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We have measured the stress dependence of the indirect exciton spectrum of silicon at
77 'K, for static uniaxial compression along the t111], t001], and f110I directions with light
polarized parallel and perpendicular to the stress direction, using wavelength modulation.
The high stresses reached in this work (X=1.8 &&10 dyncm ) have enabled us to accurately
study the behavior of the I'2&. valence-band maxima and the && conduction-band minima under
stress. The stress splitting of the valence bands is produced by (i) the orbital-strain inter-
action, which is described by two deformation potentials b& and d~, and (ii) the stress-depen-
dent spin-orbit interaction, described by b2 and d&. We find that b= b&+2b~= —(2.10 +0.10) eV,
b2-——(0.1+0.15)eV, d=dg+2d2=- (4. 85 +0.15) eV, andd2= —(0.05 ~0. 25) eV. The samemeasure-
ments yield a value for the shear deformation potential of the && conduction-band minimum

$2= —(8.6 +0.4) eV. The effect of hydrostatic deformation is interpreted in terms of two de-
formation potentials: 5&+ a& (orbital-strain interaction) and a~ (stress-dependent spin-orbit
interaction). We obtain 5~+aI =+ (1.5+0.3) eV and a~=0. The hydrostatic coefficient of the

indirect gap obtained from /&+a& agrees with hydrostatic pressure measurements. In addition

the stress-induced coupling between && minima and the neighboring && conduction band, de-
scribedbythedeformation potential ( h&~ )

= (8+3) eV, has been observed. Interpretation of the

stress dependence of the intensities on the basis of one (T')g, or &5 „) or two (I'gg, and &q „)
intermediate states gives the first conclusive evidence of a contribution of && ~- && ~ virtual
transitions to the indirect adsorption edge of this material.

I. INTRODUCTION

The indirect gap of silicon is known to be at
1.16 eV (at 77 K) and occurs between the I'„.va-
lence-band maxima and a minimum along the 6,
conduction band near X, [k = 0. 86(2w jao) (1, 0, 0, ),
where ao is the lattice constant]. ' The application
of a uniaxial stress removes the degeneracy of the
J = —,

' valence-band state. ' The splitting of this
state due to the strain-orbit interaction can be de-
scribed by two independent deformation potentials
b, and d, appropriate to strains of tetragonal and
rhombohedral symmetries, respectively. ' The
splitting is also affected by the stress-dependent
spin-orbit interaction, whose effect can be de-
scribed by two additional independent deformation
potentials bz and d3. ' Since the above two inter-
actions have the same form when projected on the
space of J = —,

' or J = —,', the effect of b, and dI can-
not be separated from that of b, and da when one
considers only one of the subspaces. Because of
the small spin-orbit splitting of this material
(0. 044 eV at zero stress), the stress-induced
coupling between the J = —,

' and J =-,' manifolds can
be quite large. Hence, the stress-dependent spin-
orbit interaction is taken explicitly into account in
this experiment in order to determine the deforma-
tion potentials. For uniaxial stress along [001]
or [110], the degeneracy of the six equivalent 6,
conduction-band minima is lifted (interband split-
ting), an effect which is described by the deforma-
tion potential g2.

' " For the case of [111]or

[110]stress there is a stress-induced coupling
between the ~, and the nearby &,. conduction-band
states, resulting in a quadratic shift of the con-
duction band: This interaction is described by the
deformation potential $2*."' In addition to these
shear effects, there is also a shift of the indirect
edge due to the hydrostatic component of the stress
(deformation potentials 8, +a, 'o'" and a, 8). The
large stresses used in this work have allowed us
to measure accurately the nonlinear effects men-
tioned above and thus to determine the related de-
formation potentials. Previous works on sili-
con'4'" have neglected the stress dependence of
the spin-orbit interaction resulting in deformation
potentials b and d which correspond, respectively,
to (b, +2b2) and (d, +2da). The deformation poten-
tials b and d have been measured by Balslev,
whose experiments were confined to about 0. 9
x 10'0 dyncm ~ at (80+1) 'K, Akimchenko and

Vdovenkov, "and other workers; Balslev, and
Akimchenko and Vdovenkov did not specifically
analyze nonlinear effects (stress dependence of the
spin-orbit splitting and quadratic shift of the 6, ,-
band), which could explain in part the strong dis-
agreement they reported between their measure-
ments of the hydrostatic deformation potential
(e, +a, +a2=4. 3 and 4. 4 eV) and the value found
from hydrostatic pressure measurements.

The intensities of the indirect transitions have
also been investigated as a function of stress, as-
suming two possible indirect mechanisms: one
with only one intermediate state (either I'», or
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6, „), and the other with two intermediate states
(I'», and &, „). Most of the computed relative
intensities of the indirect transitions are found to
be consistent with our experimental data for the
three stress directions, only if one takes account
of the 4, „ intermediate state, thus leading to the
first conclusive evidence of a significant contribu-
tion of 6, „-h, , transitions.

II. EXPERIMENTAL DETAILS

The derivative transmission spectra were observed
using a wavelength modulation spectrometer, '
consisting of a 300-line/mm grating monochromator

working in second order. The choice of the grating
and spectral order was made so as to avoid any
structure due to the grating in the wavelength re-
gion explored in this work (= 1.0 p, ). A water fil-
ter was used to eliminate the first-order spectrum.
The beam modulation was produced by a vibrating
quartz plate mounted directly behind the entrance
slit of the monochromator. The detector was a
Kodak Ektron PbS photoconductive cell. The de-
tected signals were measured with a Princeton
Applied Research HR-8 lock-in amplifier and

plotted on a strip-chart recorder. Measurement
of the incident beam throughout the considered
wavelength range showed no particular structures
and a rather smooth and uniform intensity back-
ground which did not require any additional signal
compensation,

The material (n type) was obtained from Future-
craft Corp. "and had a resistivity of 20-500cm.
The samples were x-ray oriented and cut along the

[ 111], [ 001], and [ 110] directions to +1' into

parallelepipeds of dimensions of 15 xl, 2&&1. 0 mm.
Other materials of lower resistivity werealsoused
but the corresponding spectra exhibited much
weaker structures. The stresses, applied on sam-
ples immersed in liquid nitrogen with a stressing
apparatus described elsewhere, ranged up to
about 1.8 x10'p dyncm for the [111]and [110]
stresses and 1. 1 x10'Pdyn cm ~ for the [ 001]
stress for which case external structures, pre-
sumably due to the grating, appeared in the spec-
tra at about 1.125 p, and limited our measure-
ments to lower stress. The magnitude of these
stresses, together with the use of cooling by im-
mersion, lowered substantially the relative errors
and enabled us to obtain accurate values of the de-
formation potentials mentioned in Sec. I.

III. MEASUREMENTS AND INTERPRETATION

As mentioned in Sec. I, the fundamental edge of
silicon is indirect. Therefore, electron-hole cou-
pling states (excitons) are expected to occur be-
tween the valence band and the conduction band,

giving rise to indirect transitions via an interme-
diate state either at k= 0 or k=0. 86 (2v/ap) (1, 0, 0).

SO ++].+@2

where X~0 is the spin-orbit Hamiltonian without

stress, K, is the orbital-strain Hamiltonian, and

X, is the stress-dependent spin-orbit Hamiltonian.
It has been shown~' that X, can be written as

X, = —a, ( e„„+e„+e„)—3b,[(L,' —, L ) e„„+cp]—

—/3d, [(L„L,+L, I„)e„,+cp],

where c,&
denotes the components of the strain

tensor, L is the angular momentum operator, and

cp denotes cyclic permutation with respect to the
indices x,y, z. The quantity a, represents the
shift of the orbital bands due to the hydrostatic
components of the stress, while b, and d, are or-
bital uniaxial deformation potentials.

The expression for K~ is given by'

3b p[( Lxox & L ~ a ) 6xx+ cp]

—v 3d2 [( L„o'q+ L~ cr„) e„~+cp] (3)

where a2, b2, and d~ are additional deformation
potentials describing the effects of a strain on the

spin-orbit interaction, and 0 is the Pauli matrix
vector.

A uniaxial stress may also cause a shift and

splitting of the six equivalent 6, conduction-band

minima. In the notation of Brooks, the linear
term is given by'

sE=A (8, (e„„+e„+e„)1

Selection rules governing these indirect transitions
in uniaxially stressed silicon were calculated by
Erlbach' for all possible phonons. LO-phonon-
aided indirect transition can only occur.via I',
if I'», is the intermediate state, then transverse
and LA-phonon-aided transitions are allowed. How-

ever, both transverse and longitudinal (either
acoustic or optic) phonons are allowed for transi-

'tions via the ~, valence band. Other intermediate
states could be considered, but the probabilities of
transitions via these states are very weak because
of the large energy denominators. We therefore
neglected such processes and limited our investi-
gations to the behavior of the TO-phonon-assisted
transitions, which have been reported to be stronger
than the TA transitions. ' Longitudinal-phonon-
assisted transitions were not investigated in this
work: The energy of the LA-phonon-aided peak should
lie 11 meV below the TO-phonon-aided exciton.
Recently, Shaklee and Nahory have observed a
weak LO exciton line 2 meV below the TO line. 2'

The total Hamiltonian for the I». valence band

can be written as
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4 $2[a --,' (e„„+e„+e„)1]]~ n, (4)

where A. is the unit vector in the direction of the
critical point in k space, 1 is the unit diadic, and

8, and Sz are hydrostatic and shear-deformation
potentials, respectively. "

In addition, a nonlinear shift may occur due to
the stress-induced coupling between the ~, and &z.
conduction bands [the corresponding gap E(b,2. )
—E(A, ) = 0. 8 e V at k = 0. 86(231/ao) (1,0, 0) " is
small enough to make second-order repulsion be-
tween these states non-negligible]. This nonlin-
earity is related to the splitting of the X1 state
under [ 110] and [ ill] stress. Hensel, Hasegawa,
and Nakayama' have shown that the X, splitting
and the ~„&z. shifts are given by the Hamiltonian
(neglecting hydrostatic contributions)

( IOO)(0 I 0)
lI

(00 I)

ll II

(0 0 I)

ll lI

( IOO)
(010)

h ll

J=3/2

XII [III]

J= 3/2

V2 B2 B4

x I[ [oo)]

J=3/2

2 C2 C4

x[[ [IIo]

FIG. 1. Schematic representation of the stress-in-
duced splittings of the I'2& valence and && conduction
bands in silicon. All transitions are allowed for light
polarized parallel and perpendicular to the respective
stress direction, except the &2 transition in the case of
[001] stress, which is forbidden for the electric field
vector of the light perpendicular to the stress axis when
one limits the indirect processes to transverse-phonon-
assisted transitions only. The spin-orbit split band (v&)

is not shown.

(5)

(4, m~) representation (see Appendix A), the
Hamiltonian matrix of Eqs. (1)-(3) becomes

where Sz is a shear-deformationpotential. "
From Eq. (5), we find for the shift of the A, con-

duction-band minima, to second order in stress

292 111

1
~EH 2 ~E111

22 2 111 2 )2 111

0

(6)

In the above interpretation, terms nonlinear in
stress have not been included in the Hamiltonian,
Assuming a deformation potential for the nonlinear
terms comparable to that for the linear terms
(= 5 eV) a shift of about 5x10 ' eV would be pro-
duced at the highest stresses reached in this ex-
periment (=10 strain), and hence these terms are
negligible in view of the experimental error in the
definition of the exciton energies (+ 1 meV). With
the exception of the ~,-~z coupling we have ne-
glected any nonlinear effects due to the stress-in-
duced coupling of Fz5. or ~, with any other bands
since the corresponding gaps are very large. "

A. Stress along [111]

For this stress direction, no intervalley split-
ting of the [ 001] conduction bands takes place
[e„„=e»--e„=(S„42S»)—,'X]. The splitting of
the indirect exciton is due to the splitting of the
top r», valence-band edge into the bands v1 and

v2 (see Fig. 1). The spin-orbit split band, which
we have labeled v„ is not shown. The band vz is
a pure I 2, 2) state (in the customary spherical
notation) while v, is mainly I —,', —,) with a stress-
induced admixture of I —,', —,') (see Appendix A). '
In addition, there is a quadratic shift of the ~,
conduction-band minima given by Eq. (6), where
&»y= ~x»= &yx=6 ~44&

Taking the valence-band wave functions in the

where

1—6EH + 25E111

—,
'

v 25E',„
—,
'

v 25E„1
—6O —6EH

( I)

5E„=(a, +a2) (S„+2S,2) X= a(S„+2S,2) X,

5EH (~1 2~2) ( 11+ S12)X ( 11+ 2 12) X

5E„,= 3(v 3) (d, +2d2) S44X= —,
' /3d S44X,

5E111—3 v3(d', —d, ) S44 X= —,
' v'3 d' S44 X

The 811 81z and S44 are elastic compliance con-
stants whose values are at 77 'K (in units of
10' dyn' cm )

where

+-3'[(~o+ 3«», )'+2(«„,) ] ',

+o +o 3&2(S11+2S12)X,

and for. the shift of the, z band:

(111)
&&z = —.&E111—&EH . (10)

S„=0. 863, S1z = —0. 213, 844 = 1.249;

X is the applied stress, and Do is the spin-orbit
splitting (0. 044 eV ') in the absence of stress. Di-
agonalizing the above matrix gives the following
expressions for the shift of the v1 band:

5E1 3 ( 0 2 5E111). 5EH
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where &»,(&„,= 5EI""—&E,'"") is the measured
splitting of the I'», band. Equation (11) can be re-
written in terms of the deformation potentials d1,
d2, and a2 as

{do + 2d do + 2 v 3 [ (Sg g + 2S~o) /S44] ( d ~ + 2d o) a o) (S44X)

p M3 '[(no + p a„,)(dq + 2d2)

+ 3~3 [(S»+2S,o)/S«1 ~».a.}S«X

gyes( p+ &ggq)
—= 0. (12)

Equations (8) and (10) can be combined to give

5E111 25E»1( 0+ 2 111) + 2 111( 0+ +111) (5E111) 0y

M
I-

0—
K

Q3
0

I.20
I

E(ev)~
I.2 I

I

I~I I I

lolo
C fTI

V)

—5 z
D

Si
77'K

l.22
I

Si
77'K —ls

[iii]
LX

—10

Figure 2 shows the measured stress dependence of
the TO-phonon-assisted exciton for stress parallel
to [111]with light incident on the [112] face of the
sample. As indicated in Fig. 1, A1 and Az repre-
sent, respectively, the behavior of the vf - ~&,
and v2- ~, , indirect transitions. The energy
separation between A, and A, gives the valence-
band splitting &„,.

In the following analysis, we shall neglect a~.

I

l,03
I

l.02

— IO y

I.23—

Top +tt

O~6

e~

FIG. 3. Spectrum of the indirect transition for zero
stress and a [111]stress of 0.31x10 dyncm for light
polarized perpendicular and parallel to the stress axis.
The zero-stress background is taken to be a smooth line
so as to isolate the sharper portions of the structure ob-
served between l.02 and 1.03 p for both polariza-
tions. For the stressed case the background is similar
in shape to the zero-stress one and follows a smooth line
3oining the points of the signal labeled if, i2, and ia for
both polarizations. Relative intensities were obtained by
integrating the area between this background and the ex-
citon spectrum.

I.19—

(eV)

I.I7—

I.I5—
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I I

, 8 I.2
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I
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Brust and Liu have calculated the hydrostatic
stress dependence of + to be 56p/hp= —45ao/ao .
A more detailed calculation using the Korringa-
Kohn-Rostoker (KKR) technique ' yields 5hp/bp
= —1. 35ap/ap, so that

1 3a, =—r~p (13)

Since for Si, ~p=0. 044 eV, a2=0. 006 eV; as we
shall see later this value can be neglected in view
of the much larger error in our determination of
def ormation potentials.

At stresses below 6&& 10 dyncm the quadratic
term in Eq. (12) can be neglected and hence

FIG. 2. Effect of fill] stress on the TO-phonon-as-
sisted indirect transition for light polarized parallel and

perpendicular to the stress axis and light incident on a
[112] sample face. The energy difference between &f
and ~2 gives the splitting between the I vf) fff and I v2) fff
valence-band states.

5Eiii = ~i»(+o+ ~»»«~o+ p &i&~) ~ (14)

From the experimental values of 4»& and 6p we

find d = d, + 2do = —(4. 85+ 0. 15) eV. Once a value

of d has been obtained, the results at X &6&& 10
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dyn cm are used with Eq. (12) to obtain
d, = —(4. 9()+ 0. 25) eV and ds = —(0. 05 + 0. 25) eV. In-
dependent- values of dq and da have not been reported
before for silicon, although they have been mea-
sured in germanium. However, Balslev found
—(5. 3+ 0. 4) eV for d; the marginal discrepancy
between this result and ours is probably related
to the fact that the Aa branch, as observed by Bal-
slev, exhibits a nonlinear shift to higher energies
which cannot be explained theoretically. Cyclotron
resonance measurements yield d = —3. 1 eV, while
values of —4. () (Ref. 29) and —5. 1 (Ref. 30) eV were
derived by calculating the bands of the stressed
material. A recently published work" gives
d = —4. 9 eV, which agrees very well with our mea-
surement.

The quadratic shift of 6&, affects both lines A&
and Aa. From Eqs. ((0 and (10), the nonlinearity
affecting Aa is connected with the stress-induced
(6„hr] coupling in the conduction band. We have
determined the corresponding deformation potential
Sf from a quadratic fit of Aa in Fig. 2, which yields
8f

~

= (7. 5+ 2) eV [according to Eq. (5) only the
magnitude of 8f can be determined from our data].
The hydrostatic deformation potential 8&+ a, can
also be evaluated from the A, branch [see Eq. (10)]
which gives 8, +a, =+(1.5+0. 3) eV. The above
values of the deformation potentials give a good
fit to the stress dependence of the A& line. The
VRlues of Sl+ Ql Rl e in good agreement w1th hy-
drostatic pressure measurements ' Rnd Rre in

contrast to the high values of this quantity deter-
mined by other workers with uniaxial stress. '

Shown in Fig. 3 is the spectrum of the indirect
transition for zero stress and a [111]stress of
0. 31x10 dyncm for light polRrized perpendic-
ular and parallel to the stress axis. The back-
ground was determined from the zero-stress spec-
trum. The signal outside the range l. 02'. & X& 1.03@,
at zero stress is taken to be background. For the
stressed case the zero-stress background signal
has been displaced to correspond to the displace-
ment of the peaks. The experimental values of
the intensities were obtained by integrating the
exciton peaks above the background.

The measured intensities of the A& and Aa lines,
at 0. 31x10 dyncm, are reported in Table I, to-
gether with theoretical values assuming one (I',s„
or b,, „) or two (1», and n.5 „) intermediate states,
as derived from the theoretical expressions given
in Appendix B and Table II. At this value of stress
the two branches are already resolved but not yet
seriously affected by cI1RIlges in linewidth
associated with changes in the elastic scatter-
ing probability (density of final states) induced
by the splitting; For light polarized parallel to
[ill], adding the b,, „contribution to the single
indirect mechanism through 1"&, , improves the
fit of the observed intensities. However, for the
light polarized perpendicular to [111], none of the
proposed mechanisms seem to be satisfactory: The
A& line is observed stronger than the Az line.

TABLE I. Theoretical and experimental values of the intensities of indirect transitions in sibcon at low stresses and
for different light polarizations. The experimental values were obtained by integrating the exciton peaks above the back-
ground signal in the recorded spectra at stresses for which the different exciton branches are already resolved but not
yet seriously affected by differences in the elastic scattering of electrons induced by the stress. The theoretical evalua-
tions are glveQ fol one (I (5 or 65 }or two g (5 ~ Mld Ag ) intermediate states' they del"lve froDl equations glveQ lQ
Appendix B and Table II. The theoretical intensities calculated for the superposition of two intermediate states take
account of the different energy denominators attributed to each singlemechanism: {[E(nt„)—E(1't& ~))/[E(1 2~~ „)-Z(hs „)))= 8 (see Appendix 8). Matrix elements have been taken equal in both cases.

Intermediate
states

XII [ill]
(X=0, 31& 1O"
dyn cm 2)

~5,~

[111] [112]
53 50
47 50

I $5 g and 65 y

[ill] [112]
68 43
32 57

Theoretical relative intensities Qbserved l elative
intensities

xII [ool]
@=0,33 xlo~o
dyn cm 2)

xII [llo]
(X=0.26 x 10
dyQ cm )

z II [oolJ [llo]
I3( 7 30
B2 43 0
83 7 35
B4 43 35

z II [llo] [1To]
Cg 56 1.9
Cg 19 56

[ool]
0
0

14
86

[ool] [llo]

19 19

[110]
31

20
46

[001J

10
60

[110] [ool] [llo]
32 62 47
19 38 19

[llo]

29
40

[110J [ool]
25 44
41 27

25 ll

[ool] [llo]
~0 69
20 0
18 18
62 13

[11O] [110]
48 27

27 50

25 23

[ool]
50

50

0
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FIG. 4. Stress dependence of the TO-phonon-as sis ted
indirect transition for [001] stress with light polarized
parallel and perpendicular to the stress axis and light
incident on a [110] sample face. The J3& and 8& lines
correspond to transitions from the I v&) pp~ valence band
to the &~, singlet ([001] valley) and doublet ([010] and
[100] valleys), respectively, while &2 and &4 correspond
to transitions from I v2) 00~ to the singlet and doublet,
respec tively.

'5E t 3 h 2(Stt Sta) X (singlet)

and along the [010] and [100] valleys

5E", , ' = -', 8a(S„—S,a) X (doublet).

(15)

(18)

This situation is shown schematically in Fig. 1.
Here again the degeneracy of I"». is lifted pro-

ducing two levels v, and v~. For this stress direc-
tion the Hamiltonian matrix of Eq. (7) is similar to
that given in the [111]case, with 5E„,and 5E„,
replaced by 5Esst = 2(bt+ 2ba)(Stt —St2)X, and
5Eoo, = 2(b, —ba)(S» —S,s)X, respectively. The same
substitution applies to Eqs. (8)-(12) and (14), which
now give the shifts 5E,' "and &E,' "of the v, and
v2 bands, and their sum 600& which represents the

B. Stress along [001]

A [001] stress does not split the &, and ha. con-
duction-band degeneracy at X, and hence there is
no quadratic shift of the A, bands (s„=e„=s,„=0).
However, the six 6, minima are no longer equiv-
alent, resulting in an intervalley splitting described
by the shear deformation potential 8,. Along the
[001] valley, the a, shift is

experimental (v„va) splitting in the presence of a
[001] stress. The stress dependence of the TO-
phonon-assisted transition for [001] stress is shown
in Fig. 4. Light was incident on a [110]sample
face. The labeling of the four branches is shown
in Fig. 1. This figure also indicates that the split-
ting 600& can be evaluated from the energy separa-
tion of both (B,—B,) and (Bs —B,). From the data
of Fig. 8 and an analysis similar tothatfor [ill] stress
we find b= —(2. 10+0.10) eV, b, = —(1.95+0. 15)

eV, and b, = —(0. 10+0. 15) eV. The corresponding
value of 8&+a& is found to be+2. 0+1.0 eV. The
value found here for 5 = b~+ 2b2 is in reasonable
agreement with earlier experimental results. ' '

Theoretical calculations give b = —2. 5 eV" and
b= —2. 0 eV. ' Although the value of h, +a, deter-
mined from these [001] da, ta is higher than the
value measured for [Ill] stress, the accuracy in
this case is lower than in the previous case. This
is due partly to the conduction-band splitting along
~„which introduces new sources of error, and

partly to electron scattering in the valence band,
which increases the widths of excitons associated
with v~ and makes difficult the determination of the
B2 and B4 branches at stresses higher than approx-
imately 0. 5&&10' dyncm '.

The intervalley splitting of 6, can be determined
from the separation of (B,—B,) and (Ba —B~). The
corresponding shear deformation potential is 8 ~
= —(8. 7+0. 4)eV, which is in good agreement with
other work. '

The experimental strengths of the observed peaks
are shown in Table I for stress of 0. 33&&10"dyn
cm ', compared with theoretical values (see Appen-
dix 8 and Table II). For light polarized parallel to
[001], calculations assuming only one intermediate
state (I'„,) are not sufficient to explain the mea-
sured relative intensities of the B, and B, lines,
since the calculated strengths would be equal while
the calculated B4 is a factor of 3 more intense than
B2 (see Table I). However, if we add the indirect
process through the ~, „valence band to our inter-
pretation, then these theoretical intensities are well
differentiated, in good agreement with the experi-
mental features. This provides strong evidence
for the contributions of 6, „-6&, virtual transi-
tions to the observed indirect excitons. For the
other polarization, the B, line was found to be the
strongest; none of the proposed processes is able
to account for this fact. This discrepancy is not
understood. Intensity measurements performed at
0. 11&&10' dyncm have shown results closer to
the theoretical estimates, which might indicate that
the v2 level, from which the 84 strong transition
originates, is quickly broadening through scattering
mechanisms when stresses are applied. However,
this effect does not seem sufficient to explain the
discrepancy completely.
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C. Stress along fl 1{)]

For the case of stress parallel to [001] or [111]
the choice of the quantization axis along the stress
dll ection led to a simple form for the Hamlltonlan
and the wave functions. This choice preserved m J
as a good quantum number and hence led to well
defined selection rules and an easy identification of
states. However, when stress is applied to an axis
of lower symmetry, such as the [110] axis, the sit-
uation is more complex. For stress parallel to
[001] or [ill] the crystal is uniaxial and hence the
intensities of the transitions are independent of the
azimuthal angle of the incident radiation about the
stress axis. However, this is not the case for
stress parallel to [110] since, as is shown below,
m J is no longer a good quantum number, i. e. , the
[110] stress couples the v, band to the v, and v,
bands. The crystal is biaxial and the intensities
of the various transitions will depend on the azi-
muthal angle of the incident radiation.

Using the wave functions referred to the [110]
axis as the z axis, as given in Appendix A, the
Hamiltonian matrix of Eqs. (1)-(3) for this stress
direction can be written as follows:

~Ei = —
~ ( ~o- o &Etto) - ~Es+ o no+ II'i

3 1 [6EI,oh@ (no mo)5e ]8"1=—~16 qo 26E„o+(no —ms)

for the v, level

where

3 1 [5EtM6e —(no —mo) 6e ]
16 qo 25Euo+ (no —mo)

1 [26Eno 5e + (no ms) &&]

32 qo 26E„o—(mt+no)

for the v, level

6Eo = o(&o o 5Etto) 5Es 2no+ Wo

3 1 [25Euo6e' +(no —mo)5e]
qo 26Euo (ms+no)

(16)

110

1——.~E110- &~e

—sv36f
—,
'

(W6)no
'

2 s & 110

——,
'

v 36'
1
—.&E110- &EH

ov25E„o

110

o M65o

& ~26E110

—Q- 6E„

5E,to = «(5Eoot+ 35 Ettt), &Etio = «(6Eoot + 36Etll) ~

i.25—

TOe ~V-e- ~—9

Q~
B~

l. l9— L)
r

In the case that eZ0» —CZ,» and aE„,= OE„,
(equal valence-band splitting under applied stress
along [001] or [ill]) the above matrix would have
the same form as Eq. (7). In fact, under this con-
dition the valence-band splitting becomes isotropic
and the Hamiltonian matrix has the form of Eq. (7)
for any stress direction. From the [ill] and [001]
data, it may be noted that the quantities 5e and R
are small compared to BE»0 and 5E«0 and can be
neglected to first order in de/5E„o (numerator and
denominator either primed or unprimed). The
eigenvalues of Eq. (1V) can then be obtained

by diagonalizing the Bx2 matrix in the lower right-

hand corner and introducing the effects of the

1 v„v,} and i v„v,} couplings by second-order
perturbation theory. In this manner the following

energies are obtained: for the v, level

E

{eV) Si
77'K

X II- [iiO]

oE l[ X
fIE L, X

l

„4 .8I {lO dyf) Cm ) ~ l.2

FIG. 5. Stress dependence of the TO-phonon-assisted
transitions for [110]stress with light polarized parallel
and perpendicular to the stress axis. Measurements
were made on samples with light incident on [001] and

f110] faces. The C~, and C& lines correspond to transi-
tions froDl I 0$) gf p to the &j doublet and singlet, respec-
tively, while C2 and C4 correspond to transitions from

( e&) &&o to the doublet and singlet, respectively.
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with

2 0+ 2 110 +2 [m2+ 2(5E110) ]

q'2=2n2(n2 —m, ) . (21)

The conduction-band behavior under [ 110] stress
is more complicated than for the other stress
directions. First, a [110]stress induces an

intravalley splitting at the appoint, which results
in a quadratic shift of the n, band [Eqs. (5) and
(8)] only along the [001]valley (0,„=—,

'
S44X),

leaving unaffected the other two equivalent valleys
[010]and [100] (e„,= e„=0). In addition, there
is an intervalley splitting of && as shown in Fig. 1,
which results in another segregation of the val-
leys. The shift of 4, in this case is given by, to
second order in stress

and

&E,',' '= —,
'

h2(S11 —S,2)X+5E* (singlet)

for the [001]valley

5E2, '= —
0 h2(S„—S,2) X (doublet)

(22)

for the [010]and [100]valleys . (23)

The linear splitting of the n, band for a [110]
stress is then found to be half of the 4& splitting
under a [001] stress of the same magnitude and in-
verted, the doublet being shifted to lower energy
and not to higher energy as for a [001] stress.

The observed behavior of the TO excitons in the
presence of a [110]stress is shown in Fig. 5. Mea-
surements were made on samples with light incident
on both [001] and [110]faces. The four branches
labeled Cj, C» C„and C4 correspond to transi-
tions shown in Fig. 1. The C~ line is observed
taking the electric field of the incident light parallel
to the [ITO] crystal axis (E l [110]with [001] inci-
dent face). Elastic scattering in the valence band
obscures this line above about 0.7~10"dyncm~,
while the C, line is barely observable for this po-
larization in agreement with theoretically computed
intensities, as shown in Table I. For the electric
field polarized parallel to [001] ( E J. [110] and [110]
incident face), the C2 line is not observed at high
stresses, unlike the C, line which remains strong
up to 1.4&&10 dyncm . For the third light polar-
ization (Ell [110]),both lines are observed although
the C~ line disappears again at about 0.7~10'
dyn cm for the reason mentioned above. The C,
line is clearly observed for the three light polariza-
tions. The C, branch should exhibit the strongest
nonlinearity. It involves transitions originating at
v1 whose quadratic shift according to Eq. (18) is
considerably larger than the v2 shift given by Eq.
(19). Moreover, the final state of these C, transi-

tions is the singlet in 4& which is affected by the
(&» &2, j coupling (quadratic shift). In contrast,
the C, line is expected to be almost linear; the cor-
responding transitions originate in v2 and end on
the doublet which does not couple with h2. . From
that comparison, the C2 and C3 lines should be
strongly differentiated at high stresses. Up to ap-
proximately (0.4-0. 5)&&10 dyncm 2, Fig. 4 shows
that the two lines are not resolved, which indicates
nearly equal splittings of I"». „and 4&, as observed
by Balslev. Increasing the stress above that value
makes the two lines clearly distinct.

In order to clarify our understanding of these
data, we computed the theoretical intensities of the
indirect transitions between I"».„and ~&, assuming
one (I'12, or n2 „) or two (I'1, , and b, 2 „) intermediate
states, as for the other stress directions. The re-
sults are compared in Table I with the measured
intensities at 0.26&&10 dyncm . For this stress,
the C2 and C, transitions are degenerate and we only
consider the sum of their intensities. For E[( [110],
the fit to the experimental data is slightly better
when adding the 45 intermediate state contribution
to I"», than when considering I"&, , alone. For
Ell [001], the C4 line was practically unobservable,
which is in better agreement with the double mecha-
nism than with the single one (via I"»,); for this
single intermediate state the C4 line should be about
40% of the (C, +C,) line. Also, the C, and (C2+C, )
lines have equal intensity, in agreement with the
double mechanism. In the case where E is parallel
to [110], the C4 line was well resolved and its inten-
sity evaluated, though the same line was not ob-
served for Ell [001]; this difference can only be in-
terpreted through the double mechanism: The single
mechanism assigns the same intensity to this line
for both polarizations.

The observed preponderance of C~ over C3 for
Ell [110] is well explained through both single and
double mechanisms. When E is parallel to [001]
however, C, is found to be increasingly stronger
than C~. The 'single mechanism would explain such
behavior better than the double mechanism. A pos-
sible way to reconcile this fact with our previous
conclusions may be found in the broadening by elas-
tic scattering. Such broadening would have to be
stronger for Ca than for the C3 line. This would re-
quire a broadening of the v& band due to the over-
lapping density of vq states after splitting.

For this stress direction the singlet-doublet con-
duction-band splitting can be evaluated from the
(C1-C,) and (C2 —C,) separation [see Figs. 1 and 5
and Eqs. (22) and (23)]. By fitting the stress de-
pendence of the energy separation of these lines to
an expression quadratic in the stress, we find $2
= —(8. 5 +0. 5) eV and l $2* l

= (9 + 3) eV, in good
agreement with the [001] and [111]stress data.

It can be shown that the terms W
&

(i = 1, 2, 3) in



2632 LAUDE, POL LAK, AND CARDONA

TABLE III. Deformation potentials of the I'2&~ valence and 4& conduction bands of silicon obtained in this and in
previously published work.

Stress
direction

d (eV)
&; (ev)
d, (eV)

b (eV)

b, (eV) 1
b, (eV)

6E~~p/X
(10 ~2 evcm dyn

l5Efgp /X
(10 ~~eVcm~dyn ~

p, +a, (ev)

8, (ev)

IC fI (ev}

-4.85+ 0.15
-4.90 a 0.25
—0.05 +0.25

+1.5 a0. 3

7.5'&+2

This work
[011]

—2.10 +0.10
-1.95+0.15
—O. 1O+ O. 15

+2.0+0.0

—8.7 so.4

[110]

3.9+0.2

3.7+0.5

+1.7~0.6

—8.5+0.5

9&'&+3

Previous works

d=-5. 3+0.4
d= —3 ~ 1
d= —4.9
d= —4.8
d= —5.1
b= —2.4+0. 2
b=-1.4
b= —2.1
b= —2.5
b= 2.0

8)+ay =+4.3 +0.5
=+4.4
=+1.5
=+1.8 +0.3

82 ———8.6 +0.2
= —8.0+1
= —9.5

Igf I
= 9+1

7.8
7.5

Ref.

2
13
29
30

2
13
29
30

13
31
33

13
29
12
29
30

Eqs. (18)-(20) can be neglected (using the values of
b„bp, d„and d, listed in Table III). Under these
conditions, Eqs. (18) and (19) are analogous to Eqs.
(8) and (10), and hence it is possible to evaluate

so and ~Es~o in a manner similar to that used to
obtain the corresponding parameters for [001] and

[ill] stress The v. alues of &Enp/X=-', [2b(Sq, -S,p)

+v 3d84p] and 6E,', p/X= [2b'(Sgg —Sgp)+&3d'84p] are
listed in Table III; they are consistent with the values
of b, b', d, and d' obtained from the other stress
direction measurements. From the stress depen-
dence of the C~ line and the values of &E»o and S~ a
value of b, +a, =+(1.7+0.6) eV has been determined.
We find that the above values of the deformation po-
tentials and the quantities &E&qp/X and &Egyp/X give
a good fit to the stress dependence of the Cf C3,
and C4 lines.

IV. RESULTS AND CONCLUSIONS

The results for the deformation potentials obtained
in this work are summarized in Table III together
with previous results. Because of the high stresses
reached in our experiment we have been able to
measure accurately the nonlinearities in the stress
dependence of the 70-phonon-assisted indirect
transition. This has enabled us to determine inde-
pendently the valence-band deformation potentials
associated with the orbital-strain interaction (b&

and d, ) and the spin-orbit-strain, interaction (bp and

dp). The fact that we have been able to fit the data
without using aa justifies our original assumption
that a2=0. The quantities b= (b&+2bp) and
d = (d& + 2dp) are in good agreement with earlier works
by Balslev and Akimchenko and Vdovenkov, ' al-
though our accuracy is somewhat better. Our value
of the dydrostatic pressure coefficient (8, +aq) is in
sharp disagreement with their values but agrees
quite well with values obtained from measurements
under hydrostatic pressure

= —3(8„+28„)(S,+a,)

= —1 5x 10 eV dyn cm (24)

while our value of (5E/5P); = —(1.8 +0. 5) x 10 2

eVdyn 'cm . Warschauer and Paul' report (5E/5P);
= —1.3x10 eV dyn cm . Nathan and Paul" have
studied the effects of hydrostatic pressure on the
indirect gap by measuring the change in resistivity
of gold-doped silicon with pressure. They find
(5E/5P}& ———(l. 5 + 0. 3}x IO ' eV dyn ' cm in the
range (0-4}x10 dyn cm p, and —(2. 4+0. 3)x 10 'p

eVdyn 'cm a,t 2. Ox10' dyncm . Itshouldbe noted
that the technique used for applying uniaxial stress and
measuring the exciton spectrum in this work was the



EFFECTS OF UNIAXIAI STRESS ON. . .

same as that used previously in AISb ' and in GaP '4

for which there is a serious discrepancy between
uniaxial and hydrostatic data.

Qn the basis of the point-ion model Suzuki and
Hensel' have calculated the following expressions
for 52 and da:

d, =-9' Wsao . (25)

Our experimental values for these parameters are
not inconsistent with the predictions of this model
(52= —0.005 eV and dz= —0.0085 eV), although a
detailed comparison cannot be made because of our

large experimental error. Hensel and Suzukia have
determined values of b2= —(0. 22+0. 02) eV and d~
= —{0.38+0.04) eV for Ge, which agree in sign but

are in order of magnitude larger than those pre-
dicted by Eq. {25). Inspite of the large experiment-
al error, our data for silicon also indicate values
of ba and dz not more than an order of magnitude
larger than the predictions of the point-ion model.

Our value of 8, is in agreement with other mea-
surements ' and the theoretical caleulati. on of
Goroff and Kleinman. The average value of Sz as
determined in this exyeriment is in good agreement
with other measurements' but is somewhat lower
than the theoretical calculations [adjusted for E{d,')
-Z(~,)=0.8 ev].""

In our analysis of the experimental data, we have
neglected a number of possible stress-dependent ef-
fects (in addition to those mentioned in Sec. III),
such as the change in exciton binding energy, stress
dependence of phonon energies, and changes in the
electron-phonon self-energy. Changes in the exciton
binding energy can be caused by changes in the den-
sity of states as a result of the removal of degen-
eracies, and by the stress dependence of the v& band
effective mass due to the v&-v3 coupling. Balslev
has shown that the density-of-states change will
cause a decrease in the exciton binding energy of
only about 0. 5 &&10 eV. The v&-vs coupling should
also have a very small influence on the exciton bind-
ing energy since the change in the average mass of
the v& band is zero: The stress dependence of the
parallel mass is twice that of the perpendicular
mass and is of opposite sign.

Recent experiments ' have shown that in silicon
phonon energies can change by as much as 1&&10 eV
at the highest stresses reached in this experiment.
However, unless there is an intraband splitting of the
the m yhonons involved in the indirect transitions,
the stress dependence of the phonons can be as-
sumed to be included in the Hamiltonian of Eq. (4):
The interband splitting of the phonons is described
by an equation of the same form as Eq. (4) except,
of course, that the parameters corresponding to 8»
and 8& refer to changes in phonon energies. At the

present time, no information is available on the in-
traband splitting of the phonons.

The self-energy effect mentioned above is related
to a change in band-edge energy caused by the stress
dependence of the electron-(hole) -phonon interac-
tion. The stress-induced splitting of the electronic
levels will cause a, change in the density of states
available for phonon-assisted interband acatteri. ng.
For example, such scattering will not take place
when the stress-induced splitting of the electronic
bands is larger than the corresponding yhonon en-
ergy. Hence, if the self-energy term is significant
a square root singularity should be observed at
points where band splittings become equal to the
corresponding phonon energy. In silicon the TQ-
phonon energy is 57. 3&&10 ' eV" and for [001]
stress, the conduction-band splitting is equal to this
energy at X=7~10 dyn em . Figure 4 shows no
discontinuities at this stress. %e have also failed
to observe this effect in AlSb.

A theoretical investigation of the transition inten-
sities was also performed, which helped in analyzing
the spectra of silicon near the indirect gap and
yielded the first evidence of 6 „4 transltlons
contributing to the indirect mechanisms in this
material.

APPENDIX A: STRESS-DEPENDENT EIGENFUNCTIONS
OF vl, v2 AND v, VALENCE-BAND LEVELS

Stress along I 111]

The unperturbed wave functions for this stress
direction can be written as37

I-,', —,'&„,=-,'I ((x- y) +(f/Ms)(x+ I'- 2z))& &,

I-,', —,'&„,= ~I &2M2(x+y+z)t

+[Ms(x- r)+f(x+1 -2z)]c/&,

I-,', —,'&„,=-,'I f(x+ r+z) t

—[-',(x- y) —(f/&2}(x+ y —2z)] c]&.

X, F, and Z a,re the valence-band wave functions
which transform as atomic p functions under the
operations of the group of the tetrahedron, and 4

and 4 indicate spin up and spin down, respectively,
referring to the stress axis. Using these functions,
we calculate the following eigenfunctions of 3C:

v2»»»=

I~i»&i=(I/qg)[~ »il .. .&»i+(~i-~~) I., 2&»il,

,&„,= ( I/q ) [( —,)
I

-', —,
'

)„,+ u 2 6E,'„
I

—,', —,
'

& „,],
where
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ml ~0+ 26E111 1 nl Iml+ (6Elll) ]

q, = [2n, (n, —m, )]'".
Stress along [0013

The unperturbed wave functions are now

!-,', —,'&„,= v-,' I(x+il)c&,

2 & opl = M! [2Zt + (x+ iy') 4 ])

!
-,', —,')„,= MI [z& - (x+ e) &]&.

The perturbed eigenfunctions in this case are
similar to those defined for [111]stress, replacing

I
5E,«and 5E«, by 5Eooi and 5Eooi respectively.
The quantities mo, no, and qo are similar to m»
n» and q& with this change.

Stress along [110]
The unperturbed wave functions have the following

form:

I R~ 2&110=' 2 f(z+(i/M2)(X- 1'))t&,

(M2(X+ Y) k

—[z —(i/M2)(x- 1')) ~]&,

[Z- (i/W2)(X- 1')]&]&.

The perturbed eigenfunctions are computed using
the procedure explained in the text, which gives

!
3 311 I3 I1

~2&110 'Yzzl &110+Y2ll 2 2 &110+Yzzl 2 2 &110

3 3Q I3 1 1 X
~l&llo Y121 2 2&110+ Yll I 2 2 &110+Y13 2 2 &110

!
3 3 g I 1 1%

1 &110 Y321 2 2) 110+Y31I 2 2 &110+ Y331 z 2 &11O

The quantities y;,. are given by

ma, , & ( (ng nM-(~, -m, (('m'l(»& om'+(~ -m»~l „)
qz

'" 32 q2, [26E110+(n2 mz)]nz

v6
Ylz ———— [&E1,05& —(nz —mz)6e'],

q2 8

(&~(m&~ ("a (&&'I(2&&(md' ("a ma(&~( ~ )qz 16 qz [2&E110+(nz

(I 3 6E»060 —(n, —mz)5&' 25EI»6&'+ (n, —mz)be

qz 2 25E110+ (n2 mR) 2[26E110+ (nz+mz)l

r22 =1,

1 W6 5E1105& (n, —mz)5&', 25Ello~e + (nz ™2)5&
y23 = —

2 lmz —nz + «0
q 4 26E110+ (nz mz) 26E110+ (n2 ™2)

6E'„0 [&E'„05&—(nz —mz)5&'] [26E1106e + (nz mz)6&].

qz
2 2

q, 16 nz 2&E110- (m2+nz)

1 W3 26E Illslo+ (nz mz)5&" q, 4»E„Q-(mz+nz)

(nz —mz) [5E'1106@—(nz —mz)6&'] [25E'1105K' + (nz —mz)6&]
33

qz qz 32 nz 2~E110 (mz+

mz, nz, and qz are given by E(l. (21).

APPENDIX B: INTENSITIES OF INDIRECT TRANSITIONS

sponding to TO-phonon-assisted indirect transitions
between the I'25. „valence and 6, , conduction bands,
can be written as being proportional to'

The general expression for the intensities of ex-
citonic lines in modulated optical spectra, corre-

(r, z. .„le ~ pl 1"„,) (rlz, IZ, I ~, ,)~ ~ ~

E(~, ,) —E(r», )
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&I'„. , ll.', tag, ) & kg, i 8 ~ pl 5, .) ') (I)
E(l „,.) —E(~, .)

where g is the unit polarization vector of the inci-
dent electric field, p is the linear momentum of the

ctrony and Xp is the HamlltonlaIl for the electron-
phonon interaction. The fi,rst term on the right-
hand side of E&I. (Bl) represents the contribution of
indirect processes using the I',5, conduction band
Rs an intermediate state, while the second right-
hand term is the contribution of indirect transitions,
via the 5, „valence-band intermediate state.

The only nonzero matrix elements of e ~ p between
I'z~. , and I',5, are given by ' ~

we have

(&l~yl g& 001)) (y I
+@I +& 001)

(g~~xl g& 001)) (gl~yl g&&10&I) 0.

while for a TO phonon along [010]:

& Ix'I ~'""&=( l3."I ~'""&~0

(yl~xl g&010)) (y ~el g&010)) 0.

and for a TO phonon along [100]:

(yl+gl ~&100)) ( I~pl +&100&& &0

( l~y g&loo&) (~ xsl ~&100))

=&X p. »=&I p. .&,

where x» g~ RIld g Rx'e the basis functions of +gal C.
The only nonzero matrix elements of R" p between
4g ~ Rnd 65 y Rre given by

(~,„I p„l &, „&= &&, , I p, I &,, „& along [loo],

«,.Ip.l~ ..&=&~,.p. ~~,.& al-gI»0]

«,.Ip. l~, .&=&~,.lp, l~, .& I-g [00I],

It has also been shown' that (&I„Ipl &, „) at the
5l, minimum is approximately equal to
&I'a5;.~R I"Is,.&

The selection rules governing the I'&z, , 4&, TO-
phonon transition are given by the following expres-
sions 8 For a TO phonon along the [00l] valleys

For the I"3&.„-65, „TQ-phonon-transition selec-
tion rules, the I'«, is replaced by l 35&» and 6&,
is replaced by hz „in the above expressions.

%'e have assumed that
(I"5„ IC~ & „)=(I'~.„@~la,„).

Using the stress-dependent eigenfunctions given
in Appendix A for the three stress directions, and
the preceding selections rules, the theoretical peak
intensities were computed for one or two interme-
diate states, for which case we used the approxx-
mate xelation between the energy denominators3

(
Z(a&, ) —E(I'I&;.,) .

" 5

E(la,;.) -E(~5..)
Table II gives these theoretical expressions ob-
tained for the three stress directions Rnd the dif-
fel'slit light polarlsatlons (electl'Ic fleM E 1'eferl'ed
to crystal axis).
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The potential in amorphous Si is assumed to be the crystalline potential perturbed by a fluctuating

potential with a root-mean-square amplitude V~s and a correlation length L . The density of states
for such a perturbing potential is taken from the work of Halperin and Lax. The optical absorp-
tion is calculated using effective-mass-approximation envelope wave functions whose degree of
localization depends on energy. A good fit to optical-absorption data for amorphous Si films an-
nealed at room temperature is obtained using V,m, = 0. 89 eV and I = 6 A, provided the wave-vec-
tor separation between the conduction- and valence-band edges is reduced from 9.5 x10~ to
6 x10 cm . The mobility edge is found from an extension to the model which gives an effective
bandwidth W and a spacing parameter x, , each as a function of energy. The mobility edge E
lies approximately where W(E ) = 3 V~~s. The mobility near the mobility edge is estimated from
a diffusion model to be 5 cm /V sec, and the density of states at the edge is 10 cm eV

!. INTRODUCTION

A substantial body of information has accumu-
lated concerning the properties of amorphous semi-
conductors, particularly in the last two years. '

Many models for describing the properties of these
materials have evolved, ' and some features of
these models are reflected in the work reported in
this paper. We calculate the electrical and optical
properties of amorphous Si from a model which. as-
sumes that the amorphous material is a strongly
perturbed crystal. That is, we start with the en-
ergy gap, dielectric constant, and effective masses
of the crystal, introduce a strong randomly vary-
ing perturbing potential of a particular form, and
ask for the resulting density of states, wave func-
tions, optical absorption, and dc conductivity.

In the course of the calculation we make many
assumptions and approximations. Some of these
are justified by qualitative reasoning, guided by
knowledge of the behavior at high or low energies.

Others are made simply to permit numerical re-
sults to be obtained without excessive computation.
We believe that the resulting model has the advan-
tage of allowing the microscopic properties of the
system to be exhibited quantitatively.

The model is applied to amorphous Si, whose
optical and electrical properties have been inves-
tigated by many authors, and for which the relevant
parameters of the crystal are well known. The
method is applicable to other amorphous semicon-
ductors, such as the chalcogenides and their alloys,
provided band-structure parameters and dielectric
constants are known.

II. DENSITY OF STATES

The first quantity we need to know is the density
of states in each band. Throughout the calculation
we adopt the sign convention that energies in the
tail are negative and energies well into the band
are positive, and use the nominal (i.e. , unper-
turbed) band edge as the zero of energy for each


