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We propose a model Hamiltonian to describe resonant energy transfer between discrete elec-
tronic states each of which is coupled to the same boson field. In this model, the calculation of
the transition probabilities for resonant energy transfer, radiationless intraimpurity electronic
transitions, and phonon-broadened electromagnetic transitions among the electronic states of
a given impurity are rendered formally equivalent, differing only in the selection of various
model parameters. The relation of those parameters to microscopic models is described in
detail for the case of resonant energy transfer between localized impurity states. A calculation
of the energy-transfer probability is presented which is valid to arbitrary order in the electron-
phonon interaction, but is the linear-response-theory treatment of the electronic-transfer term.
Explicit comparison between the predictions of our model and those of the F5rster-Dexter model
are given. We present an analysis of the time-dependent Schr5dinger equation which permits
us to distinguish between dissipative and multiply periodic solutions to the Schr5dinger equation
and gives a precise definition of weak- and strong-coupling limits. Finally, we indicate the ap-
plication of our results to describe experimental systems involving radiationless energy transfer and
electronic relaxation in rare-earth impurities in crystals.

I. INTRODUCTION

Recently there has been considerable interest in
energy transfer between localized states in a wide
variety of connections —including sensitized lumi-
nescence, exciton diffusion, molecular electronic
relaxation, polaron conduction, and energy transfer

in biological systems, to name a few. We discuss
the transfer of energy between two impurity ion
states which, in addition to being coupled to each
other, are coupled to the same quasicontinuous
modes of vibration of a crystal lattice. ' We propose
this simplified semiphenomonological Hamiltonian
in order to describe the absorption (emission) of
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(0)H] =~ y] Ey( Cy Cy) (1.2)

The quantities E,', ' are the energies of the localized
states, and the cy, their associated annihilation
operators. The physical identification of the states
associated with the cy, depends upon the problem
under consideration. For example, in descriptions
of phonon-broadened "optical" transitions within a
single impurity, ' one identifies H, with the ground
state, Hz with the excited state (of the same im-
purity), and H, 2 with the electromagnetic field
causing transitions between these two states. In
the energy-transfer problem we identify E„'0'(c„)
with the zeroth-order particle-hole state on the
sensitizer impurity and E„' '(c„,) with the final "ex-
cited*' states on the activator impurity which ul-

radiation, electronic relaxation, and energy trans-
fer in impurity ions in crystals. In fact, all three
of these phenomena, can be described by the same
model Hamiltonian with suitable changes in the defi-
nition of certain model parameters. In addition,
the Hamiltonian contains all of the essential features
needed to describe the dynamics of the energy-
transfer process. In particular, the coupling to a
quasicontinuous distribution of lattice vibrations
provides a means whereby the energy transfer can
oc cur irreversibly.

Our motivation for presenting this discussion is
two new results which have emanated from our in-
vestigation of the model Hamiltonian and which en-
hance the understanding of the energy-transfer pro-
cess. The first is the specification of another
mechanism for energy transfer in addition to the
usual van der Waals interaction between the two
impurity centers. ' This mechanism is a conse-
quence of coupling both ions to the same lattice vi-
brations. Qrbach' has discussed this mechanism
for energy transfer using first-order perturbation
theory.

Qur second new result concerns the resonant en-
ergy-transfer process. It is well known' that in
"resonant" processes the usual Born-Oppenheimer
(BO) approximation breaks down. We are able to
describe the energy transfer in the limits that the
phonon coordinates are treated semiclassically and
an adiabatic hypothesis is used to describe the nu-
clear motion. Our analysis of this limit follows
similar ones given by Holstein and Levich. v Final-
ly, we present a more general formal analysis
which permits us to define the regions of irreversi-
ble radiationless energy transfer.

The model Hamiltonian is defined by

H =H1+H2+H»+, 1 y„+Hy„.

The single-ion Hamiltonians H1 and H2 describe the
electronic states characteristic of two noninteract-
ing impurities in a host insulator, i.e. ,

timately decays causing the observed luminescence.
In this case H» is taken to describe the energy-
transfer interaction

tH)2= P U„„c„cy +H. c.
1 2 2 1

(S.3)

in which U = U(Rq —R ) depends on the distance be-
tween the impurities. In our analysis, we consider
only a single-hole electron state for the sensitizer
and also a single state for the activator. Therefore
each of the sums in Eqs. (1.2) and (1.3) reduces to
a single term. The associated parameters, F.,' ',
E2, and U, z, are taken to be prescribed (e.g. ,
phenomenological) parameters for a given pair of
impurities. Finally, the electron-phonon interac-
tion is taken to describe recoiless linear coupling
in all of the impurity states:

Hp1 yh
= ~ cy cy c Vk)t bk)t + He c ~e-y ~ y) y]~

k)t

(1.4)

H~„= h km„(k)[btt„b„-„+2 ], (l. 5)

+ ~@"~(k)[bf~Ai+2 ]
kl.

1+Z (bf&[ V»c&c&+ V&&czcz]+II. c. ] ~ (1.6)
kX

The expression for the transition probability be-
tween states 1 and 2 obtained by treating U» in the
approximation of linear response is well known
within the context of the phonon broadening of intr a-
impurity electromagnetic transitions. ' However,
with a single exception, analyses of the energy-
transfer probability have used some version of the
Forster-Dexter model ' in which one assumes that
if one site is coupled to phonons of wave vector k
the other site is not, i.e. , V„-„&0~VI~„=O. In
solids, such a "decoupling" is unlikely. In addition,
Orbach, ' in his calculation of the energy-transfer
probability, utilized a perturbation expansion in the
V-„'„as well as linear response in the U». The
former restriction is lifted in the linear-response
analysis presented in Sec. III. Indeed, a major
conceptual advantage of our formulation of the en-
ergy-transfer problem in terms of the Hamiltonian
(1.6) is that this formulation reduces the evaluation
of the energy-transfer, radiationless-decay, and
phonon-broadened-impurity-spectra transition rates

in which the bk„are the annihilation operators o~

the continuous phonon modes of energy 8 ~„(k). In
our two-state two-impurity energy-transfer problem
the sum over y, in Eq. (1.4) reduces to a single
term. Therefore we obtain the final form of our
model Hamiltonain

2

H = 2 . E~
' c',c, + [U,ac', cz + H. c. ]

k-1
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to manifestly equivalent calculations. In linear-
response theory they differ only in the forms used
for O„.

A primary motivation for our definition and anal-
ysis of the highly simplified model Hamiltonian,
specified by Eq. (1.6), is the desire to define a
sufficiently simple model problem that we can de-
scribe the effects of both the excitation-transfer
term H» and the excitation phonon coupling H, $ ph,
without using perturbation theory on either term.
Our interest in avoiding perturbation theory via the
construction of highly simplified "model" systems
stems from discussion in the literature of three
closely related topics: (i) the dependence of the
transfer probabilities on the values of U„and (V;„)
(e.g. , the distinction between weak and strong
coupling)'; (ii) the (presumed) irreversible nature
of the energy-transfer process"""; and (iii) the
validity of the use of a linear-response-theory treat-
ment of U» to describe the transfer process. ""
The periodic nature of initial-value solutions to the
Schrodinger equation obtained from Eq. (1.1) when
H„»-=0 has been described in detail by several
authors. "'7' Duke and Soules' observed that in
certain special cases this result persisted even in
the presence of electron-phonon coupling to a con-
tinuous phonon field. Despite these facts, the linear
response analyses of the effects of U» implicitly
assume an irreversible energy transfer (i.e. , a
dissipative as opposed to periodic solution to the
initial-value formulation of the Schrodinger equa-
tion). It was the desire to determine criteria for
the existence of dissipative solutions to the energy-
transfer problem which initially led us to study Eq.
(1.6). We proceed by first examining in Sec. II
the interpretation of the model Hamiltonian in the
case of energy transfer between localized impuri-
ties. We conclude Sec. II by presenting a semi-
classical analysis of the energy-transfer probability
in the electron adiabatic limit. Section III is de-
voted to a linear-response analysis of the energy-
transfer probabi lity. Following a simplification of
the Hamiltonian by a canonical transform method,
we compare our results to those obtained using the
Forster-Dexter model and note some significant
distinctions between the two. We then show that
linear-response theory for phonons with dispersion
leads to dissipative energy-transfer probabilities.
There is a close analogy to the small polaron mod-
el. However, in order to achieve dissipative mo-
tion from our semiclassical (nonperturbative) solu-
tions we implicitly invoke additional physical pro-
cesses (e. g. , enharmonic phonon coupling or
"rapid" radiative relaxation of the final state ) by
way of boundary conditions. As the use of such
"boundary-condition" techniques constitutes a wide-
spread method of introducing dissipation in systems
with few degrees of freedom, ' we are not surprised

at the necessity to introduce them here. Therefore,
even the combined linear-response and semiclassi-
cal analysis have not demonstrated the necessary
criteria for irreversible energy transfer. Conse-
quently, using an extension of methods applied to
the study of radiationless transitions in molecules,
we construct a heuristic argument in Sec. IV which
indicates that for parameters appropriate to dissi-
pative motion, such motion is a consequence of
phase mixing, i.e. , the decay of a discrete initial
state into a continuum of final states. We also show
that in certain limits the phase-mixing-induced ir-
reversible energy-transfer probability is described
by our original semiclassical calculation. The
paper concludes with a summary of our results and
a discussion of their relationship to experimental
systems.

II. MODEL HAMILTONIAN

In this section we relate the parameters of our
model Hamiltonian, given by Eq. (1.6), to those
characterizing microscopic descriptions of reso-
nant-energy transfer between localized electronic
states associated with impurities in insulating hosts.
We first consider separately in Sec. II A and
II B the electronic states and electron-phonon or
orbit-lattice coupling. In Sec. IIC we discuss the
circumstances in which the electronic and vibration-
al types of motion can be "separated" by use of an
adiabatic hypothesis despite the electron-phonon
coupling. Finally, we consistently neglect renor-
malization of the U&z interaction by virtue of our
assumption that its value is to be determined
empirically.

The defect lattice dynamics has been discussed
extensively in the literature. Hence we will not
reconsider it here, but refer the reader to the num-
ber of articles and books ' ' which use the harmon-
ic approximation to H». We adopt a generalized
definition of the phonon quantum numbers k& to ap-
ply to the solutions of the defect lattice equations
of motion. As we will see in Sec. IIC, coupling
to discrete local or pseudolocal modes merely adds
a periodic term to the equations of motion. Hence,
we usually treat the V„-),'s as effective coupling pa-
rameters to the set of quasicontinuous phonon
modes. However, they represent the complete set
of electron-lattice coupling constants only in the
absence of local or pseudolocal modes.

A. Defect Electronic States

The electronic Hamiltonian H& describes the ith
defect-ion electron states in the absence of the in-
teraction H». We assume that the electronic states
are discrete, and in general, nondegenerate. They
may be shallow donor and acceptor states' or deep
impurity states. ' ' However, we restrict our dis-
cussion to the latter in order to relate our model
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to energy transfer in rare-earth and some transi-
tion-metal ion systems. Deep defect states may
be characterized by the irreducible representation
I of the point-spin group to which they belong.

It is convenient to define the operator a& = c,,c~,
which when acting on the ground-state wave function
creates the ith defect ion in its excited state. For
the system consisting of two ions and two states on
each ion the a',. obey the commutation relations

shallow donors and acceptors, and deep impurity
centers. The coefficients V„-„' are diagonal matrix
elements of the gradient of the electron-host-lattice
interaction projected on the normal lattice
coordinates,

V„"-„'=(y,
~

F(k~)~ y,} . (2. 4a)

When we discuss energy transfer, we will have

occasion to define

[at, a, ]=1, e& (2. 4b)

which expresses the fact that if the ith ion is not in
an excited state it must be in its ground state. Thus
we write the noninteracting electronic Hamiltonians
in the form

(2 &)

0» is the interaction Hamiltonian connecting the
two electronic states. In discussing the vibronic
structure of impurity-ion spectra, one identifies
H» with the electromagnetic field interaction Hamil-
tonian. ' In electronic relaxation, H» is usually
assumed to be the nonadiabaticity operator. In the
energy-transfer problem, it represents the inter-
action between the hole-electron states. It may be
exchange, dipolar, or higher multipolar in nature ':

0 12= U12&1(22+ U 12~2&1

e2

12 e182 e2C1
lr, —(R —r, ) ~

(2. 2)

(2. 3)

in which e and g refer to the excited and ground
state on the sensitizer and activator, I and 2, the
sum is over the electrons involved in the energy
transfer, and R is the distance between the sensi-
tizer and activator ions.

The treatment of energy transfer first given by
Forster for organic systems assumed that U» re-
sulted from the interaction of the electric dipole
moments of the sensitizer and activator, respec-
tively. Dexter' included higher multipole moments
in the decomposition of U, 2 in order to cover cases
in which the dipole moments vanished by symmetry.
The latter case is relevant when the energy transfer
involves an intraconfigurational transition at a
center of inversion for either ion. An electric di-
pole process can occur only by admixing odd har-
monics in the crystal field potential and hence the
wave function through lattice vibrations. These
"phonon forced" processes have been considered in
the discussions of the vibronic structure of optical
transitions in impurity centers. '

B. Electron-Phonon Interaction

The diagonal linear electron-phonon Hamiltonian
which was proposed in the Introduction has been
used to describe the optical spectra of a variety of
defect centers in solids including molecular centers,

which represents the difference in the electron-
phonon coupling constants in the ground and excited
states on the ith ion. For tightly bound electrons

F =eE+ F, , (2. 6)

where E represents the electrostatic interaction
with the host lattice ions and F, represents the

short-range covalency and exchange forces.
In a series of papers, "Bron and Wagner have

developed the electrostatic model for electron-
lattice coupling and used it to describe the vibronic
spectrum of rare-earth ions in alkali halides. How-

ever, a complete description of the electron-phonon
interaction must also include covalency and ex-
change forces. Covalency and exchange forces are
short range. Hence we assign a coupling constant
to each of the irreducible representations, I'', of
the point group spanned by displacements of the
nearest-neighbor ions. For rigid ion coupling to
perfect lattice modes, the matrix element Vg„may
be written as

li2
V„'-), =2 f'„~ (N)" sr ~ (k&) e '"'

~ -, (2.6)r' 2~„(k)

where f '„ is an interaction function and E„~ is the
projection of the polarization vector of the phonon
on symmetry elements of 1"'.' '

For the longer-range electrostatic electron-
phonon interaction

(r; -R„,)
~r; —R„, ~

(2. '7)

The eigenfunctions of 0 can be written in the form

An expansion is valid if the electrons are well lo-
calized within their nearest-neighbor surroundings.
Because the dipolar field which exists in the ab-
sence of inversion symmetry couples more strongly
to the regions of the crystal which are a long dis-
tance from the defect ion, it is a good approximation
to assume that such coupling will occur to essen-
tially undisturbed lattice modes even in the presence
of local or pseudolocal modes. " In either case, we
see that the model V„-„parameters are well defined.i

However, their detailed form is not essential to our
arguments and in a given case they may be regarded
as semiempirical in nature.

C. Nonadiabaticity and Irreversibility
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Z; C„„,II, „,a, lo&, (2. 8)
(b 1~)~

2 (&k„)

where the basis states are the usual BO states. '
A single BO state is a suitable eigenfunction of 0
only if the off-diagonal matrix elements are much
smaller than the separation of the diagonal matrix
elements

& t(n.-~ }I
H I(nf'i }j &-' &t(nf. }I HI (nf. }t&

—(j {nI'i }I
ff

I (n „-'„}j) . (2. 9)

This is probably never the case in solids where the
phonon modes give rise to a quasicontinuous dis-
tribution of diagonal matrix elements. As a conse-
quence, extensive configuration mixing will occur
between basis states of approximately the same en-
ergy even when H» is small. This breakdown in the
BO approximation is analogous to that which occurs
in the dynamical Jahn- Teller effect although in the
case of the latter, the off-diagonal matrix element
results from the off-diagonal electron-lattice vi-
bronic coupling.

The energy-transfer rate is determined by the
equations of motion of the operator s in the Heisen-
berg representation or alternatively by incorporating
the time-dependent factors into the coefficients
which determine the wave function in the Schro-
dinger representation. Adopting a mixed represen-
tation in which the electronic states are treated in
the Schrodinger representation while the phonon
operators are treated as Heisenberg operators, it
is easy to obtain the time-dependent equations,

I t
t = [+8 + ~ I fi(bf. + b -;,)] C, + U»C»

tttcm=lE—a +~ I'&&(b;, +b „-„)]c,+It„c,
k)t

-t~ba=i'„„
I
c, I'+ I „IC, I'+tf&„(k}bi

(2. 1o)

The equations of motion for the coefficients C& and
C~ display periodic behavior as a function of time.

We are interested in investigating the nature of
the solutions to Eqs. (2. 10). Therefore we make
no assumption of ergodicity in the behavior of the
lattice ions coupled to the local defect centers even
though the motions of the "perfect-solid" lattice
mode coordinates are taken to be periodic.

We have noted several times the implicit assump-
tion of irreversibility inherent in the use of linear-
response theory, and our objective of clarifying the
basis for and validity of this assumption. Almost
all of the discussions of this topic in the litera-
ture"' ""hinge on identifying characteristic time
scales for the electronic motion [v,', -0(t)] and vi-
brational motion [r,'„-h(t)]. In Eqs. (2.10) a major

+ -'~ g~.(k}(ba+b'-fD']«' (2. 11a}

where

q „(t)= [tf/2~(k )]"'(b;„+b';„}. (2. 11b)

The time dependence extracted in Eq. (2. 11a) is
that of a state moving with the instantaneous value
of the boson coordinates qk„. The minimum of the
3N parabola occurs at

E, =EI"-Z
I

v „I'/a~(k) . (2. 11c)

An equation for c z is obtained by inserting Eq.
(2. 1 la} into (2. 10} and eliminating C,' and its deriv-
atives. We find that

Ca [EI '
Em '+ ~ I 4(bix+b -Iz}]C2

+
I
U,a/b I

'c,' = o,

~G, = ~kX- ~kX ~
(2. 12}

The linearity in the qk), of the expression in
brackets in Etl. (2. 12) permits us (in the semi-
classical limit} to describe the transition process
in terms of a single "interaction" coordinate q &

de-
fined such that the reaction velocity is proportional
to q, . To accomplish this, we define the coordi-
nates (q, }by

~q =Q A(i, k„)~„(k)qf„. (2. 13a)

The q& are normalized according to

(2. 13b)

A is a unitary matrix so that the value of is de-
termined by Eqs. (2.13a) and (2. 13b). A is speci-
fied by requiring that q& lies along the direction of
the change in the lattice ion equilibrium positions:

I7iqi=~ I'fi(bfi+b-a) . (2. 13c)
k)L

effect of the boson degrees of freedom is the modula-
tion of the spacing between the coupled electronic
states which in turn modulates the energy-transfer
rate between these states. ' Some insight into the
analytic origin of "irreversibility" in model calcu-
lations of energy transfer may be achieved by con-
sidering a semiclassical analysis of Eels. (2. 10). In
such an analysis, the boson coordinates are, by
definition, treated as specified, classical variables.
In addition, we confine our attention to the slow-
electron-transfer case" ~,i )) T )y.

We begin by making the transformation

—z
C, =C,'exp — [E',"+Z Vf'„(bf„+b'„-„)

kX
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The nuclear potential energy is invariant to the

unitary transformation

a~ +(k}qfi=ZM 2 q& . (2. 13d)

The set of coordinates {q,}are not solutions of the
nuclear Hamiltonian. However, in the semiclassi-
cal analysis, the lattice motion is not quantized
and hence the lattice kinetic energy does not enter
into the problem explicitly.

Energy transfer occurs principally in the region
in which the adiabatic potential energy surfaces
nearly cross, namely, E,'" -E,'"+ V, q, =0. If we

assume that in this region the interaction coordinate
is moving uniformly in time, q, =q,t, and (U»l is
approximately constant, the differential Eq. (2. 1)
is in the form used by Zener, "

E*=2 (u / Vi(Ei —Ea -~ Vi/(u ) (2. 18b)

This is the limit considered by Robinson and

Frosch" although they did not obtain an analytical
expression for the transition rate. In the strong-
coupling limit lU&2I »8 Vqq& we obtain

-8 +/eT
exp(- q i/e'"')

2pKT
0

2

x 1 —exp — —~ qgdqq . 2. 17
aV, q,

The integral is easily evaluated in analytical form
in two limits. In the weak-coupling limit ] U&2 t

«l Vgq g,

(2v)'" I Uig I'~ exp( E'//-/T)
( )12 2$ Vi(aT) f ~

2~ 0 g (E 0) E(oi V
'

$}C 1~a C 0 (2 14)
h Pi2(T) = ((u/2v}exp( —E ~/~T) . (2. 18)

The solution of Eq. (2. 14) subject to suitable initial
boundary conditions gives the probability that the

system will undergo a nonadiabatic jump to state 2

if it is initially prepared in state 1. Zener ob-
tained, in the limit that q, -~,

I c2(qi) I' =1-e~( -2vl U12I '«v iqi) (2. »)

We next introduce irreversibility into the calcula-
tion by imposition of a boundary condition. We
argue that as the lattice motion is rapid relative to
the energy transfer, the probability of an electronic
transition is the product of the transition probability
for a fixed value of the {q„q;j, ICz(q, ) I, and the
statistical probability that the phase point {q„q,)
is achieved, i.e. ,

f . .fg;(d. q, dq, )Pi2(q;, q, )g, e "''" "'
12' j- .2 22

f fg e i@i+It i@I )/Rlc

(2. 16)

In practice, this integral will be a double integral
over the interaction coordinate and its time deriva-
tive because these are the only variables on which
Pia depends. Equation (2. 16) is of the form of a
typical reaction-rate calculation in which the irre-
versibility hypothesis is implicit in the assumption
that if the reaction occurs, the phase point is un-
likely to return back over the energy barrier into
its initial value. This particular aspect of the
theory can be corrected in our case by use of an
appropriate form for Pi&(q„q, }. ' The important
point for us here is that the use of Eq. (2. 16) rather
than actual solutions to Eqs. (2. 10) has, by imposi-
tion of a boundary condition, imposed irreversible
behavior on the energy transfer.

The average transition rate from state 1 to state
2 obtained from Eq. (2. 16) is given by

Thus in either limit the energy transfer occurs with
the activation energy given in Eq. (2. 18b). In the
strong-coupling limit it also is independent of the
interaction matrix element I U&2( .

If we attempt to extend the above analysis, for
instance, by more accurately describing the nu-
clear motion in the region of crossing, we encounter
difficulties inherent in the semiclassical approach.
By adopting a single configurational coordinate we
have drastically reduced the number of degrees of
freedom. We have avoided multiply periodic solu-
tions by adopting suitable boundary conditions, but
by so doing we have obscured the question of how
the 3N degrees of freedom and phonon dispersion
enable one to obtain irreversible energy transfer.
In Sec. III we present the quantum-mechanical
solution in the linear-response limit. Phonon dis-
persion is seen to be important in establishing
criteria for conservation of energy. In Sec. III we
present a formal analysis of the exact quantum-
mechanical solution and discuss the nature of the
time-dependent problem, when all of the degrees of
freedom are considered.

III. LINEAR-RESPONSE THEORY

In this section we present the solution for the
energy-transfer rate from the electronic or exci-
tonic state 1 which is assumed to be in thermal
equilibrium with the surroundings to the second or
final state 2. The result is well known for the case
in which U&2 represents an interaction with the elec-
tromagnetic radiation field and the transition rate
per frequency interval determines the spectral dis-
tribution function. We present it here for the
case of energy transfer between impurity ions in
order to contrast our results with the familiar re-
sults of Forster and Dexter. ' These authors
made the following assumptions: First, the magni-
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where

efs He-fs (s. Ib)

S=i 2 a, a(Z [Vf~)(biz —b(f„)/ft&o, (k)] . (3.1c)
f=1, 2

The effect of this transformation on the phonon

coordinates is to shift the equilibrium positions
from which ion core displacements are measured.
The new equilibrium positions are determined by
the occupancy of the electron states,

&a, = efs &C„e

= b I„-Z ( a, a( V „"„/t(d), (k ) . (3.2)

A polaron shift is added to some of the electronic
matrix elements via the operator identity

E(((((((-=[EI"-Z
~ Vg„~ '((( (((/tf(dg(&)] (((((( (3.3)

tude of the interaction which is responsible for the
radiationless energy transfer H« is small compared
to the separation of the eigenvalues of H1+H2+ H„,h

+H,h and is independent of the lattice ion vibrations,
i.e. , H»=(U('2's, ((z+H. c.). As a result energy
transfer occurs between BO states for which the
initial and final energies are equal. It is further
assumed that the electron-phonon Hamiltonian may
be separated. Hel-ph He1-ph+H e1 phd that is, V~
~ 0~V„-„=0. This approximation defines a quasi-
molecular Hamiltonian which is valid if strong
coupling occurs only to localized defect modes or
molecular vibrations. It also may be useful if one
can neglect the effects of the lattice vibrational
kinetic energy. In that case the set of normal coor-
dinates may be transformed to a set of "interaction
modes"" which describe the motion of lattice ions
directly coupled to the defect center. This enables
one to separate the electron-phonon Hamiltonian if
the two defect centers are coupled to different lat-
tice-ion vibrations. The interaction modes, how-
ever, are not normal modes of the defect lattice
Hamiltonian. %e wish to show that an additional in-
teraction mechanism results if both ions are coupled
to the same normal-mode lattice vibrations. In
addition, we present a useful canonical transforma-
tion for removing the linear coupling to the lattice
ion displacements which is valid independent of the
use of linear-response theory.

The model Hamiltonian for the energy-transfer
problem is obtained from E(I. (1.6) by substituting
the hole-electron annihilation operator a, for the
cf's and using the Ef "s and V»'s defined by Eqs.f

(2.1) and (2. 4b):

[Ef"+2 Vr (bf)) + b' f.}]((( a( + (U» at a, + H.c.}2

f~i, 2 kL

+Z g(()),(k) [bf„bf„+ ].~ (S. Ia)

Ne define the canonical transformation'

The hole-electron operators are transformed ac-
cording to

fefa, =a, e

oi + VE1(bk)) b-il)/g L(k}
R)i

whence

aa=aae'fe'jj f j

j=a a e' 'je'fj,
where

Qf j ——Qf —Qj

8((=21m E VI„VI„/II ())~(k) .

(3.4a)

(s.4b)

(3.6a)

(s. 6b)

(3.5c}

The transformed Hamiltonian is given by

H = Ho+ Hf~t +8y

where

H0
f=1, 2

Hfgt U12e
' 12e' 12afa2+H. c.

(s. 6)

(3.7a}

(3.7b)

H„= Z (bf~„b„~+~i)tw„(k) . (3.7c)

P)2(&) =(2((/tf')ImGr(0), (3.Sa}

imG, (~) = f dt e("(((e'"o'H„(e ("o(H
m()0

(3.Sb)

In the transformed basis, the Green's function is
particularly easy to evaluate. The well-known'
result is

(0)
ImGr((d)=

~ U(2~ e ~' ' ' f dte " "e~' "
(3.Qa)

(3.9b)

(7 t) ueg(( )tf( I) -(&sg(j)t (3 9

&(k &) = (v;, —v„-„)/g~„(k), (s.9d)

z(f)l r —1)e (3.9e)

I'fg = E1 —E2 .(0)— (3.Sf)

The perturbation theory result exhibits two im-
portant features. First, the factor exp[-i
&& (~ —~(0))t] insures that energy transfer will occur

In time-dependent perturbation theory, the proba-
bility per unit time for a transition or the transition
rate is simply related to the thermodynamic Green's
function, ((H„,(t)H„,(0) }}r, for the interaction
Hamiltonian where ((. . .}) denotes the thermal
average at the absolute temperature F36:
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xP„-„(T, t) . (3.10)

Although P pl is periodic in time, (t)(T, t)- 0 for
large t. Its asymptotic behavior is determined by
peaks and discontinuities in the phonon density of
states. '

If we assumed that the two defect centers coupled
to different lattice modes, the cross terms mul-
tiplied (V„-l V„-„) would vanish. Neglecting these
terms leads to the Forster-Dexter results:

ImGFD((l}
l

U
l

2e-ol(T, o)e-o2(T, 0&

x j -iu& t ol(T, t) t'2(T, t) dt
(0)

t (3.11a)

d t(T, t) = Z, [l V„-'„l'/k'~'„(k)]P„-,(T, t) . (3.1»)

The Faltung theorem gives

IU
ImG (0)= ' ' ' F ((D —(D' ')F (o&)d(D (3. 12a)

oo

where

F ((d) -t)t(T, O& J &
tttttt(T, t) )dt(d

~t&o
(3. 12b)

Equation (3.12) implies that the energy-transfer
rate is proportional to the integrated overlap of
the emission band of the sensitizer and the absorp-
tion band of the activator. This is true only in the
absence of the phonon-induced cross terms.

The importance of the cross term in Eq. (3.10)
arises by virtue of its adding R-dependent terms
to ImGT(0). For instance, in the case of nearest-
n ighbor coupling to acoustical phonon branches,
using a Debye spectrum, ~=v, k, a crude long-
wavelength approximation to the coupling functions
m Eq. (2.6), V2„=fr f rka(K/2(D) ', where a is an
average lattice constant, and converting the sum in
Eq. (3. 10) to an integral, we have

only between states of essentially the same energy.
The second important feature is the dependence of
the energy-transfer rate on the difference in the
exciton-phonon coupling constants. Since, in the
energy-transfer problem, 1 and 2 refer to the hole-
electron states on the sensitizer and activator, re-
spectively, each coupling constant is itself a dif-
ference between the ground- and excited-state
value. n(k&() is a measure of the net change in the
coupling to the kith mode which occurs in the en-
ergy transfer. Even for identical impurities a(k&()
will not vanish if the impurities are located at dif-
ferent lattice positions.

We wish to sketch the solution of ImG(((&) and

compare our solutions with that obtained by Forster
and Dexter. ' From Eqs. (3.9b) and (3.9d)

y(T, t) = & [(l v,'-, l'+
l

v„'-, l'-2l v„-'„v2'
I
)/+'~,'(k)1

(T t) 2Q f 1 f2 ( D s)
r

ImGT(0)(x: R "sin((D'"R/Vs), (3.14)

n = 3 in our example but, in general, n & 1 and the
inter action is anisotropic.

In the strong-coupling limit (t)(T, t)» 1 it is im-
portant to keep the R-dependent terms in the ex-
ponent. In this case, our simple model predicts a
contribution to the shift in the resonance frequency

~'ccR 3

and a change in the width of the line 0 ~ by an a,mount

acr' R 4

in the semiclassical limit, defined by Eq. (3.16a)

b, cr~~R ' .

sinkR
Pl, (T, t)kdk

0
-3

r
kp

x a sin(kR}P, (T, t)d(kR) .
0 (3. 13)

Thus if P2(T, t) does not depend strongly on k, e. g. ,
near T 0, -we expect a 1/R dependence in the limit
kpR»1. Hence this term will decrease in impor-
tance relative to the diagonal terms in l f'„j and

I f„I at distances greater than one unit cell length.
The explicit R dependence is, of course, a con-
sequence of our primitive assumptions about the
nature of the phonon coupling function. However,
the fact that a lang-range (but anisotropic) inter-
action results from such cross terms is a general
result for both transverse and longitudinal phonons.
On the other hand if strong coupling occurs to
acoustical or optical phonons near k =0, there will
be little range dependence of the interference term.
In this case, the cross term always will be impor-
tant because the coupling of the phonon field to the
two sites is coherent rather than incoherent. Cou-
pling to lattice phonons near the zone boundaries
leads to a rapidly oscillating R dependence. Final-
ly, in the case of coupling to (the same) local mode
vibrations, the cross term will be important. Such
a case can occur, for instance, when the ions are
next nearest neighbors.

The above consideratinns are relevant in the limit
that t = 0 in which they give the R dependence of the
(Debye-Wailer} renormalization factor, e "' '".
However, the t-dependent term e "' '" also modi-
fies the effective impurity coupling. For example,
in the weak phonon coupling limit, expanding the
exponent and keeping only the first-order term,
Eq. (3.10), leads to a schematic R dependence of
the cross term of
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As we have noted, it is instructive to evaluate
Eq. (3.9) in two important limits. At high tem-
peratures or for systems involving a large change
in the electron-phonon coupling between the initial
and final states, (t)(T, t)» 1 so that the exponential
factors in (t)(T, t) can be expanded. The first time-
dependent terms will damp the exponent exp[(t)(T, t)]
before the expansion is invalid. The result is

(S.20)

Expanding exp[(t)(0, t)] and treating one branch gives

P (0)
2

i
U 12e 0(0, 0)

2 2- t(toi - Ntoig)t - NS~t

imGr(0)= ~U»~'J Cte'" " "e

=
~
U»~2(v 2/o) exp[-(0) '- (d(0))2/4o2],

(3.15)

0) = 2 2
~

6(k)(}~2(d12(k) coth[tf(d&(k)/22T],

22
~

U [2e-o(o, o)
2N

(~(0) t)t ~)2-
x Wv exp—

(S.22)

Wx p„.
(3.21)

The energy-transfer rate is seen to depend sensi-
tively on the condition

In the semiclassical limit

coth(tf(0„( k)/2 KT)=2 sT/K(d„(k),

o = Z
~

V„"~—V 2~1] sT/tl (0„(k) .

(S. 16a)

(3. 16b)

where N corresponds to the number of phonons
emitted.

At higher temperatures both absorption and emis-
sion processes must be considered. It is easily
shown that for a narrow phonon distribution around
(d) y

Correspondence with the semiclassical expression
Eq. (2. 18) is achieved by making the identification

P (T)
i

U
i

2 - (0T, 0P)

N~

—, sT V(2/!f2+

and from Eqs. (3.8a) and (3.15)

(S.17) (0)(0) Q 0) )2
x u vexp— v NP„K„(T),

(22)'"~!U„!'
P12(T) =

(V2 ~T)1/2!I

-~ [E -)E2-(-2V/ (}1x exp 2@2 y

which is identical in form to Eq. (2.18). (lt differs
by a normalization factor of 42. )

At low temperatures and weak or moderate elec-
tron-phonon interaction, the expansion of the ex-
ponents is not valid and one must consider multi-
phonon processes. These may be obtained by ex-
panding exp[@(T, t)1. Assuming T 02nd adopti-ng
a Gaussian to represent the phonon density of states
of a given phonon branch weighted by the electron-
phonon coupling, we obtain

P(0 t) Q
~

g ~2 [ 1 1 /4lC] el d~1)
2&2 P,

(3.19)
where n „ is equal to n(k)() suitably normalized and
evaluated near a peak in the weighted density-of-
states distribution for the & phonon branch. &, is
the frequency corresponding to the peak and J3), is a
measure of the width of the phonon dispersion for
the strongly coupled branches. Evaluating Eq.
(3.19) gives

where

K T =
1 exp(s!I (d,/sT)

,.„s!(t)t-s)! [exp(g 0)„/)(T) -1]"-"
(3.23)

K„(T) is a temperature-dependent factor. s is the
number of phonons emitted in the energy-transfer
process and N is the number emitted minus the
number absorbed K„(T).—[coth(R (d „/t&T)]" at high
temperatures and K„(T)- 1 at low temperatures
yT «e{d„.

The energy-transfer rate based on the model
Hamiltonian, Eqs. (l. 1) and (3. 1a), in the semi-
classical and linear -response limit are contained
in Eqs. (2. 18}, (2. 19), and (3.8}-(3.10). The use
of a coherent as opposed to incoherent superposition
of electron-phonon coupling amplitudes in the initial
and final states to obtain a net coupling amplitude
is the major distinguishing characteristic of this
model from the Forster-Dexter model. " ' This
coherent superposition leads, in turn, to an acti-
vated nature of semiclassical energy-transfer pro-
cesses in which the activation energy depends on
the polaron-shifted impurity-excitation energies
[Eqs. (3.15) and (3.18)].

In the quantum limit of weak electron-phonon
coupling, the transfer process depends on the sum
of the electron-phonon coupling constants and the
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shape of the phonon density of states, [Eqs. (3. 21)
and (3.23)]. It ceases to be thermally activated at
very low temperatures although the magnitude of
the transfer probability still depends approximate-
ly exponentially on the difference in the polaron-
shifted energy levels or excitation energies through
the energy conservation condition, Eq. (3.22).

IV. BEYOND LINEAR RESPONSE

Virtually all previous effect directed toward un-
derstanding radiative and nonradiative transitions
between impurity ion states in inorganic crystals
has been restricted to the linear-response limit.
This is not true in the literature on radiationless
transitions in polyatomic molecules where progress
has been made recently toward understanding spe-
cifically nonlinear effects, such as interference ef-
fects. ' ' " In this section we present formally
a solution for the time dependence of the energy
transfer which is valid to any order in the electronic
interaction in order to establish a criterionforthe
applicability of the linear -response formulation.
We adopt the stationary state approach used in the
study of polyatomic molecules in order to describe
the preparation of the system in its initial nonsta-
tionary state. Having removed H„» by means of
a canonical transformation in Sec. III, we can dis-
cuss an expansion of H„, and hence the dynamics
of the energy transfer to any order. In the limit of
a strong electronic interaction a system prepared
in the electronic state 1 will oscillate between the
two electronic states in a manner characteristic of
exciton or band motion. In the limit of weak elec-
tronic coupling, the probability that the system re-
mains in state 1 decreases exponentially. It is this
latter limit in which the energy transfer occurs ir-
reversibly which is encountered in most experi-
mental energy-transfer systems. However, the
existence of this limit is seen to be dependent on the
magnitude of the coherent difference in the electron-
phonon coupling constants and on the width of the
phonon dispersion. In this section analytical ex-
pressions for the strong- and weak-coupling limit
are given.

A, Initial Conditions

Let us first consider the problem of radiationless
electronic relaxation in order to define a suitable
set of initial conditions for discussing energy trans-
fer. At time t=0, the system is prepared in a set
of excited states by a radiation field. The total
transition rate to all the excited states of the system
is, assuming that first-order perturbation theory can
be used to describe the radiation field,

F ((d) = —Z
i (G i

e ~ M
i
E ) i

'II(E - if(d) . (4. 1b)8 E

E is the polarization vector and M the radiation field
interaction operator. The ground- and excited-
state vectors, IG) and I E), respectively, are linear
combinations of BO states (see Sec. IVD). I(&u} is
the intensity of the light beam per unit frequency
interval.

We assume that the ground state is essentially a
BO state I G) - I g) and the

transition

matrix ele-
ments connect I g) only to the BO states I e). The
BO states Ie) need not fall in the frequency range
of the incident radiation but may be borrowed from
neighboring frequency regions through an admixture
into the excited states,

(4. 2)

If the intensity of the exciting beam is fairly con-
stant over the band width hE of the excited states
then the system willbe prepared in the nonstationary
BO states I e ). If, on the other hand, the slit width

of the incident radiation is much more narrow than
the excited-state energy band then the BO states Ie)
will be only partially excited. This latter situation
has been discussed in connection with radiationless
transitions in polyatomic molecules. It is well
known that in solids a system prepared in a distribu-
tion of BO states ie) by an electromagnetic radiation
field will internally relax, that is, undergo aStoke's
shift, to a thermal distribution in times on the order
of 10 ' sec as the result of anharmonic terms in
the crystal lattice Hamiltonian. If this occurs in
times fast relative to energy-transfer transitions
between electronic states then the distribution at
time t = 0 given by the transition moment factors
l(g I e ~ M le) I 5(E —g(()) should be replaced by a
thermal distribution. Dexter and Fowler' qualita-
tively discuss an alternative view.

B, Time-Dependent Relaxation

The time dependence of the BO state le) is defined
by the relaxation function

4„(t)=(e
( exp[ (t//ti)Ht-]~ e), (4. 3)

which is the probability amplitude that the system
is in the state le) at time t if it is prepared in that
state at t =0. If we choosethetransformed BO basis
defined in Sec. III and write the time development
operator in the interaction representation, we have
aside from a phase factor

e ())=(e ) eeN —„— H ((')de' e), (4„.,ee)
r z

P„(T)=(llc)J, f(~)r(~)d~,

where

(4. Ia)
where

(t e) e ((/h )Hpt'ff (O)
((/h )Hpt' (4. 4b}



272 T. F . SOU LE S AND C. B. DUKE

g T(tl t2) ((Hint(tl) Hint(t2))) T (4. 5b)

is the correlation function for the interaction Hamil-
tonian given in Eq. (3.6). Higher-order terms are
simply related to linked integrals of products of the
correlation function. However, rather than evaluate
terms in the time-ordered expansion, it is more
useful to examine the gross features of the time
development in two important limiting cases.

In the limit of the strong electronic coupling de-
fined by extracting gT(t) from Eqs. (3.15) and (3.21)
in the semiclassical and quantum limits, respec-
tively, as

l U»l » on (sem1classical), (4.6a)

I U» I
exp(- n (t (~t 0) ) i isa "~& Pn IN!

(quantum), (4 6b)

the time-dependent part of gT(t) can be neglected
compared to the time-independent part in its effect
on the time-ordered expansion. g T(t) is replaced
by gT(0) ~ Also in this limit, the time-ordered ex-
pansion in Eq. (4.4) may be evaluated explicitly
giving

(t) 1
t gr(0) t gr(0)

-ee —
2)~z + 4)~~

=cos{[gT(0)]"t/tf).

(4. 7a)

(4.Vb)

The energy oscillates between the two states with
the angular frequency [g(0)]"'/tf. Nuclear motion
adds a small time-dependent modulation of the an-
gular frequency in this limit ~

In the creak -coupling limit,

I 'J12I "« (4.6a)

l U»l exp(--.'(t)l n„l "/(t)t!)"'«)tt)tp„tf. (4. 8b)

We use the generalized cumulant theorem of Kubo
to obtain

T represents the time-ordered expansion of the ex-
ponenti al.

The only nonvanishing matrix elements of the
time-ordered expansion connect the BO states Ie)
to the manifold of states Ig). Only the even terms
survive in the expansion of Eq. (4 ~ 4) ~ The first
such term is given by

1

4'«(t) = ~ dti dt2 g T(ti tz) + ~ ~, (4. Sa)
0 p

where

If we truncate the expansion following the second
term,

e (t.),= eee (- , I dt, dt, g( )). (4.ec)~2 1 2 )

The latter approximation is in keeping with the as-
sumption of weak coupling. For times which are
long compared to o ' or (WÃ P,)

'

e..(t)=eee[- t dcg, (c)) .
«CO

(4.10)

The time development of the amplitude 4„(t) is an
exponential decay whose time constant is given by
perturbation theory.

Davydov' has recently discussed the strong-
coupling limit ~ However, neither Davydov nor Dex-
ter, Forster, and Knox, ' in a recent critique of
Davydov's paper, have delineated the regions in
which strong and weak coupling were applicable.
Our definitions of strong and weak coupling should
be compared with the original definitions of Simpson
and Peterson. ' A good discussion of radiationless
energy transfer in cases of strong and weak coupling
was given by Robinson and Frosch' for molecular
energy transfer in a dense medium. Their P cor-
responds to our U» or Uizexp[--,'(t)(T, 0)] (&i I "/
(N I)" in the quantum limit. Also their & is an ap-
proximate measure of the width of a vibronic side-
band. ' & represents the matrix element of the in-
teraction of the molecular vibronic states with the
medium and the interaction of these states with each
other. It is assumed to be a constant. Our param-
eter P& on the other hand is a measure of the width
of the phonon dispersion weighted by the electron-
phonon coupling. In the semiclassical limit,
measures the total electron-phonon coupling. Nei-
ther of these parameters represent matrix elements
connecting vibronic states in the untransformed
Hamiltonian. Hence & is not an analog of either

or a. Also, Ep Ep does not play any role in our
distinction between strong and weak coupling. The
reason for this is that we have assumed that energy
transfer always occurs in a region where the initial
and final states are nearly degenerate, E' —E & U12 ~

Nonresonant energy transfer E' -E ) U12 occurs
with a frequency &» which corresponds to the en-
ergy difference. Similarly our classification
scheme contains only indirect analogs to other
models used in the study of radiationless transitions
in molecular systems. '

(t) g (1) (4.9a)
IV. RELATIONSHIP TO EXPERIMENT AND SUMMARY

no t1
y(t) = 2 (t)"

0 0

"ff-1

dt. (&H. (t ) H, (t„))&, . (4.9b)

The definition of weak and strong coupling given
in Sec. IV is based on the model Hamiltonian pre-
sented in the Introduction. This Hamiltonian was
suggested as a model for resonant energy transfer
between localized states in a crystal. Two impor-
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tant phenomena which are described by the model
Hamiltonian are the transfer of a localized excita-
tion between two impurity ions, and radiationless
electronic relaxation between two electronic levels
on the same impurity center. In a real system,
the preceding results must be generalized if there
are more than two interacting electronic or exci-
tonic states. Also "strong" and "weak*' interac-
tions exhibit different manifestations.

Strong interactions lead to a rapidly oscillating
energy transfer which is not generally observable.
Hence they are observed as energy level splittings,
such as the Davydov splitting between levels on

nearby identical ions. The weak interaction of the
radiation field samples a statistical average of the
lifetimes of the interacting states.

Energy transfer is observed when it is induced
by weak interactions. In this case the back-transfer
rate is negligible, so that the probability that the
system can be found in its initial state decreases
exponentially with time according to a rate constant
given by the sum of the rate constants for each of
the competing energy transfer processes,

4„(f)=exp[-Z/P, /(T)t ] . (5. 1)

The P„(T) are given by Eqs. (3.8) and (3.9} and

equations derived from them. They are functions
of the electronic interaction matrix elements U, &

and the distribution of differences in the phonon-
coupling constants for the hole-electron pair V~„.
For the case of energy transfer between two impur-
ity ions, it is well known that the parameters U&,

are sensitive functions of the distance between the
impurity ions. They may be dipolar or higher mul-
tipolar in character or may decrease exponentially
with distance if the interaction is through an ex-
change mechanism. ' In Sec. III we pointed out
that the distribution of coherent differences in the
phonon coupling, Vp„= V» —V», is also a sensitivej. 2 ~

function of the relative positions of two ions in the
lattice. The detailed R dependence was shown to
be R for a simple model system [see Eq. (3.13)].
In general, the R dependence of the difference in
the electron-phonon coupling is determined by the
nature of the electron lattice interaction and the
defect lattice dynamics. These are seldom known
even for the simplest of cases.

There are two qualitative effects of the cross
term appearing in Eq. (3.10) on the energy-transfer
rate. First, there may be a large short-range con-
tribution to the renormalization factor, exp{- P
&&(T, 0)}. For instance, for two identical ions
coupled to bulk lattice modes,

p(T, 0) =2 2i Vhh/0'~&, (k)ih(1-cos(k R))

x cot [8~„(I)/au T ] . (5. 2)

The interference term approximately vanishes if

(0 I)// eNh~h/ Th
12( } N I ( g hhr /hI)N ~N

(5.4a)

N=(E, —E,)/K~„. (5.4b)

A value of N corresponding to the emission of around
6 or less phonons gives a transition rate which
competes with radiative transition rates of around
-10 /sec. This energy-gap law together with the
temperature dependence indicated in Eq. (5.4) has
been verified in measurements of multiphonon re-
laxation of excited states of several rare-earth ions
in crystals.

The result also suggests that energy transfer be-
tween rare-earth ions will always be of the weak
irreversible type, Eq. (4.8), except perhaps if the

phonon coupling occurs uniformly throughout the
Brillouin zone but significantly reduces g(T, 0) if
coupling is strong near k= 0. Coupling to local
modes may lead to large, short-range interference
effects. This is important whenever energy trans-
fer occurs predominantly between nearest neighbors
or next nearest neighbors (for instance, when it
occurs by an exchange mechanism).

The second important effect of the phonon-induced
cross term is its creation of a long-range tempera-
ture-dependent modification to the interaction U&&.

For instance, in the case of a weak electron-phonon
interaction when we can expand exp[- Q(T, 0}
+ g(T, t)], the first terms in the expansion give a
transition rate of the approximate form

Py(T)
l

U
l

1 ftR)c th( &' )
~ . . t5. &)

In our simple model, Eq. (3.13), the second term
is proportional to R and multiplies I U;& I adding,
for example, an effective quadrupolar interaction
if I U&, I was dipolar in character. The additional
range-dependent terms have a characteristic tem-
perature dependence and might be isolated by study-
ing the combined effects of both temperature and
concentration on the energy-transfer rate. In gen-
eral, their magnitude and range depend on the na-
ture of the electron-phonon coupling. Multiphonon
processes would add higher "multipolar" interac-
tions.

In experimental systems, it is often difficult to
estimate the magnitude of parameters appearing
in the expressions for energy transfer. Dexter
extimated that U&& might correspond to a jump time
of 10 ' or 10 "sec for next nearest neighbors in-
teracting through an exchange mechanism in alkali
halides. Estimating I b „I for trivalent rare-earth
ions from the relative intensity of the appropriate
one-phonon sideband to the no-phonon line appearing
in a typical absorption spectrum to be around 0. 1
and g„-10' /sec, we obtain from Eq. (3.23) [taking
s =N in (3.21)]:
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no-phonon lines are degenerate (N = 0).
In summary, our main result in this paper has

been the definition of a schematic model Hamil-
tonian, Eqs. (1.1)-(1.6) and the analysis of the
electronic energy transfer predicted by this model.
The model describes a wide variety of phenomena
associated with electronic transitions which occur
in the presence of electron-phonon or orbit-lattice
interactions. The semiclassical calculation of the
energy-transfer rate given in Sec. II was adapted
from a calculation of electron-transfer rates in
solution. ' The linear-response theory analysis,
Sec. III, which avoided perturbation theory in the
electron-phonon interaction was adapted from one

of phonon-broadened impurity ion spectra. The
origin of irreversibility in the energy-transfer pro-
cess was discussed in Sec. IV. The schematic
model and the insight obtained from its analysis is
relevant for the description of energy transfer in
these and other areas. ' '3' ' '~ '4 '44 In the case
of energy transfer, our schematic model constitutes
an alternative to the Forster-Dexter model and re-
duces to it in a well-defined limit. Using the sche-
matic model, we have succeeded in giving a qualita-
tive distinction between weak and strong coupling,
demonstrating explicitly that the weak-coupling lim-
it describes the empirical systematics of non-ra-
diative decay in rare-earth-doped phosphors.
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