
to Bo. Input peak power approximately 50 W. Measure-
ments are taken point by point.

FIG. 5. Second-harmonic line near co=(do in a con-
centrated sample of DPPH, sample No. 2, at different
input power levels. Frequency 2.7- 5. 4 0Hz, T =4, 2'K,
8=36 . Input peak powers: {a) 5 W, (b} 50 W, (c)

100 W, (d) -200 W, (e) - 400 W.
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FIG. 6. Second-harmonic output power as a function
of 8, the angle defined in Fig. 2, in a sample of ruby
with 0. 1% of Cr3' concentration. Dots are experimental
points, continuous line is a plot of the function sin28

xcos 8; co
1

monic signal also possesses energy or frequency
coherence. No matter what the energy splitting
of the spin states the "harmonic" signal contains
only frequencies that are twice the fundamental

carrier frequency plus the modulation sideband
frequencies. Vfe measured paramagnetic signals
at frequencies 2v+ &v, by changing the heterodyne
oscillator frequency an amount hv. The signal
was observed to decrease very rapidly on increasing
4v more than the bandwidth of the 30-MHz ampli-
fier. Quantitative data are reported in Fig. 8.

III. THEORY

We consider a system of paramagmetic ions with.

effective spin S = —, in a static magnetic field Hp,
the direction of which fixes the z axis, and in an

rf magnetic field Hz cos&t linearly polarized in a
direction making an angle 8 with the x axis. (See
Fig. 2. ) H~ is assumed to be small but not neg-
ligible in comparison with Hp, and therefore all
terms involving the saturation factor are properly
taken into account in our calculations. 'Vfe eall Tj
the longitudinal, and T~ the transverse, relaxation
time. As expected from Redfield's theory, ' Ta

depends on the saturation of the spin system; con-
sequently, we call T» and T&, the transverse re-
laxation times, respectively, for a nonsaturated
and a saturated spin system.

We make use of the density-matrix formalism, '
and we define the density-matrix operator p in the
usual way, averaged over an ensemble of ideritical
systems. The average of any physical operator A

is given by (A) = TrpA, where Tr is the trace sum.
The equation of motion of the density matrix is

given by

Bp Sp
zg —=p p+ g@8t 8g

FIG. 7. Phase of the harmonic signal as a function
of the external magnetic field in a sample of diluted
DPPH t, sample No. 1). Input peak power approximately
50 W.

where $C is the Hamiltonian of the generic spin

X= Kp —p i H~g cos t = Kp +X (2)

Xp = —p, ,Hp is the time-independent Hamiltonian,
and p, is the magnetic moment operator.

By substituting (2) in (1) and separating the con-
tribution that is due to Xp from that which is due
to —p, ~ H„cos&t, in the representation in which

Xp is diagonal, we obtain

I

5 ~o lljij

FIG. 8. Frequency spectrum of the "harmonic" signaI
for sample No. 1 of DPPH. hv= 0 corresponds to the
exact harmonic frequency 2v=5. 4 6Hz.

0

(t)~ )
p .(t) p. (t)—

(3)

where T = T, for m =n, T = T2 for m 4n, and p „(t}
is the matrix element of the operator defined by



SECOND-HARMONIC GENE RATION AND ..SPIN DECOUPLING

po(t) &- /0 /Tr&-R/n

We look for the steady-state solution of Eq. (3)
which we write in a Fourier expansion in &:

p„„(t)= p„„(dc)+ p'„„({d)e""'+p' (2{d)e' '"'+ ~ ~ ~,
(4}

where p „(dc) is different from the thermal equi-
librium value

0 exp[(-Xo)„guT]5 „
Tr exp(- Xo/kT)

since it includes the static contributions attributable
to the time-dependent Hamiltonian.

The solution of the equation of motion (3) is ob-
tained in two steps. First, following the procedure
of Karplus and Schwinger, ' we calculate the coef-
ficients p „(&o) in the approximation in which all
contributions from terms varying at harmonic fre-
quencies in (4) are neglected. We then use p'„„({d)
in order to calculate the coefficients p„',(2~). By
substituting Eq. (4), without the harmonic terms,
in Eq. (3) we get for p'„„(» the following expres-
sion:

{dp„„H„(p'„, p'„„) [({d—-{d„„)—i/T, ]

( 0- o)-i/Ta ( + 0)-t/Tp
{e—v, i'+{/r,'+s' {td+s,l'+{/ri+s') '

(8)

The expectation value of M, (2{d}is

M, (2+) = 2 Re Q„p,p' (2&v) e ~'"'

=4Re[p „,p' (2{d)e ""'],
since for a two-level spin system p. ,= —p.„„,. By
substituting Eq. (8) in the last expression and re-
taining only the resonant terms, near &=&0, we
have

2 2 0 0

[M g2&)'{ {

mmes�/
mneme

Hn(Pmm Pnn)

25 {d0

(to- &o, ) cos2&ut —(1/T„) sin2~t
(u& —{d,) '+ 1/T'„+S'

For a diagonal perturbation the matrix elements
in the equation of motion (6) are

mk ~ mmgHa' cosset Sf'

For a two-level spin system, using Eq. (5), we
find the following solutions:

0 0
+

(2 )
i+ I"mme eV'mnnHn(Pmm Pnn}

2{d,h' (- 2i {d+i{d,+ 1/T, '}

where the saturation factor S stands for 8 = yH„
&&(Ti/T2)'/ . We have dropped from Eq. (5) terms
containing H( e){,sssince they give a negligible con-
tribution for &T&» j.. This condition will always
be satisfied in our experiments.

From Eq. (3) we can derive the equation of motion
for terms varying at 2&:

(- 2i{d+i{ss „+1/T}p'„„(2~)

= —(i/2ff) Qn(K'„/{P'/m({d) —P' n(&) 36/m) .
We solve Eq. (6) by considering separately the

effects of the off-diagonal and diagonal perturba-
tions on the 2+ terms. For the off-diagonal per-
turbation the matrix elements R'

n in Eq. (6) are
given by

~a- ~maxHxcos+t .

By substituting (7) in (6) for a two-level spin sys-
tem, we obtain

+ (2» + (2» ~ [PmnnPnm(+) Pmn(» Pnme]Hn
21(- 2i{d+ 1/T, )

and using (5}with {do- (u „, we have

2 2 0 0

4I' {d,(- 2i {d+1/T, )

(+ +0) i/T2
[(~ ~ )3 1/T2 Sa] =IPnm(2")1* (1o}

Proceeding in a similar way, used to compute
Me(2{s&), and neglecting trivial nonresonant terms,
we obtain for M„(2{d)

2 0 0
M (2»=2Re '"" "' """"

21 {s/0 (- 2$(d+i(do+ 1/Tp)

f({"- {do) —i/Tn] e-2&mt
[({d—{do) +1/Ta+S ]

There will be an identical expression for Me(2»,
but with a time phase shifted by i. In the following
discussion we shall ignore this component of M(2(u)
because it is not observed in our experiments.
This is proper because the coordinate axes perpen-
dicular to the static field are arbitrarily defined in
any case. The observation of any component of
M(2» in the x-y plane thus determines all com-
ponents in that plane.

M„(2{d) given by (11) has two resonances, one at
{{/=&s{0 and one at += —,'{d~. M„(2{ss) near &@= +0 may
be written

2 0 0
Pmmei&mneme HnHe(Pmm —Pnn}

(~- {sso)cos2{dt —(1/T2, ) sin2{{st
[(u& —~0)~+ 1/Tz, +S']

(12)
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while near = 2&0,

2B 0 0

[M 2R)q )) mme IP mnxl HxHe(pmm Pnn)
S&-&0/2 (d0

(2(u —&o) cos2&a)t —(I/To, }sin2(ot
[(2o' —~o) + I/Tea]

(13)
We have called T2, the transverse relaxation time
in Eq. (13) and T2, the transverse relaxation time
in Eqs. (9)' and (12). The two values To, and To,
are expected to be different. '" T„is the relaxa-
tion time measured with saturation of the spin sys-
tem. In Eq. (13), however, To, is the relaxation
time measured at approximate thermal equilib-
rium, since the spin system for this case is not
resonant with the input power.

In summary, we have solved the equation of
motion of the density matrix for a two-level spin
system for terms varying at the second-harmonic
frequency. The solution shows that a perturbing
rf field H„((d) gives rise to a magnetization M,(2(o)
that is resonant at &= &0, while the simultaneous
presence of both H„((d) and H, ((d) gives rise, in
addition to M, (2&), to a magnetization M„(2u&) that
is resonant at ~ = &0 and = 2 0.

These components of the magnetization, M, (2(d)

and M, (2(d), are magnetic dipoles that irradiate
power at frequency 2(o proportional to lM„(2o)) ~

'
and IM,(2(d) ) . The magnetization, and therefore
the spin system, through this mechanism converts
power from the fundamental to harmonic frequencies,
increasing the entropy of the system.

The conversion of power from the fundamental
to the second-harmonic frequency by a resonant
two-level spin system can be described in terms
of Raman-like processes induced by photons. In

particular, in the case of lines resonating at ~= 0,
one spin in the excited state can absorb a photon

and decay to the fundamental state with the emission
of one photon of harmonic frequency. A different
process can be the one in which the spin in the
ground state absorbs two photons going to a virtual
level from which it relaxes to the ground state with

the emission of one harmonic photon. Other pro-
cesses are also possible. A more detailed discus-
sion of these processes is given by Persico and

Vetri. We want to point out here that processes
in which the spin does not change state are probably
the ones responsible for the observed harmonic
emission; this is because they are expected to have

a quadratic power dependence and phase coherence
of the harmonic signal.

IV. DISCUSSION

In order to make a comparison between the theory
and experimental data, we refer to the magnetic
field geometry of Fig. 2, which is the one used in

most of our experiments. In this case, H, ((o)

cos (2(df+ (tl)

[(2o) —(Oo)'+ I/ T,',]
(14)

where Q is given by

tang =
T

2(d —R 0
(15)

Equation (14) accounts quite well for the bell-
shaped lines at co - & cg0 of Figs. 3 and 4. It shows

the quadratic pow'er dependence as observed experi-
mentally and the correct angular dependence (cos'8
xsin8)' (see Fig. 6).

- Even the temperature dependence, essentially
given by the factor (po „—po„), is in qualitative
agreement with the approximate temperature de-
pendence, which canbe inferred from Fig. 1 of
Ref. 3.

The good agreement of the theory with the experi-
mental results is a persuasive argument for the
correctness of Eq. (14), in spite of the approxima-
tions used, and it suggests the use of Eq. (15) to
measure the spin-spin relaxation time T2, for the

unsaturated condition by measurement of the rela-
tive phase of the second-harmonic signal. We have

made measurements of the phase of the harmonic

signal near the v =-,' +0 resonance, in the manner

described in Sec. II, and using Eq. (15), we find

for the sample No. 1 of DPPH at 4.2 'K that Tz, = 5. 5

x10 osec; for a sample of ruby with 0. 1% of Cr"
concentration at the same temperature, we find

T„=3.5xl0 'sec.
The harmonic signal near ~ = A@0 arises both from

M„(2(o) of Eq. (12) and M, (2(o) of Eq. (9); there-
fore, it is proportional to the amplitude of

(om) H ( sln8cos 8 (Pmm —P„„)
Q t(I 2

o . o o cos (2(dt+ (t)))( — o)'+ 1/ T'. (16)
(o —(Oo +1 Tp +8

where Q, is given by

1/T„
tan(t) ( =

CO —CO 0

Equation (16) accounts quite well for the experi-
mentalline shapes of the &- &0lines of Figs. 3 and 4.

=H, & (o))cos 8 and H, ((d)=H, (((d) sin 8. Because
H„(2 (d) is parallel to H„((d), the power emitted
into the 2~ mode of the cavity is proportional to

[M„(2o))cos8+M, (K&) sin8]o

where M, (2o)) and M, (K&) are given by Eqs. (12),
(13), and (9). Near (d = —,(do only M„(2(d) is impor-
tant, and the harmonic signal is proportional to the
amplitude of

H„, coso8sin8(po„-p„o„) o

f1)» N0/2
4)0
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The harmonic signal near + =up described by
Eq. (16) for S» 1/T~ (high input power) will show
a line shape with a pronounced "dip" at the center
and two maxima at (ur —&oo) ='S'- 1/T~; while for
S «1/Tz, (low input power) Eq. (16) describes a
bell-shaped line with a maximum at + =&p. This
behavior was observed, as reported in Sec, III, in
our samples of DPPH and ruby. In particular, we
believe that the condition ST&, & 1 is never reached
for the diluted sample No. 1 of DPPH, even at the
lowest input power, because of the long spin-lattice
relaxation time, "and therefore the dip is expected
to be present in the full range of power investigated.
For the concentrated sample No. 2 of DPPHthe con-
dition ST&, = 1 is reached when the input peak power
is of the order of 50%, as can be inferred from
Fig. 5. Finally, for ruby with 0. 1/0 of Cr ' con-
centration the dip is observed experimentally at all
power levels. This can be due to the fact that the
condition ST2, &1 is never reached, as for sample
No. 1 of DPPH. The fact that Eq. (16), when applied
to ruby, should be modified in order to properly
take into account the inhomogeneous broadening of
the line' is probably not relevant, since this modi-
fication would affect both the ~ = + p line and the
& = 2 &() line; but the 2 +p line appears to be normal.

For S»1/T2, the second-harmonic signal ampli-
tude at (ur —u&0) = S —1/Tz, is proportional to

P'~,"„&~ (H„cos28sin8) /S

Since

S =y H„cos~&T, /Tp,

we would expect P'~"& of Eq. (18) to vary linearly
with the input rf power, and as (cos28 sin~8) with the
angle 8; this is actually in disagreement with the
experimental results that show that

P',"„&~ (H„)' (cos 8 sin8)

We should remark, however, that the previous dis-
cussion is valid only if T, and T2, are independent
of the input rf power. In particular, the spin-
transition probability from a state of S=+ & to a
state of S= + 2 will increase proportional to the in-
put power, or proportional to H„(&u). The mag-
netic field as seen at its neighbors will thus tend
to average to zero as the input power increases.
T2, is thus expected to increase with the input pow-
er until it finally reaches a limiting value deter-
mined by the spin-lattice interaction, T, .' ' We
have therefore used Eq. (1V) to determine the ex-
perimental values of T2, at different input power
levels in a manner similar to the method used to
determine T„. Detailed data of T~ vs input power
will be published elsewhere. " We wish to point out
here that our experimental data for the sample No. 1
of diluted DPPH at 4. 2 'K show that T2, is linearly
dependent on H„, that is, on the input power. '7 For

the experimental conditions of Fig. 3 the value of
T~ that we obtained for sample No. 1 of DPPH from
phase measurements was T2, =9 x10 sec, approxi-
mately 16 times T». If we write T2, = T»+aH„',
then if we neglect the eventual power dependence of
T„at high input power levels, T2, «nH„', then the
saturation term is expected to be constant times a
term varying slowly with power:

S= const (1+T„/aH„) '~ (19)

1

1+yH,', cos'8 T, T„(1+AH,'f cos'8/T„)

-2

For a, saturated spin system 8& —,'~, this function
differs trivially from the observed (sin8cos'8),
while for 8- —,m the vanishing emission signal is
merely doubled.

The linewidth of the ~-cop line, defined as the
frequency difference between points of maximum
signal. , is bur-2S, and, by virtue of (19), it is ex-
pected to be approximately independent of the input
power at high power levels.

The ratio of the maximum of the ~ -
& +p line to

the maximum of the ~-up line is given by

(2~)I' = n/2
~(2&) 2«(td top) = 82- 1/ T2

2B

=16S2 T2 (20)

Finally, the ratio of the maximum signal of the
co-ar() line to the minimum signal at v =up of the
same line is

~(2') 2 2 2 ] 2
«(co-cuP) = 9 - &/T ST

C p(2~) 4 T2,S
f»L"- Q)p

(21)

We shall now make a quantitative comparison
with the experimental data that we have for sample
No. 1 of diluted DPPH at 4. 2'K. As expected, the
measured distance between the two maxima of the
+-(do line is approximately constant and, in mag-
netic field units, is bII =40 Q. This corresponds
to a saturation factor S=3.6&&108 sec '. By sub-
stituting this value of S in Eq. (20) and the value
T„=5. 5x10 sec derived fram phase measure-
ments, we get

—= 16 T,.S =60- LS dB

in good agreement with the experimental value of

Putting (19) into (18), we obtain for P',"„'an angular
and input power dependence, in satisfactory agree-
ment with experiment. The exponent of the power
dependence is predicted to be 2 —2T„/nH2- l. 8,
while the observed'- exponent is 1.V+ 0. 2. The an-
gular dependence is predicted to be

[sin8cos'8j
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A/B that can be deduced from Fig. 3. By substi-
tuting S and Te, = Qx10 ' sec in Eq. (21) we have,
however,

8/C = g T2, S = 250 24 dB

which is greater than the value that can be read
from Fig. 3; however, because the harmonic signal
at e = eo has the same intensity as the noise, the
true ratio 8/C in Fig. 3 can be much greater than
13 dB. On the other hand, by substituting in the
equation S=yH, (T, /T2)' the proper values of H„,
T„and T2, we obtain for S, values very close to
those obtained from linewidth measurements of the
co -~0 line.

Finally, we remark that all of the previous data

are taken with the magnetic field geometry of Fig.
2. By using a different magnetic field geometry,
we can split the second-harmonic emission signal
into a contribution that is due to M„(2&v) and one that
is due to M, (2~). In particular, if we operate with
H„(&u) perpendicular to Ho and R„(2&v) parallel to
Ho, only the component M, (2~) is different from
zero, and, therefore, one single line, near ~ =~0,
is expected. Actually, by using a cavity with this
magnetic field geometry, the detected harmonic
spectrum shows only the ~-coo line.
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Baman scattering from an E~ mode polariton of LiIO3 is reported. A polariton with energy
between 687 and 766 cm is observed in near-forward scattering with y(gx)y polarization. The
polariton is observed only near 764 cm in the y(xz)y spectra. The results are analyzed. It
is also found that the polariton dispersion curve does not change with the orientation of the pho-
non wave vector.

INTRODUCTION

It was shown by Huang' that transverse optical
phonons of ionic crystals and photons with nearly
the same wave vector and energy can be strongly
coupled. The resulting mixed phonon-photon states
are now referred to as "polaritons. " Raman scat-
tering from the polaritons of GaP was reported for
the first time by Henry and Hopfield. ~ Shortly
thereafter polariton scattering from anisotropic ZnO

was reported by Porto et al. '
The Raman and polariton spectra of LiIO, have

been examined recently by Claus et a/. These
authors stated that no E& polariton was "unambig-
uously" observed [although an A polariton was ob-
served in x(yy)x polarizationj. We wish'to report
the observation of an E, polariton in forward scat-
tering in'LiIO, and to clarify possible difficulties
in the analysis of the experiments.

LiIQ, belongs to the P6, (CSS) space group. ' Twen-


