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We investigate the role of electron-lattice interactions in a very narrow half-filled band
that would otherwise be described as a Mott insulator. A simple Hamiltonian is presented
that incorporates the electron-electron and electron-lattice interactions in the zero-overlap
limit. A canonical transformation decouples the electron and lattice systems and we assume
that the effective electron-electron interaction is short ranged. It is found that, within an
approximation that treats intra-atomic correlations exactly, the Mott insulator can undergo
a phase transition to a quite different insulating state as the temperature is lowered. ,This
insulating state is characterized by a charge-density wave in which alternate atomic sites
are doubly occupied as opposed to the usual one-electron-per-atom. configuration in the Mott
state. The phase transition will be either first or second order, depending on the electron-
lattice coupling strength. Accompanying the charge-ordered state is a distortion of the crys-
tal lattice that lowers its translational symmetry.

I. INTRODUCTION

The transition-metal and rare-earth compounds
contain among them a large group of materials that
have been classified as narrow-band insulators.
These are materials in which the cation sublattice
has partially filled d or f shells and would exhibit
metallic behavior in a description based on ordinary
band theory. The low-temperature insulating be-
havior of these materials has generally been at-
tributed to electron-correlation effects, with or
without magnetism, and the interaction of the elec-
trons with the crystal lattice. Rather than sys-
tematically reviewing each model or theory that
attempts to describe this insulating behavior, we
refer the reader to the many reviews' ' of this sub-
ject that have appeared by now. Instead, we brief-
ly mention those models that have some bearing on

the contents of this paper.
Mott6 argued that electron correlations can give

rise to an insulating state in a partially filled band

containing an integral number of electrons per cat-
ion site. Hubbard~ presented a single-band or cell
model of a crystal that, for a half-filled band, be-
haved as a metal in the limit of zero correlation
energy and behaved as an insulator at zero band-
width, with each site or cel1. singly occupied by an

electron. In this paper this type of insulator shall
be referred to as a Mott insulator.

In order to explain the insulating behavior of cer-
tain transition-metal oxides, Goodenough' proposed
that occupied states of a narrow cation-sublattice
band may be split from unoccupied states by the
formation of cation clusters, cluster formation in-
troducing the required changes in the translational
symmetry of the crystal.

Adler and Brooks started from an itinerant band
model of electrons and showed that a lattice distor-
tion that doubled the unit cell could give rise to an
insulating state provided the gain in electronic en-
ergy exceeded the loss of elastic energy upon such
a distortion —and found this to be most favorable
in very narrow bands. In this model electron cor-
relations, which are expected to be most important
in narrower bands, are ignored.

In this paper we investigate the role of electron-
lattice interactions in a very narrow half-filled band
that would otherwise be described as a Mott insula-
tor. We present a simple Hamiltonian that describes
the electron Coulomb interaction in the zero-over-
lap limit plus the coupling of these electrons to a
lattice system described in the harmonic approxi-
mation. The system is treated strictly as a cell
model. The electron and lattice systems are for-
mally decoupled via a canonical transformation and

after making the assumption that the effective elec-
tron-electron interaction is short ranged we analyze
the thermodynamics of the decoupled electronic
system. It is found that this system can undergo
a phase transition from a Mott insulating state to
a charge-ordered insulating state as the tempera-
ture is lowered, depending on certain parameters
relating to the coupling strength. The charge-or-
dered state is characterized by a ground state in
which alternate Wannier sites are doubly occupied.
%'e find that, within an approximation that treats
intrasite correlations exactly, the phase tran-
sition can be either first or second order, depending
on the coupling strength. We also show that the
charge-ordered state has an associated lattice dis-
tortion that doubles the translational periodicity of
the crystal. The effect of finite overlap is briefly
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dis cussed.

II. HAMILTONIAN AND CANONICAL TRANSFORMATION

We shall mork in the zero-overlap limit for a
single band. In this case the Hamiltonian does not
contain any hopping integrals and the only part of
the Coulomb interat;tion that is retained is

II, = Z—U„(n„+n„)(n„+n„),
f,i

(2. l)

where n„ is the occupation number for an electron
on Wannier site i and spin &. U&& is the long-range
Coulomb integral given by

with &u(r —R,) a Wannier function.
It has been rigorously shown that the minimum-

energy eigenstate of H, has the one-electron-per-
site charge configuration when the number of elec-
trons is equal to the number of sites. We shall re-
fer to this state as the Mott insulating state. '

We shall now allom the atoms to undergo small
vibrations about their equilibrium positions such
that the zero-overlap limit still obtains. The vi-
brational energy is described by the Hamiltonian
IIq =g, &,a, a„where a, is a phonon destruction
operator of wave vector q and ~, is the energy of
the mode of wave vector q. The electron-lattice
interaction is derived (see Appendix A) by assuming
the usual first-order displacement of the atoms from
their equilibrium positions and this leads to the in-
ter action term

Hz = Z V~(a~e'~'"~ —atf e '~'"~) (n~, +n~, ), (2.3)
4, f

(2. 8)

The electron-lattice interaction has been replaced
by a long-range electron-electron interaction with
matrix elements V&&. In this representation the
eigenstates of H are seen to be products of free-
phonon wave functions mith single Slater, determi-
nants of Wannier functions. The partition function

is also a product of a phonon contribution and an
electron contribution but, although the eigenstates
are known, the evaluation of the partition function
for the electronic part is nontrivial for general W&&
—=—,

'
U,~

—V,&. Furthermore, the charge configura-
tion of the ground state mith interactions described
by W&& will not necessarily be that of the Mott state
and will depend on the behavior of V@.

The general 8'&& mill exhibit a long-range behavior
but we can expect that the terms with i =j and i,j
nearest neighbors mill be the largest. Furthermore,
in a real system, the long-range tail of the Coulomb
interaction is screened by the presence of core and
band electrons in the other occupied bands. In or-
der to keep the mathematical ana1ysis simple and
to the extent that the further neighbor interactions
do not qualitatively change our results and can be
ignored, we make the simplifying ansatz that 8',~
=-', l5,&+ Wfs, where fs =-,' for i,j nearest neighbors
and f,&

= 0 otherwise. Here I= Uo —2 Vo and W= Uq
—2'. Hubbardv has estimated that the (unscreened)
values of U, and U& are 20 and 6 eV, respectively,
for Gd electrons in transition metals. In the local-
ized regime it is reasonable to expect that I and
W are positive (contrary to the usual assumptions
made in superconductivity theory)

The electron part of the Hamiltonian can now be
written as

where V~ is the electron-lattice matrix element.
The total Hamiltonian is then H=H, +H~+H».

The electrons and lattice can be decoupled by the
familiar (displaced-oscillator) canonical transfor-
mation

II, =I Z n~, n&, + W Z fs (n«+n~, )(n;, +n&, )
f,j

+-', IZ (n„+n„) . (2. 9)

b~=e ageS V S

S SSgf=e S fe

where

(2.4)

S= I ~ (age"'"&+a~e-"'~)(n„+n„) . (2. 5)

This works out simply to be
w

6g =ay + (Vg/Rg)Zg 8 ~ (nay +n«)

Pl f'f Pl f f ~

(2.6)

The transformed Hamiltonian is given by
III= Z(Uo —2VU)(ng, +—n(, )(nj, +ng, )+ Z &gbgbg,

(2. 7)
where

The third term represents a constant shift of the
energy levels and shall be disregarded in what fol-
lows. All further analysis in this paper will be with
the specific form H, and not the more general Eq.
(2. I).

When the number of electrons is equal to the num-
ber of sites, the first and second terms of H, sep-
arately describe quite different ground states. The
ground state C» of the first term alone has the Mott-
state charge configuration. However, for the sec-
ond term alone, the ground state C~ would have
half the sites unoccupied (we assume a lattice in
which the z nearest neighbors of any given site lie
on a different sublattice). In Appendix 8 it is rig-
orously shomn that for all sW&I, C& is the ground
state of H, and for all z8'&I, 4 3 is the ground state.
Furthermore, the ground-state entropy is Ã0 ln2
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As a first attempt at describing this phase transi-
tion we employ the well-known technique of the
broken- symmetry Hartr ee- Pock approximation.
In this case we shall look for a solution in which
the thermal average of the electron occupancy is
not translationally invariant. %e specifically as-
sume that (n, ) 0 (n&) for i on sublattice A and j on
sublattice 8 and, otherwise, translational invari-
ance within each sublattice.

It is convenient to introduce two-time Green" s
functions of the form -i((A(t) B(t')),), in which

( ), is the fermion time-ordering symbol and ( )
denotes the thermal average. I et G„(&u) represent
the Fourier transform of —i((c„(t)c„(t')),}when

i is on sublattice 2 and c„is a fermion creation
operator. %e use the Heisenberg equation of mo-
tion for c (, and then approximate ((n&; (t) c (t) c"~

&&(t )),) by (n&; )(Q;,(t)ct, (t )),) for j, o in the

equation of motion for —i((c(,(t) ct„(t')),). This leads
to

and, similarly for Ge(&),

(~ -I(n, ) —2~W(n„)) G,(~) = 1. . (3 2)

Since the system is spin invariant we have sup-
pressed spin indices wherever ambiguities do not
arise. The number occupancies (n„) and (ne ) on

each sublattice can be obtained self-consistently
from G„(~) and Ge((d) in the standard fashion

(n„)=i J (d~j2(()f(~) [G„(~+i0)-G„(~-t0)];
(3.3)

here f(~) =(e '" "+I) '. The chemical potential
p, is determined by the number condition (n „)
+(ne) = 1. It is easy to see that the number condi-
tion is satisfied by p, =-", (I+2eW). In order to de-
termine the number occupancies on sublattices A

and B it is convenient to define an order parameter
which is the difference between the poles (single-
particle energies) of G„(~) and G((((d). If we define
6= (2eW —I)((n~) -(n„)), then from Eq. (3.3) and

p, we get the familiar (from mean-field theories)
form

t1 = (2e W I) tanh4 Pn- (3.4)

which is the self-consistency condition for h. If
2zS'&I, then the only self-consistent solution is
4=0, and therefore (n„)=(ne), i.e. , the Mott state.
For 2sW&I, a solution AO0 is found for kT (=1jP)
~ kT„where kT, =-', (2e W I) is the critical tem--

for C &, whereas it is zero for C ~. It seems possi-
ble then that the system described by H, will ex-
hibit a phase transition' as a function of tempera-
ture for some zR'&I. In Secs. III and IV we explore
this possibility via approximation schemes to H, .

III. HARTREE-POCK THEORY

perature above which (n„)=(ne). The phase tran-
sition is, of course, second order.

This approximation, although simple, serves to
(a) establish the notation and (b) illustrate that the
effective nearest-neighbor energy which is to be
compared with I is zlV and not just 8'. Thus, for
a bcc lattice, I can be almost an order of magni-
tude larger than 8' and yet it is possible that the
nearest-neighbor interaction can determine the
charge configuration at low enough temperatures.

One obvious way to improve this Hartree-Pock
treatment is to break the spin symmetry and there-
fore give a better description of the intra-atom cor-
relations. However, it has been pointed out that
even this improvement fails to give the thermody-
namics correctly for the intra-atomic interaction. .

It is desirable to have a better treatment of (at
least) the intra-atomic interactions since they play
a fundamental role in determining the physical
characteristics of the localized state.

((d —2eW(ne)) G„(~)= I+Ir„(&u),

(~ -I -2e W(n, )) r„(~)=(n „);
(4 1)

(4. 2)

r„(co) is the Fourier transform of —i((n, ,(t) c„(t)
xct„(t')), ). After ebminating r„((d) between Eqs.
(4. 1) and (4. 2) we obtain

Q) —Cp Q) —E
(4. 3)

where t„=2eW('ne ).
The number condition is, using Eqs. (3. 3) and

(4. 3),

n„+na = 1=(l -n„)[(e8"& ~1+I}'
(++'e'11"'+1) ]

+ n [(e 6( ~+I la ) + I )-1 + -(e 8( e& - P ) + I ) 1] (4. 4)

This condition is self-consistently satisfied by

t(=2 (I+a„+we) =2 (I+2eW)

(the same value obtained in Hartree-Fock theory).
%e define an order parameter as b, =-e„—&~ and

straightforwardly obtained the condition

IV. MODIFIED HARTREE-POCK THEORY

The intra-atomic correlations can be treated
exactly by employing a technique first used by
Hubbard. Por lV= 0 the Green's-function equation
of motion for -i((n, ~(t) c„(t)c„(t')).) closes be-
cause n„=n„. It is this fact that allows a closed
exact solution for G„((d) for W = 0. Our strategy
is to make our approximation in terms that vanish
as 8'- 0. In these terms, which involve correlation
between electrons on different sites, we employ
a Hartree-Pock type of truncation similar to that
in Sec. III.

In a straightforward fashion the decoupled equa-
tions of motion are
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(a) (b)

FIG. 1. Solutions of Eq. (4. 7) are shown graphically
as the intersection of two curves that correspond to the
two sides of the equation for the cases (a) PI&2ln2 and

(b) PI & 2 ln2. At elevated temperatures the only solution
is 6=,0, as is indicated by the dotted curves which rep-
resent the right-hand side of Eq. (4. 7).

scribes the thermodynamic state for a given set of
x and y a free-energy principle must be used.

In Appendix D we start from the variational prin-
ciple and determine the free energy within our ap-
proximation scheme. Further, we demonstrate that
this method yields the same physical results as the
Green's-function decoupling scheme. (We could
have determined the free energy directly from the
one-particle' Green's function but the variational
approach incorporates the important condition that
the approximate free energy is a rigorous upper
bound on the exact free energy. ) The free energy
(per particle) is given by Eq. (D8);

4 (e o' ~ cosh-,'pr ) )
——ln2(e'"'+ cosh-,'Pa). (4. 8)

~=2zW[n„tanh-. ' p(I+ d,)+(1-n„)tanh-,' p(Z-1)7 .
(4. 6)

In terms of 6, n„ is found [ from G„(ap) and relation
(S. 8) ] to be

86 /2 + ~/I/2
+A QI /22 e""+cosh-.' pa

' (4. 6)

With Eq. (4. 6), the equation determining A can be
written as

sinh ~ ph
e~ ~ +cosh-,' pa

(4. 7)

%e note that the Hartree-Fock order parameter 4„~
is defined slightly differently than the above param-
eter —the'connection is 4„F= (2zW-I)b /2zW. In

terms of &», Eq. (4. 7) reduces to the Hartree-Fock
gap equation, Eq. (3.4), to first order in I.

Equation (4. 7) can be solved for & by numerical
means, but first we make certain comments about
the nature of the solution. As a function of ~, the
right-band side of Eq. (4. 7) behaves qualitatively
similar to tanh-, P& for PI & 21n2; i.e. , (i) the first
derivative is positive and (ii) the second derivative
is negative for 6 &0. However, for PI &21n2, the
second condition fails for 4 less than some positive

. number. The function exhibits an inflection point
and from simple graphical analysis (see Fig. 1) of

Eq. (4. 7) one sees that a first-order phase transition
is possible for PI &21n2. (For PI&2ln2 only a sec-
ond-order phase transition is possible. ) Equation
(4. 7) is invariant under the transformation n- —4
and from Eqs. (4. 4) and (4. 6) the transformation
merely interchanges the roles of n„and n~. Thus
we only consider 6& 0. In the zero-temperature
limit Eq. (4. 7) can have the solution 60 (=2zW) or
zero for &I and only the solution 6 = 0 for 4~ &I.
At finite temperatures it can have as many as three
solutions (see Fig. 1) depending on the parameters
x =I/~ and y =-kT/&0. -These solutions are easily
determined, but to select the one solution which de-

Oe20

O
&j

0.10

0.25

/~o

FIG. 2. In this phase diagram a first-order transition
occurs across the boundary for that portion of the bound-
ary below its intersect with the dotted line (PI =2 In2).

'Above this intersection the phase transition is second
order across the boundary.

Oe50

Figure 2 is a phase diagram in which the stability
boundary between the Mott insulating state (&= 0)
and the condensed (charge-ordered insulator) state
is shown. On the left of the dotted line a second-
order phase transition occurs, and on the right a
first-order phase transition occurs. In Fig. 3 the
gap parameter is plotted against temperature for a
value of I/eo (= 0. 40) for which the first-order phase
transition occurs.

The fact that the transition is first order can be
understood in terms of the single-particle excitation
levels. In. the Hartree-Fock theory, levels e& and

c~ are associated with the two inequivalent sublat-
tices. These levels are self- consistently deter-
mined by the differential occupancies of the two sub-
lattices which are proportional to the gap param-
eter. The gap decreases continuously to zero as the
sublattices become equally populated. In the pres-
ent theory, however, the single-particle levels are
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1.0
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&I 0.96 — I/6, 0
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0.01 0.05
k T/~0

FIG. 3. Gap parameter shows a jump discontinuity
(for I/hp=0. 40) at kT/6p ——0. 07; for kT/Qp&0. 07, Q=O.

It is easy to see that

determined by Eq. (4. 3). Each sublattice energy
level is split into two quasilevels separated by an

energy I. As is illustrated in Fig. 4, in order to
have the two sublattices unequally populated, both
of the quasilevels on the A sublattice must be oc-
cupied. When the gap parameter 4 decreases to I,
the lower quasilevel on sublattice 8 is energetically
equal to the upper quasilevel on sublattice A —there-
by giving rise to an abrupt population of the B sub-
lattice. Since the gap parameter and differential
occupancy are self-consistently determined, a finite
value of the gap parameter cannot be maintained
and it falls discontinuously to zero.

The charge ordering of the electrons has implica-
tions for the lattice degrees of freedom as well. One
important consequence is that there is a lattice dis-
tortion at the transition from the Mott state to the
charge-ordered state. To see this we calculate the
deviation of the cation equilibrium position that re-
sults from the electron-lattice interaction. In Ap-

pendix A we defined this deviation to be

m, =Z, r, (...« ~ - a4-" "~) .

We now substitute Eq. (2. 6) into this expression and

take its thermal average in the presence of the elec-
tron- lattice interaction. This gives

(5R,)=2+ (n&,)Qf- ' cos[q (R, —R,)j . (4. 9)

subscript c denotes the charged-ordered state). If
i and j are on different sublattices it is easy to show

that (5R;),—(5R&), is proportional to the gap param-
eter in Eq. (4. I). Furthermore, it follows from
Eq. (4. 4) that (5R;),+(5R&),= 2(5R)„. The deviation
of the equilibrium position of the ith cation relative
to that in the Mott state is D; =—(5R;),—(5R) ~. This
gives D& = —D&. These results imply that there is
a distortion of the'original lattice to a situation in
which all the cations on sublattice A are equally dis-
placed from all of those on sublattice B. Consequent-
ly, the lattice symmetry is lowered since the peri-
odicity of the lattice is doubled. We expected this
distortion in the charge-ordered state since the
cations must adjust their positions to minimize the
potential energy.

V. DISCUSSION

We have shown that within our assumptions con-
cerning the nature of the electron-lattice coupling
a Mott insulator is thermodynamically unstable to
a charge-ordered insulating state below a certain
temperature and for some values of the interaction
parameters. By treating the thermodynamic state
in an approximation which handles the intra-atomic
interaction exactly, we have shown that the phase
transition will be either first or second order—
depending on the parameters.

We have also shown that the charge-ordered
state is accompanied by a distortion of the crystal
lattice to lower translational symmetry. It is ex-
pected from general physical considerations that
a spatially distorted electronic state is accompa-
niedby adistortion of the cationic positions as well.
Adler and Brooks found this to be true in a band
model of electrons in which electron correlations
were not taken into account. It has been argued '
that it is important to take electron correlations
into account in bands that are sufficiently narrow
to sustain a spontaneous lattice distortion of the

type that Goodenough and Adler and Brooks had
discussed. It is expected that the charge-ordered
state will be quenched if the electron correlations
are sufficiently large compared to the loss of elas-

(5R...) = 2Q (n„, .)Z f. ~ cos[q (R,. R,)],
(4. 10)

B e +I—

sB+ I

B

where l corresponds to any lattice translation, i. e. ,

R&, , =R&+8,.
In the Mott state, which is translationally invari-

ant, it is easily verified from Eqs. (4. 9) and (4. 10)
that (6R&) is independent of i; we call this quantity

(6R)„. In the charge-ordered state we still have

translation invariance within each sublattice and it
is easily verified from Eqs. (4. 9) and (4. 10) that

(5R,),= (5R~), for i and j on the same sublattice (the

A A

(b)

FIG. 4. Single-particle energy levels on sublattices
A and B in relation to the gap parameter is shown in (a)
the Hartree-Fock theory and (b) the modified Hartree-
Fock approach. In case (b) the levels on a given sub-
lattice are split into two quasilevels separated by en-
ergy I.
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tic energy and that the charge-ordered state may
only occur over a limited range of finite bandwidth.
We have verified, with a quantitative model, that
the charge-ordered state will be quenched at zero
bandwidth and have established criteria for the
existence of the system in either the Mott or charge-
ordered state.

We have worked in the zero-overlap limit in de-
scribing the insulating state; however, in materials
which are believed to be Mott insulators, finite-
overlap effects (e.g. , magnetism) play a role in
determining the physical properties. It is therefore
reasonable to discuss the effects of finite overlap
on the charge-ordered state. Finite overlap will
introduce the appropriate mixing of states that
will modify the alternate doubly occupied site con-
figuration (and its associated cation-cluster forma-
tion) and thereby give rise to the homopolar bond
formation within each cation cluster. The energy
of the charge-ordered ground state will be lowered
by approximately 0 /[(2z —1)W —I]because of
small overlap (b is proportional to the overlap).
Since the spins are paired off in the charge-ordered
insulator there is no tendency for further ordering
due to finite overlap. Our theory does not describe
the situation in which the Mott insulator is magnet-
ically ordered for I/&0&-,' (see Fig. 2); but the
theory may give a good qualitative description
when the magnetic-ordering temperature of the
Mott insulator is much less than the critical tem-
perature in Fig. 2, for a particular value of I/&0.
The theory does provide criteria for choosing the
appropriate zeroth-order (in the bandwidth) state
of the system to which finite bandwidth effects can
then be incorporated.
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APPENDIX A: ELECTRON-LATTICE INTERACTION

We present, in the Wannier-function basis, the
usual'4 derivation of the electron-lattice inter-
action. We do this to make clear our assumptions
in deriving the model Hamiltonian H.

The electron-lattice interaction is derived from
the one-electron Hamiltonian in the field of the
ions

H, =Z, J dr@(r)[- V'/2m+K, V{r-R,.)]y.(r) .
(A1)

Here g(r) is the creation operator for an electron

at point r and spin a and it satisfies the usual
fermion anticommutation relations; V(r —5,) is
the interaction of the electron with a given ion at
position 5&. In the absence of ion motion the set
I5&}denotes the equilibrium ion positions. In the
standard fashion we assume first-order displace-
ments and write

V(r-R, )= V(r-0',.)+6%, vV(r--R', .) .
We now make the assumption that g~(r) is expand-
able in terms of a single (s band for convenience)
band of Wannier functions;

c&, is the creation operator for an electron at
Wannier site 0, and spin g. In the Wannier repre-
sentation &I is written as

II, =Z t,, c',.c,.+Z Z &0, e', , c',.c... (As)

where

t;, f dr (o(r———Ro,)[—& /2m+K; V(r —&;)](o(r—&g),
(A4)

(As)e,'q= J dr(u(r —%0)VV(r —P)(o(r-l,') .
We assume the zero-overlap limit and only re-
tain matrix elements in Eqs. (A4) and (A5) for
which i=j. Without loss of generality we take t;;
= 0. Thus 0, becomes

H, = Z 6%, e', , n, ,
f, l, e

(A6)

Since the Wannier functions are assumed to be well
localized, we retain only the l=i term in the 1
summation of (A5). We now write

( &g tto &t &-iq'll
)

and with the identification f; ~ e';; = V», obtain Eq.
(2. S). The Coulomb integral, Eq. (2. 2), also re-
fers to the 0, positions.

From Eq. (A6) we see that because of the lattice
vibrations there is an effective time-dependent
external field at each site —and the fields on dif-
ferent sites are related to each other in a manner
determined by the collective vibrations of the lat-
tice. A different approach to the electron-lattice
interaction is to assume that the Wannier functions
are associated with the instantaneous positions
(the adiabatic approximation) of the ions, 0,. The
Coulomb integral U,&= U(R; —It&) [see Eq. (2. 2)]
is then expanded in the small parameter 5%; =5;
—0, and the analog of Eq. (A6) is a two-body time-
dependent interaction. The derivation is some-
what similar to that given for an Ising spin Ham-
iltonian in a compressible lattice. "A canonical
transformation decouples the electronic and lat-
tice systems and leads to effective two-, three-, '

and four-body electron interactions. The intra-
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atomic and nearest-neighbor interactions behave
similarly to that developed in this paper but we
have not investigated this approach further.

APPENDIX B: GROUND-STATE ANALYSIS

We introduce the new variable S; =ni, +n;, -1 into
Eq. (81) and, with the aid of the identity

I22n;, n;, = (n;, + n;, ) —n;, —n;, ,
obtain

(82)H, = —,'IQ S;+WQ f /S, S/+ 8Nzw;
i id

we have used the condition that the number of
electrons is equal to the number of sites, N, and

have &;;S,=o. We rewrite Eq. (82) as

H, =(,'I ,'zW-)p——S',. +-,'Wpf, , (S,. +S,)'+-,'S/zW. (83)

The variable 8; can take on the values —1, 0, 1
and each summation in Eq. (83) is a positive
quantity. Vfe first consider the case I&z8'. In
this case the minimum energy is obtained by
simultaneously minimizing each summation. This
is obtained by requiring S, = 0 and f;/(S; S/+) = 0
for all i and j. These conditions imply that 8;

In this Appendix we find the lowest-energy
eigenstate of

H, =IX n;, n;, + WZ f;;(n;, +n;, )(n;, +n/, ). (Bl)

= 0 for all i. Thus, for I &s W, the minimum-energy
eigenstate has each site singly occupied.

For the case I& zWone must maximize g, S; while
minimizing g, /f, /(S, +S/. ) . This leads to the con-
ditions S; =1 and f;,(S, +S,) = 0 for all i and j. These
conditions imply S;= 1 for all i on sublattice A and
S, = —1 for all i on sublattice B. Thus n;, +n;, = 2
for i on sublattice A and n;, +ni, ——0 for i on sub-
lattice 8 (the charge-ordered state). For I &z W

the ground-state energy is 2NzS' and for I &gW' it
is —,'NI.

APPENDIX C: ONE-DIMENSIONAL MODEL

The Hamiltonian IJ, is quite analogous to a spin
Ising Hamiltonian and from Eq. (82) we see that it
resembles a spin-1 Ising Hamiltonian. However,
one must be careful since the "spin value" Si = 0 can
occur in two ways. This arises from the fact that
a singly occupied electron site is twofold spin de-
generate. This implies that, if one is to treat the
thermodynamics of H, from Eq. (82), one must take
special care in the counting of states. Bather than
work in the representation of Eq. (82) we work with
Eq. (2. 9).

In one dimension the partition function is formu-
lated in terms of the transfer matrix. '8 We work
in the grand canonical ensemble and write the par-
tition function as

z= F~
n1t =0, 1 n2t =0, 1

2&
081 n2&"-081

nj)r t=081
nNg=0, 1

exp[ —pI+~, n, , n, , —pwca, (n, , +n;, ) (n;„,+n;„,)+ p)), Z, (n, , +n, , )] . (Cl)

Here p, is the chemical potential and we assume
periodic boundary conditions such that n„„,= n„
(o equals either spin direction). Since we are only
interested in the case g; (n, , +n„) = I)', p can be fixed
from the outset. The appropriate value for p, is
easily found by reexpressing the argument of Eq.
(Cl) in terms of the S, variable introduced in Ap-

pendix B. We find that

IZ) n;,n;, + W Z; (n), +n;, )(n;,), +n, „,)
—/)8; (n;, +n;, )

, I Z; S,'+ W Z; S, S-...
—(//. --,'I-2W) S~, s,. +s/(w-) ) . (c2)

The number condition g; S; = 0 implies that p = ',I—
+2%'. This is the same value obtained in the ap-
proximate theories of Secs. III and IV, when spe-
cialized to one dimension.

We define a matrix I' by the elements

(n,n, i Pin', n', &= exp[ —PIn, n, —PW(n, +n, )(n,'+n', )

+p(-,'I+2W)(n, +n, )] . (C3)
Each n takes on the values 0, 1 so that there are

16 elements in all. These elements can be ar-
ranged in a 4~ 4 matrix by the following assignment:

p„=(oois ioo&=1,

s„=(oois iol & =1,

P)8=(00 P 10) =1,
P„=&ooiPi 11 & =1,
p ( 10

i
p

i
00 &

e8(I /8+2w)

—(loi Pi 01 ) (eI 8+w/8)

& loi Pi 10 ) 8(F/8+w)

P„=(1OiS

ill�

) = e""
I „=&oli pioo) =I„,
s„=&olis iol & =s„,
p„=&olipilo& =s„,
P„=&oliPill & =s„,
P„=(11

i
S

i
OO) = e"',

p =& lllplO1 &=e88v,
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I „=(11I'~10) =e"',
I'44=(11 I' ll ) =1 .

energy.
%e approximate

Since Z = TrP" we wish to find the eigenvalues of
P. Then we write with

e 8(H -u&&&-/Tre 8t&I--gN& (D2)

z =&~+@,"+x",+x", , (C4)

+ 2a(b —2b2+ 2b —1)= 0, (C5)

where g = pe~ and b = e~~. The fourth root is
X = 0 and since we are concerned with the magnitude
of the largest root, this root need not concern us
further. Since the coefficients in Eq. (C5) are
analytic functions of PI and PW, the roots are also
analytic functions. From the theory of equations'7
we define the quantity

Q = —' (B ——,
' A2) 2+ (~ A —,' AB + C), — (Ce)

where A, 8, and C correspond to coefficients in

Eq. (C5) according to». +AX2+B»+C=O. It can
easily be shown that Q & 0 for all PI & 0 and PW & 0.
This implies that Eq. (C5) has three different real
roots. The possibility of two roots crossing some-
where in the parameter space of PI and PW is ruled
out because at such a crossing Q would be zero.
This completes the proof.

APPENDIX D: FREE ENERGY

We start from the variational principle of statis-
tical mechanics and write the free energy as

where X„X„X3,X4 are the eigenvalues of P. We
look for a phase transition in the limN-~. If X,
is the largest eigenvalue, then in the thermodynamic
limit the free energy per particle is f= —kT Ink, .
We show that (a) X& is an analytic function of the
parameters Pf and PW, and that (b) for allvaluesof
the PI and PW, A, & anyother eigenvalue.

The secular equation that determines the eigen-
values of P is
X2 —2X2(1+a) + X [1 —b + 4a(1 —b)]

(A) =-TrpA . (D5)

As in the theory of Sec. IV we assume a two-sub-
lattiee model and ealeulate self-consistently the
parameters e& and e~. If we define an order pa.-
rameter by 5 = e~ —e~, we obtain conditions, from
Eqs. (D4) and (D5), that are mathematically identi-
cal to Eqs. (4. 6) and (4. 7). The condition on the
chemical potential is also identical to that obtained
in the Green's-function theory.

The free energy from Eq. (D1) then becomes

Ii = —2NWz ( n„) (n2 ) —(I/p) InZ, (De

where Z =- Tre ~(" '~'.
Since we work in the grand canonical ensemble,

Z is easily calculated to be

g —(1 ~ 2 8(1-6& /2 ~ e-8d')Fl2 (I ~ 2 8&I+8& l2+ e88)N l2

(DV)

{We have made the identification 5 = b, . ) Thus the
free energy per particle (f= F/N) is give-n by

II=I X&n;,n;, +2; e;(n„+n„). (D3)

This form for H guarantees that the iV=0 limit of
Eq. (2. 9) is treated exactly in Eqs. (D1) and (D2).
The second term in Eq. (D3) is written in accordance
with the thermal Hartree- Fock approximation —in
which we wish to treat the interactions described
by W. The fe,J are the variational parameters
which are determined by the requirement that 5I'/
5e; = 0 (stationary condition).

We combine Eq. (2. 9) with the above equations
and find that the stationary condition implies that

e; = 2W Eg f&~ ( n~, + n~, ), (D4)

where the averaging is given by

Il = Tr p [II—pN+ (1/P) Inp);

here p is any density operator and I' is equal to the
exact free energy corresponding to II only if p is
the exact density operator corresponding to IJ. For
any other p, Il is an upper bound on the exact free

2z W
1

sinh2-, pb,
4 (8 i +c Pao&m)h

——In2(e8'~2+ cosh-,'Pa) .
P

(D8)
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Observed Fine Structure in X Rays Incoherently Scattered by Alkali Halides:
Contribution from Color Centers. II
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(Received 1 July 1970)

The spectra of Cu EQ j ED p and Cr Ee~, En 2 radiations scattered by LiF and NaCl single
crystals and powders at several angles have been investigated. The spectra of Cr Ee&, Ko. 2

scattered radiation were studied for two different color-center concentrations. The spectra
of scattered radiation by samples of high color-center concentrations include a new line on
the long-wavelength side of the primary spectrum. The line is located at a distance of 5 eV
from the primary for Lip, and 2 eV for NaCl. These distances of the new line from the co-
herent line are independent of the incident radiation energy and scattering angles, and are
equal to the E-center excitation. energies in the respective crystals. Judging from the po-
sition of the new line, and its absence from spectra in which the scatterer had lower E-center
concentration, it is concluded that the new line is caused by "x-ray discrete Haman" scatter-
ing from the E center. However, because the E-center concentration is at least three orders
qf magnitude lower than the concentration of the valence electrons, the observed intensity of
the line cannot be explained by a simple model in which the isolated E center behaves as a scat-
tel er.

INTRODUCTION; SCOPE OF INVESTIGATION

Previously, ' the author reported on the exis-
tence of a new incoherent component in the CuAe&,
Kn& x-ray radiation scattered by I ir which he
attributed to x-ray Raman components of E centers.
The preseDt investigation has several purposes:
(a) to verify the initial observation by extending
the research to different radiation and different
samples; (b) to demonstrate that the new line can
be attributed to the E center by comparing bvo
sets of spectra. for two different E-center concen-
trations; and (c) to study quantitatively the differ-
ential cross section of the new incoherent compo-
DeD't.

In the present research, the initial observation
of a new line in Cu radiation scattered by I iF is
verified for the same radiation on NaCl, and for
Cr radiation, scattered by Lir and NaCl single
crystals and powders at several scattering angles
(/ =16', 25', 40', "10', 84'). Cr radiation was
chosen because the slow rate of production of E
centers permits measurements from samples

with low E-center concentrations. The measure-
ment using Cr radiation was then repeated with
samples previously irradiated to a saturation con-
centration of E centers. It is then possible to
demonstrate that the fine structure of the spectra
depends on color centers by the comparison of
CrEzj, Ko.

& radiation scattered by samples with
two different E-center concentrations. Such a
comparison shows that for a concentx'ation GDe

order of magnitude less than the saturation concen-
tretion the new line is not observable. The deter-
mination of the exact concentration during the mea-
surement is not feasible for several reasons: The
spectrum of the incident radiation is not mono-
chromatic; the production rate depends on the
energy of the x-ray beam, the E-center lifetime,
and the temperature dependence of the lifetime;
the perfection of the crystal, etc.

The E-center concentration, as estimated from
optical-absorption measurements, was found to be
of the order of IO' E centers per cm . Since the
line characteristic energy loss is equal to the E-
center 6xcitatioD energies in the respective crys-


