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above 3x 10' V/cm, all the trapped electrons will
be excited into the conduction band, and carrier
densities will be constant. Therefore, the linear
dependence of current on electric field suggests
that the trap-free electron mobility will be inde-
pendent of electric field between 3&&10' and 1~10
V/cm. Among several possible mechanisms for
the constant mobility, we will consider here the
effect of the hot-electron-caused disturbance of
the phonon distribution. Because of the high rate
of phonon generation by hot electrons, and the
weak phonon-phonon interaction at 4. 2 K, it is ex-
pected that significant deviations from the thermal-
equilibrium phonon distribution might be found at
4. 2 K. This idea was presented theoretically by
Paranjape" and Conwell, ' and demonstrated in
the case of covalent semiconductor such as n-type
germanium. ' In polar semiconductors, the same
mechanism as that in covalent semiconductors is
assumed for simplicity. According to Paranjape,
when the scattering due to acoustical phonons pre-
vails over other scattering mechanisms, the elec-
tric field dependence of the electron mobility is

described by the relation p.„~E " ' ' ', where

P is a constant depending on the phonon scattering
mechanism, in which the lifetime of phonons ~(q)
is expressed by r(q) = r(qo) (qo/q) . When P= 1, it
follows from this relation that the electron mobil-
ity should be independent of electric field. It is
estimated that P = 0 for the boundary scattering,
and P =1 for phonons with ene." es in excess of
thermal energies. The former is not important
here because the time of sound propagation is much

longer than the duration time of voltage pulse.
Therefore, the observed linear relation of the
current-vs-field curve between 3&& 10' and 1~ 10
V/cm is well understood by putting p= 1 as far as
the field dependence is concerned. Paranjape also
suggests that when the electron temperature be-
comes sufficiently large, the effect of such a
field-enhanced lattice scattering would gradually
decrease. The observed F- ' dependence above
1& 10 V/cm suggests the appearence of the normal
acoustical-phonon scattering effect.
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Low-Temperature Thermal Conductivity of p-Type Ge and Si
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The thermal conductivity, of lightly doped p-type Ge and Si at low temperatures is calculated
in terms of a single-mode phonon relaxation time due to elastic scattering by holes in the four-
fold degenerate ground state together with boundary and isotopic scattering. Good agreement
between the theory and experiment is obtained except at very low temperatures. The relation
between the present theory and the mechanism responsible for the heat pulse and ultrasonic
attenuation is briefly discussed.

I. INTRODUCTION

Large decreases of the thermal conductivity of

lightly doped n-type Ge at low temperatures are
caused by the phonon scattering by donor elec-
trons. ' ' Keyes' and Griffin and Carruthersa have
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calculated the thermal conductivity taking account
of the elastic scattering of phonons by the virtual
transition of electrons between the singlet and the
triplet of the donor ground state. Griffin and
Carruthers2 have also considered the resonance
scattering of phonons between the singlet and the
triplet. The results of their calculations, in par-
ticular Griffin and Carruthers's, are in good
agreement with the experimental data. '4 Recently,
Pomerantz' and Pearlman and Goff discussed a
rather large contribution to the thermal conductiv-
ity from the inelastic scattering of phonons by
donor electrons in Sb-doped Ge.

The effect similar to that observed in n-type Ge
has also been observed in lightly doped P-type Ge
and Si by Carruthers et al. ' and by Holland and
Neuringer, ' respectively. Pylee attempted to ex-
plain this effect by taking account of the phonon
scattering by impurity molecule ions, but failed
to give a quantitative explanation. Griffin and
Carruthers2 gave a qualitative discussion based on
resonance phonon scattering. They assumed that
the splitting of the quartet in the acceptor ground
state arises from the central cell correction. How-
ever, the quartet does not split unless static fields
of lower symmetry such as strains or magnetic
fields exist. Shimi u' considered the splitting of
the quartet by random internal strains due to dis-
locations and calculated the low-temperature ther-
mal conductivity of p-Ge by taking account of the
phonon scattering due to the virtual transition of
acceptor holes between the -split levels. The pro-
cess considered by Shimizu' is the same as that
considered by Keyes' and by Griffin and Carruthers
in n-Ge. Shimizu' showed that such a mechanism
does not explain the experimental data.

The purpose of this paper is to show that the
elastic phonon scattering by holes in the quartet,
which has not been considered so far, "gives the
thermal conductivity in good agreement with the
experimental data in p-Ge and p-Si except at very
low temperatures. The neglect of the small split-
ting of the quartet in our treatment is justified as
long as the energy of phonons, which makes the
main contribution to the thermal conductivity, is
much larger than the splitting. A brief discussion
is given on the scattering mechanism of low-fre-
quency phonons at very low temperatures. The
relation between our theory and the mechanism
responsible for the heat pulse and ultrasonic atten-
uation is also briefly discussed.

II. PHONON RELAXATION RATE CAUSED BY ACCEPTOR-
HOLE-PHONON INTERACTION

In Ge and Si, the valence-band edge and the
ground state of shallow acceptors have fourfold
degeneracy and I'8 symmetry. ' Accordingly, the
acceptor-hole-lattice interaction Hamiltonian is

of the same form as that for free holes near the
ge 13'14 i

X„,= 3 D'„[(Z'„- —,'J') e„„+cp]

+ —,
' D'„, [(Z„J,+ J,8„)e„,+ cp], (2. 1)

1/2

(n~ X„,
~

n') = Q ", f(q)(3 D'„)C,","'(a„+a~, ),2M',
(2. 3)

where

C",, = C",, = —C ~ = —C ~ = 2D(2q, e, g
- q„—e,„—q, e,),) )

C~= —C„= ,'&3[(q,e,„+—q„e„)—i(q,e„+q,e„)],
(2. 4)

C', = C, = 2WSD(q„e,„-q, e-„) —i ', v 3(q„e„+q-. ,e,„),

g14 g23 0

and

D=D'„/D„', ) f(q) = (1+ —,
' a*2q2) ~. (2. 5)

Here, the superscripts 1-4 stand for M~ = —,',
——,', ——,', respectively, M is the mass of the crys-
tal, a„and a„are the annihilation and creation
operators for the phonon with wave vector q in the
t branch, „ is the angular frequency, v, is the
velocity of sound, a* is the effective Bohr radius
of the acceptor hole, q is the unit vector along
q, and e, is the polarization vector of the phonon.
If q (sin8cosg, sin8sing, cos8) are the polar co-
ordinates of g referred to the (100) axes, then a
convenient set of orthogonal axes for e, is given by

e, (sin8cosg, sin8sing, cos8),

e, (- cos8 cosP, —cos8sing, sin8),

where J is the ath component of the angular mo-
mentum operator for J= —,', e,z is the conventional
strain component, "and cp denotes the cyclic per-
mutation with respect to the indiceS x, y, z. The
deformation potential constants D'„and D'„. are, in
general, not the same as those for free holes be-
cause the wave function of the acceptor ground
state has a d-like part as well as an s-like part. "

We assume that the four levels of the ground
state are identified by the quantum number M~
(= —,', ~, —2, —-, ). The corresponding envelope
functions are given by

[(&&43)-&/2 e-)/a ]c, (2. 2)

where 4„ is the eigenfunction of M~ and the small
amount of the d-like part is neglected in the orbital
function. Expanding e z in phonon operators, we
find that the matrix elements of the hole-lattice
interaction between two acceptor states I n) and
tn') are given by
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e,(sing, —cosg, 0), (2. 6)

where the subscripts 1-3 stand for the longitudinal
and two transverse modes, respectively.

We shall now calculate the scattering rate of a
phonon (q, t) into all other modes (q, t ) by the
hole-phonon interaction. The single- mode relaxa-

I

tion time 7'„ is defined by~

I/T, q
——Q W(qt q 't'),

qlt t
(2. 7)

where W(qt-q't') for the elastic phonon scattering
in the second Born approximation is given by

W(qt-q't')n„(n, , +1)=—PN„(T)

(n 'IX„,(q 't ')
I m)(m IK„,(qt) In) (n 'IX „,(qt) I m)(m I R„,(q't ') In)

n m Em —En - "~qt En+ @~q t' (Zn Zn. )

x 6(k&u,., —h&u, ,) (2. 8)

Here n„ is the occupation number of the phonon

(q, t), E, is the energy of the hole in the o, th state,
N (T) is the number of the acceptor holes per unit
volume in the n th state, n, nz, and n stand for
the initial, intermediate, and final states, respec-
tively. The matrix element(m IK„&(qt) In) denotes
the (q, t) component of (mlK„, In). Using Eqs.
(2. 3), (2. 7), and (2. 8), we obtain

f'(q) (-'D-')'ZN. (T)ZZ
2
" f'(q')

gn', m Cmn ™at' qt + qt q' t'

m Em En @ qt Em n+ q't' ( &„=E„)

x 6(k&u, ., —h~„), (2. 8)

where p is the mass density.
The excited states of the acceptor in Ge and Si

are about 7 meV ( = 80 'K) and 30 meV ( = 330 'K)
above the ground state, respectively, so that the
transition process involving these excited states
hardly contributes to I/r, , and is neglected in this
paper. The angular frequency of typical phonons
which carry the heat at a temperature T is about
4kT/h. If we assume that the splitting of the quar-
tet caused by various perturbations is much smaller
than 4kT, then Eq. (2. 9) can be written as

QP
. f2 ~ (2 ~, )4 P N (T) 5 Q s.ngidgldy f2 ~t' Q (gn'm gmn Cn'm Cmn

Vt n n v',. v, .

by putting E„=E„.=E
In the calculation of the thermal conductivity

K(T), the angular average of I/r„, i.e. ,

sine de dP
4pg J ~at

is required. From Eqs. (2.4), (2. 6), and (2. 10),
we obtain

1 N&et (~ Da )4 fa ~a&

7'„100mp h v,
' " v,

C

Here, N is the number of acceptor holes per unit
volume, and vi and v, (equal to vs) are the average
velocities' of sound for the longitudinal and trans-
verse modes of the phonon, respectively.

III. CALCUL. '.TION OF THERMAL CONDUCTIVITY AND
COMPARISON WITH EXPERIMENT

Taking into account the boundary and isotopic
scattering as well as the phonon scattering by ac-
ceptor holes, we shall evaluate K(T) in lightly
doped P-Ge and p-Si at low temperatures. The
thermal conductivity is given bya'8

where

w, = 24+48D +8D,

Ra= 16+ 37D + 7D,

se3 ——20+ 35 D + 5D .

a4T' 1
"" X4e"

K(T)=,„,Q — (, )a
~ dx,

vt y 0

where

(3. 1)

(3. 2)
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TALKEE I. Values of physical parameters used in the
calculation of the thermal conductivity.

1 1 [ I 1 1

Si

p(gcm 3)

v~(cm sec"~)

v2(cmsec )
N(cm 3)

L(cm)
A(sec 3)

a*(A)
D'„(eV)
D'„(eV)

a Reference 7.
b Reference 8.

5. 35
5. 37x105
3.28x105
2. 3 xlo"' '
03a
2. 40x10-«&

37
4 2

4. 9

2. 33
9.33 x105
5. 42 x105
4. Ox1O" b

O. 7'
1.32 x 10-4»
]5d
3.2
3. 8

'Reference 2.
dReference 14.

I ~
CD

E
C3

Here, x= hv«/kT-, 1/vs, and 1/v, are the relaxa-
tion rate of the phonon by the boundary and isotopic
scattering, respectively, and Iis t, he Casimir length.
The numerical values of physical parameters used
in the calculation of K(T) are listed in Table l. The
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FIG. 2. Theoretical and experimental (Ref. 8) curves

of the thermal conductivity in B-doped Si as a function of
temperature.

0.1

l
I

I / I I I

1.0
7 (K)

10

FIG. 1. Theoretical and experimental (Ref. 7) curves
of the thermal conductivity in In-doped Ge as a function
of temperature.

theoretical curves of K(T) of P-Ge and P-Si are
shown together with the experimental data by
Carruthers et al. ' and by Holland apd Neuringer
in Figs. 1 and 2, respectively. It is seen that the
agreement between theory and experiment is satis-
factory except at very low temperatures.

VVe would like to remark on the values of the
deformation potential constants D'„and D'„. used in
our evaluation of K(T). As is seen from Ec(. (2. 9),
the single-mode relaxation rate depends strongly
on the values of D'„and D'„.. As far as we know,
the values of D„' and D'„. for the acceptor state have
not been directly measured in experiments. Ac-
cording to the effective-mass theory, '4 these con-
stants are somewhat smaller than the deformation
potential constants D„and D& at the valence-band
edge. However, such a conclusion is not very con-
vincing because of limitations of the effective-mass
theory. The experimental values of D„and D„. at
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3 and 4, respectively. The factor x4e"(e"-1) in
the integrand in Eq. (3.1) is also plotted as a func-
tion of x in Fig. 5. Remark that x=1 for &,&=1.3
x10" sec-' at T=1'K. From Figs. 3-5, we can
see that the relaxation rate due to the hole-phonon
interaction for low-frequency phonons, which makes
the main contributiontoK(T) at verylowtempera-
tures, decreases proportionally to &„with decreasing
frequency. Let us consider the process by which
low-fr'equency phonons are strongly scattered. As
shown by Shimizu, ' low-frequency phonons may be
strongly scattered if small splittings exist in the
acceptor ground state. Besides random internal
strains due to dislocations, the Jahn-Teller effect
may give rise to such a small splitting. In this
paper we shall not calculate K(T) at very low tem-
peratures.

At higher temperatures, 1/T.„becomes also in-
effective as is seen from Figs. 3 and 4. In this
case, it should be remarked that for phonons sat-
isfying the condition a*(tu«/v, ) ~ 2, 1/7'„depends
strongly on the effective Bohr radius a~ of the ac-
ceptor holes. It is also noted that the value of a*
determined by the effective-mass theory is, in

10
10/ 1 10"

03 (sec ')

i

5x]0'2 8
10

FIG. 3. Relaxation rate of phonons by the scattering
by holes (1/7«), by the isotopic scattering (1/Tl) and by
the boundary scattering (I/vs} in In-doped Ge (see Ref. 7)
as a function of the angular frequency ~ t. I stands for
longitudinal phonons, while T3 denotes the transverse
phonons in the angular average corresponding to w& in
Eq. (2. 12) in the text.

I

co 1Q

the valence-band edge in Ge and Si have been ob-
tained by several authors:

D„=S.2 eV, D„.=6. 1 eV (Ref. 17);

D„.=6. 2 eV (Ref. 16);

D„=4.2 eV, D&=4. 9 eV (Ref. 19)

in Ge; and

D„=2.0 eV, D+=2. 7 eV (Ref. 20)

in Si. The values of D„' and D'„. listed in Table I
have been tentatively chosen so as to give a good
agreement with the experimental data.

IV. DISCUSSION

1P

1P12

(0 ( sec ')

1P13

As is seen from Figs. 1 and 2, the hole-phonon
interaction discussed in Sec. II becomes ineffective
at very low temperatures, i.e. , T & O. 6 'K in Ge
and T&2'K in Si. In order to make this point
clear, we have plotted the relaxation rates 1/7„,
1/rz, and I/v's against (u„ for Ge and Si in Figs.

FIG. 4. Relaxation rate of phonons by the scattering by
holes (1/7«), by the isotopic scattering (1/zi), and by
the boundary scattering (1/vz) in B-doped Si (see Ref. 8)

as a function of the angular frequency e«. I. stands for
longitudinal phonons, while T3 denotes the transverse
phonons in the angular average corresponding to w3 in
Eq. (2. 12) in the text.
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h

0
0 10 12

FIG. 5. The factor x e"(e"—1) in the integrand of
Eq. (3. 1) in the text as a function of x=—S~«/kT.

Pomerantz and von Gutfeld~' have investigated
the scattering of phonons with typical frequency
, t = 2&&10" sec ' by acceptors in In-doped Ge

and In-doped Si by the heat-pulse method. They
found two interesting phenomena: namely, that

(i) longitudinal phonons are more strongly scattered
than transverse phonons in Ge, while in Si trans-
verse phonons are more strongly scattered, and

(ii) the phonon scattering in Ge decreases with
increasing phonon frequency, while in Si the scat-
tering increases with frequency. As can be seen
from Figs. 3 and 4, F,', (L) &7'„'(T3) for & & 1.5
x 10'~ sec ' in Ge, while 7,', (T,) &F,', (L) at v —2
x 10'~ sec ' in Si. Thus the phenomenon (i) can
be qualitatively explained by our theory. For the
explanation of phenomenon (ii), let us note the

general, larger than the true spread of the ground-
state wave function. Therefore, the discrepancy
between theory and experiment at higher tempera-
tures in Figs. 1 and 2 could be removed by choos-
ing a somewhat smaller value of a~ than that given
in Table I.

V. OTHER ASPECTS

following fact. Atoms in Si have an ionization
energy of Q. 16 eV which is about four times the
effective-mass value, so that a* is smaller than
the effective-mass value of 15 A. Therefore, the
frequency at which the maximum of 1/7, , occurs
shifts to higher frequency in Fig. 4. Figures 3
and 4 with above considerations give a reasonable
explanation of phenomenon (ii).

Finally, we shall make a brief comment on the
ultrasonic attenuation by acceptor holes. Pre-
liminary results for the attenuation of 9-0Hz shear
waves measured by Pomerantz'~ show that the at-
tenuation is typically about 10 dB/cm for X= 10'6
cm~ in P-Ge and P-Si. The attenuation coefficient
o.„for shear waves propagating along (100), for
example, by the elastic process discussed in Sec.
II is given by

Qqt =
7at Vt

(3+3D )N(uqq fa (o~~ (2 D~ )4
0

(5. 1)

with the help of Eq. (2. 10). Inserting the values of
parameters given in Table I and N= 10' cm ',
v„=5. 65 x 10' sec ', and v, = 3. 57 x 10 cm/sec'(Ge)
and 5. 86x10'cm/sec (Si) into Eq. (5. 1), we obtain
o.„=5 db/cm (Ge) and 0. 2 dB/cm (Si). Thus, the
attenuation due to the elastic scattering by the
quartet is smaller than the observed one, partic-
ularly in Si. This shows that the inelastic scat-
tering and the resonant absorption as well as the
elastic scattering by the ground-state split at
random by strains may be responsible for the ob-
served attenuation. Detailed discussion of the
ultrasonic attenuation in P-type Ge and Si will be
given in a separate paper.
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A technique based on the use of Wannier functions is employed to investigate the electronic
structure of the isolated neutral vacancy in silicon. The change in crystal potential produced
by the defect is represented as the negative of an atomic pseudopotential. Scattering phase
shifts are calculated for states within the valence band. These phase shifts are used to esti-
mate one major contribution to the formation energy of the vacancy; the change in the total
one-electron energy, which can be expressed as an integral of the phase shifts over the occu-
pied states. This quantity is computed and found to be equal to 23 eV.

I. INTRODUCTION

The object of this paper is to apply the tech-
niques of solid-state scattering theory' to the study

of the electronic structure of the single vacancy in

silicon. In a previous paper, the formation of
localized states in the band gap by both the single
vacancy and the divacancy have been studied by
similar techniques. In this paper, we will focus
attention on the changes produced in the one-elec-
tron wave functions of the occupied states, and on

the consequent changes in the total energy of the

system.
Because the present approach is different from

that which many other workers have employed, it
is useful to begin with a brief survey of a previous

paper. Most of the existing studies of the vacancy
in covalently bonded semiconductors have been
based on molecular-orbital theory, whose appli-
cability was initially proposed by Coulson and

Kearsley. The original calculations concerned
vacancies in diamond. Their work has been ex-
tended ' and recently applied to silicon.

' The essential idea of the molecular-orbital
method as it has been applied to this problem is
to separate conceptually the atoms in the immedi-

ate neighborhood of the defect from the rest of the

crystal. These atoms, together with the defect,
are regarded as forming a defect molecule. The

energy levels of this molecule are then calculated.
Although the concept of atoms in the immediate
neighborhood of the defect is ambiguous to some
extent, the usual practice has been to consider just
the four atoms which are nearest neighbors of the

vacancy. The four tetrahedral bonds which were

ruptured when the central atom was removed are
employed as basis states for the computation. The
orbitals are hybrid sP combinations directed to-
ward the center of the defect. Combinations of
these orbitals are constructed which belong to the
I, and F4 representations of the tetrahedral group.
Let these combinations be denoted v and t, respec-
tively. A configuration of the defect molecule may
be described i.n terms of occupation of v and t func-
tions, as v' t" ', where a = 0, 1, or 2, and n is the
number of electrons in the vacancy molecule (n =4
for the neutral vacancy; n = 5 if there is a net nega-
tive charge of unity, etc. ). For a given configura-
tion, one now constructs wave functions of proper
symmetry (eigenfunctions of 8 and S„where S is
the total spin), which transform according to the
irreducible representations of the tetrahedral
group.

The Hamiltonian used in the molecular-orbital
calculation of the structure of the vacancy includes
the interaction of each of the n vacancy electrons
with the nuclei and other electrons of the atoms
which are nearest neighbors of the vacancy, plus
the Coulomb repulsion of the valence electrons.
The energies of states coming from a single con-
figuration are determined as the expectation of this
Hamiltonian using the wave functions constructed
above. If states of the same symmetry occur in

different configurations, configuration mixing can
be introduced by calculating matrix elements of the

Hamiltonian between these states and solving the
resulting secular equation. The result is a set of
(n-electron) energy states for the system.

The principal objection which can be brought
against this procedure involves the concept of a


