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The electron drift mobility in GaAs has been calculated and extensively compared to experi-
mental data. Good agreement is obtained for a wide range of temperature and ionized-impurity
concentrations. Calculated results for the electron contribution to thermoelectric power are
also presented and compared to the small amount of existing data. Ionized-impurity scattering,
deformation-potential scattering, piezoelectric scattering, and polar scattering are included
for a nonparabolic conduction band with electron-wave-function admixture. Furthermore, de-
generacy has been incorporated without approximation. The formulation of electron scattering
by ionized impurities is shown to fail at sufficiently low temperatures because of the loss of
binary-scattering events. This feature probably obscures the expected failure of the Born
approximation, given the purity of even the best present-daysemiconductors.

I, INTRODUCTION

It has been shown in an earlier paper' that the
electron drift mobility in direct-gap semiconduc-
tors can be calculated in a convenient and accurate
manner by direct solution of the Boltzmann equa-
tion. Results were presented for. ideally pure ma-
terials, whereas there exists a widespread need
for a description of semiconductors containing
varied types and concentrations of ionized impuri-
ties. The latter situation is the more common ex-
perimental one, and its detailed characterization
would prove helpful in allowing a reliable impurity
analysis of crystals.

The present paper is particularly concerned with

~-type GaAs for which we give electron drift mobil-
ity and thermoelectric power (exclusive of phonon-
drag effects') as calculated for various tempera-
tures and ionized-impurity concentrations. The
mobility results are compared extensively to ex-
perimental data. Thermoelectric-power results
are also given, although rather fewer experimental
data are presently available. We find that the pres-
ent description of transport in a single spherical-
conduction-band minimum at the center of the first
Brillouin zone' (centered about the I'„point) is
sufficient over the temperature range from 20-600
K. Below the lower temperature, the model

chosen for ionized-impurity scattering is sus-
pect. Above 600'K, multivalley conduction involv-
ing satellite valleys of X&, symmetry is indicated
by the experimental data.

In Sec. II the matrix element for ionized-impurity
scattering similar to that of Brooks and Herring'
and of Dingle' is adapted to the present transport
calculation. A'e assume the band structure given
by Kane for zero spin-orbit splitting of the valence
bands and make no further approximation. The
admixture of s- and p-type wave functions into the
total electron wave function is also included. Mod-

ifications to the formulation implied by the inclu-
sion of degeneracy (i. e. , Fermi statistics) are
briefly stated although details of the derivation ap-
pear in another paper along with formulas for
thermoelectric power. Also in Sec. II we propose
a combination rule which allows us to estimate the
Hall-coefficient factor for several scattering mech-
anisms acting simultaneously when we are given
the Hall-coefficient factor for each scattering
mechanism acting separately.

Section III applies the formulation to a compari-
son between calculated and experimental results.
Mobility vs temperature is given for pure material.
Mobility vs free-electron concentration at 77 and
300'K is given for several compensation ratios,
as is thermoelectric power. Finally, we apply
the aforementioned rule regarding Hall-coefficient
factors to an analysis of mobility vs temperature
for two GaAs samples exhibiting ionized-impurity
scattering at low temperatures. The comparison
between theory and experiment below 10'K shows

that the calculated mobilities fall well below the

experimental values. The failure of the theory at
these lower temperatures appears to be caused by

the lack of binary-scattering events' by ionized

impurities. The Born approximation is valid for
all results discussed in this paper, and it is shown

that the failure of the Born approximation should

not be observable until crystals of purity several
orders of magnitude better than the best presently
available can be obtained. In practical situations
the failure of the present theory of ionized-impurity
scattering is the result of the loss of binary-scat-
tering events. At sufficiently low temperatures,
higher-order processes become dominant.

II. FORMULATION

The band-structure formulation provided by Kane

accurately describes the shape of the lowest con-
duction-band minimum in GaAs. This formulatiori
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includes the effects of higher conduction-band edges
(e. g. , I'(„) and spin-orbit splitting of the I'„„va-
lence bands. However, these latter two effects
provide unimportant influences (to perhaps a few

percent in mobility) on electron transport. ' There-
fore, we choose the band structure and electron
wave functions for zero spin-orbit splitting as dis-
cussed previously. '

The three most important types of lattice scatter-
ing' have already been incorporated'; these con-
sist of scattering by acoustic modes through de-
formation-potential and piezoelectric interactions,
and polar optical-mode scattering. We depart from
Ref. 1 and include ionized-impurity scattering as
well as degeneracy. Ionized-impurity scattering
can ordinarily be considered elastic ' so that the
electron energy remains unchanged following the
scattering event. In the spirit of the previous
work, ' we will incorporate these additional features
without approximation so that our only assumptions
are those of the band structure and the various
forms of electron scattering.

The matrix element of the shielded Coulomb po-
tential of a singly ionized center can be found in the
literature. " The nonparabolieity of the conduction
band enters as a multiplicative factor so that the
differential scattering rate s«rsee Eq. (13) of Ref.
1 which indicates how the differential scattering
rates are to be inserted into the Boltzmann equa-
tion] for ionized-impurity scattering becomes

S;; = J (1 —x) s;;(k', k) dk',

8;; = (e 1Vmd/8we2h k )[Dln(l+ 4k /p ) —B],

(5)

(6)

where m is the electron mass in vacuum and d
accounts for the increase in effective electron mass
at higher energies which is the consequence of a
nonparabolic band. d is given by Eq. (5) of Ref. 1.
The coefficients D and 8 are

2 ~
(k/ )2 (8-q&/gr

( +' - n ) /s 2'
1]2 (3)

0 p

where I4,
' is Boltzmann's constant and q is the Fermi

energy. The electron energy 8 is, of course, a
nonparabolic function of k= I k I and is given by Eq.
(3) of Ref. 1. The Fermi energy derives from the
band structure characterized by the effective-mass
energy gap S,*and the effective mass at the band
edge no* and from the given free-electron concen-
tration n. To calculate q, the following expression
is numerically inverted:

=(1/ 2)J" Ck2/(" """'+1)]dk

The differential scattering rate, Eq. (1), must
be integrated over all states k' to yield the net scat-
tering rate S;; for this process. One can show'

that for any elastic process, the difference between
the scattering-out rate and the scattering-in rate, '

called the scattering sate, is precisely the usual
relaxation rate, '

p

where the factor aa'+ cc'x accounts for nonparabol-
icity. The differential scattering rate s;;(k', k) is
the probability per unit time that an electron initial-
ly in the state characterized by k' will make a
transition into the state characterized by R. The
crystal momentum of the electron is Sk. N is the
concentration of fixed ionized scattering centers,

N= N'+N

where N' and N are the respective concentrations
of ionized donor and acceptor impurities. ep is the
low-frequency dielectric permittivity. The coef-
ficients a and c provide, respectively, the correct
proportions of s- and p-type wave functions for the
crystal momentum state Sk. a' and c' correspond
to Sk'. x is the cosine of the angle between k and
P. 8 and h ' are the energies of the k and k' states
and the Kronecker ~ function indicates that the
scattering event is elastic. The quantity P is the
inverse of the screening length for the Coulomb
potential. In the nondegenerate limit, for example,
I/P is the Debye length. In general, however, we
have

D = 1+ 2P c /k'+ 3P c /4k

8= [4k + 8(P + 2k )c

+(3p +6I8'k —8k )c /k ]/(p +4k )

(7)

(8)

In the case of parabolic bands, where c=0, we
have D= 1 and B=4k2/(P2 +4k ), and Eq. (6) yields
the previous result for Brooks-Herring scattering. '
The scattering rate due to ionized impurities, Eq.
(6), describes an elastic process and can be simply
added to the scattering rates for all other elastic
processes given in Ref. 1. Before we apply the
above result, we should point out that the derivation
of the scattering rate presumes that the scattering
events are purely binary; i.e. , the time required
for the deflection of the electron by the ionized
center is very small compared to the average time
between collisions. Clearly, this assumption will
fail at sufficiently low temperatures since the scat-
tering rate for ionized impurities increases rapidly
for decreasing temperature. To see this, we
merely note that the time required for the deflection
TD is about that necessary for the electron to travel
W && (screening length). For a nondegenerate
semiconductor with a parabolic conduction band,
we have
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TD = &pm /ne TABLE I. Hall factors.

where pn* is the electron effective mass. The
average time between scattering events is

r, = m*p/e, (10)

where p, is the electron drift mobility, and we re-
quire for binary scattering that vD & 7, or

Scattering mechanism

Acoustic modes,
deformation potential

Acoustic modes, piezoelectric
Ionized-impurity centers"
Polar-optical modes

Hall factor

xg ——3'/8 = 1.18
xH =45&/128=1. 10
xH = 3157t/512 = l.93
See Hefs. 15—18.

fr(k) =f(k)+ xg(k), (13)

where f is the equilibrium Fermi-Dirac distribution
and g is a small perturbation. The formula for the
perturbation distribution g has been derived else-
where' (the same notation has been followed in this
reference), with the result that g is given by a
finite difference equation. This finite difference
equation has been solved numerically by iteration,
as previously. ' The convergence is rapid so that
about four iterations suffice for an accuracy of 1%.
From g, the drift mobility follows directly. '

For the measurement of thermoelectric power

Q, one applies a small temperature gradient &T
to an open-circuited sample of material. ' The dif-
fusion of free carriers along the gradient develops
an electric field. The ratio of electric field to
temperature gradient equals Q. The details of the
calculation of Q can be found in Ref. V. We shall
only state the results applicable to GaAs in Sec.
III .

Since nearly all experimental data for mobility
are, in fact, Hall mobilities rather than drift mo-
bilities as are calculated here, we need to estimate
the correction on this account. The Hall effect
yields the free-electron concentration to within a
factor which is called the Hall-coefficient factor
r„(usually between unity and two). ' Henceforth,
we refer to z„as the Ha, ll factor and to a mobility
derived by the common assumption that r„=1 as a
Hall mobility p.„. The qua, ntity xH is known for
various scattering mechanisms acting independently
and especially for elastic processes. These are
given in Table 1 (r„ is calculated from Ref. 4).

p. '& e,/nm* .
We note that JU, decreases as temperature decreases,
and n decreases as temperature decreases, so that
Eq. (11) will eventually fail at low temperatures.
Equation (11) can be restated in an equivalent form
which simply requires the free-electron plasma to
be lightly damped, i. e. ,

(12)

where e& is the plasma frequency. Note that Eq.
(11) applies only when ionized-impurity scattering
is dominant. We will return to Eq. (11) in Sec.
III in connection with the experimental data.

Under the influence of a small electric field, the
total electron distribution function f r(k) becomes

~xH is calculated for a parabolic conduction band.
"S;; is assumed proportional to 1/k .

(14)

where p. is the drift mobility and the tL; are com-
ponent drift mobilities for each scattering mech-
anism acting alone. Next, we postulate that

1/r„p =— 1/p, a = g;1/ p,„;=—Q, 1/r„, p, , . (15)

where the p, „;are the component Hall mobilities and
the x„; are the corresponding Hall factors. Com-
bining Eqs. (14) and (15) leaves

K~ 1/u
&

gq 1/r„)M)

which allows us to calculate the over-all Hall factor
x„given the x„; and the drift mobilities. Of course,
Eq. (15) is not strictly true, in general, but mo-
bility errors thereby incurred are of second order
so that Eq. (16) should still be a useful formula.
We note only that Eq. (15) is true if Matthiessen's
rule is true. Because Eq. (15) cannot be proven
from Eq. (14), it must be regarded as an indepen-
dent assumption. We wi11 apply this rule in Sec. III
to comparisons between calculated drift mobilities
and experimental Hall mobilities.

III. RESULTS

There are several material parameters (e. g. ,
effective mass, energy gap, etc. ) required for the
calculation. The values of these parameters are
tabulated in Ref. 1 and those are the values used

Various calculations" ' have been made of r„ for
polar-mode scattering, the only inelastic scattering
process with which we are concerned, and we choose
to use those of Ref. 15 in view of recent experi-
ments. " Even though the various calculations dis-
agree considerabl, the correction on this account
is generally less than 30%, so that our over-all er-
ror in mobility should be less than 15%. Of course,
the various scattering mechanisms act simultane-
ously and sometimes several are of equal impor-
tance in practice. Hence we need a method by which
to estimate the combined Hall factors. No rule for
this purpose appears to be available so that we will
construct the following combination rule. Vfe first
assume Matthiessen's rule
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FIG. 1. Electron drift mobility of pure (intrinsic)
GaAs vs temperature. The solid curve is calculated.
The dashed portion of the curve above 600 'K indicates
the onset of multivalley conduction which is not included
in the present formulation. The data points represent
measured Hall mobilities: o, Ref. 21; &&, Bef. 22;
&, Ref. 23; 0, Ref. 24; 4, Ref. 25.

here, with the exception of the acoustic deforma-
tion potential E, . In accordance with the sequence
of values of E, for II-VI semiconductors, and, in
particular, that found for ZnSe (11.5 eV), ' we
choose E,=11.5 for the present calculations. In

addition, some calculations are presented below
for E, = 7 eV (indicated on the figures), as found by
Ehrenreich, and we must conclude that it is not
now possible to decide with certainty which of these
two values is preferable. Given the various re-
maining parameters as determined by independent
experiments, the mobility can be calculated with
no adjustable parameters.

The electron drift mobility in pure (intrinsic)
GaAs vs temperature appears in Fig. 1. The solid
line represents calculated values and the data
points are taken from various experiments '

(see the figure caption). Above 600'K the calcu-
lated curve is dashed since the high-temperature
data of Smith ' as well as approximate calculations
of our own indicate the onset of multivalley conduc-
tion at this temperature. These additional valleys
are three in number and are probably centered at
the X), points of the first Brillouin zone. ' ' The
X„minima lie 0. 3-0.4 eV above the very nearly
spherical I"&, minimum. Below 600'K and down
to 100 K, the mobility is dominated by polar-mode
scattering. Near 80'K, piezoelectric and defor-
Ination-potential acoustic-mode scattering become-
as important as polar-mode scattering. Below

60'K, piezoelectric scattering remains the domi-
nant lattice scattering mechanism. The experi-
mental data confirm the calculated curve from
60-600'K. Below 60'K even the purest material
discussed here ' shows a decreasing mobility with
decreasing temperature. Such behavior is, of
course, symptomatic of ionized-impurity scatter-
ing and is discussed in detail later (see Fig. 6 and

7). The calculated electron drift mobility for pure
GaAs is 7900 cm /V sec at 300 'K and 194 000 cm /
V sec at 77'K. From the combination rule for the
Hall factbr, Eq. (16), we estimate corresponding
Hall mobilities of 8400 cm /V sec at 300'K and
219000 cm/V sec at 77'K. These latter values
agree well with the respective experimental values
of 8200-8900 cm'/V sec and - 200000 cm /V sec"
for the purest available materials.

Oftentimes, it is desirable to know the mobility
for certain concentrations of donor and acceptor
impurities. These dataare helpful not only for pre-
dicting mobility under specific conditions of doping,
but also for estimating impurity concentrations by
analyzing Hall data. Since Hall data do give rea-
sonable estimates of free-carrier concentration
and drift mobility (aside from the Hall factor), we

have plotted in Figs. 2 and 3, IL(, vs n at 300 and
77 K. The calculated curves are plotted for sev-
eral values of compensation ratio, defined as

8000-
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FIG. 2. Electron drift mobility vs free-electron
concentration at 300 'K. The curves are calculated
for compensation ratios of 1, 2, 5 and 10. Experimental
Hall mobilities appear as data points: &&, Ref. 23; 6,
Bef. 27; o, Ref. 28; o, Ref. 29; I, Ref. 30; 4, Ref.
31.

concentration of fixed ionized centers N'+ 1V

concentration of mobile charges n

For perfectly pure (intrinsic) material, the com-
pensation ratio includes the free-hole concentration
P so that (1V' lV+) /(n+P) = 0, but for ideal extrinsic
n-type material (no acceptors), where p is negli-
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concentration at 77 'K. The curves are calculated for
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Hall mobilities appear as data points; &, Ref. 18; k,
Ref. 22; , Ref. 23; )(, Ref. 32; Q, Ref. 33.
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FIG. 4. Thermoelectric power vs free-electron
concentration at, 300 'K. The curves are calculated
for compensation ratios of 1 and 10. Expeximental
data are from Emelyanenko et al. (Ref. 34).

gible, the compensation ratio becomes unity. This
latter case corresponds to the upper curve in each
of Figs. 2 and 3. The various points in the figures
are Hall mobilities (we ignore the Hall-factor cor-
rections here) from several experiments, 'a."27 "
as indicated in the figure captions. The vertical
ba, rs and the solid triangles ' in Fig. 2 a,re data,
taken from the brochures of two commercial sup-
pliers of GaAs. We note that the derived compen-
sation ratios suggest acceptor concentrations of
(5—10)x 10' cm ' even in the n-type materials.
The dashed curve illustrates a p, -vs-n curve for
a fixed acceptor concentration of 8&10' em 3.

The data points of Wolfe et al ." (derived for
iV = 0 from Fig. 3 of Ref. 32) in Fig. 3 fall above
the highest curve for mobility. The discrepancy
may arise from the Hall factor which always causes
the Hall mobility to exceed the drift mobility. For
n& 10"cm, these same data agree well with the
calculated curve. This behavior may seem peculiar
since r„should be near unity when p. B»1. B= 5
kG for these data and so p.B is greater at low n

than at high n, whereas the good agreement occurs
at high n (above 10" cm 3). On the other hand,
when impurity scattering becomes dominant at high

n, the mobility p. in an uncompensated sample is
inversely proportional to n. Therefore, even though
n is underestimated by the assumption that r„=1,
the mobility is overestimated by a corresponding
amount and no discrepancy should appear at high
values of n on a IL(. -vs-n plot. The remaining data.
in Fig. 3 confirm the expected behavior that high-
compensation ratios accompany low values of free-
ele ctron concentration.

Regarding the importance of including degeneracy,
we mention that the neglect of degeneracy over-
estimates the mobility at room temperature when

-900
I I I

0

LLJ

O
o -600—

-300
10

I I I I I I I I I I I I

0 ~0" 10%

FREE ELECTRON CONCENTRATION, n (CITI &)

FIG. 5. Thermoelectric power vs free-electron
concentration at 77 K. The curves are calculated for
compensation ratios of 1 and 10.

(&'+N )/n=1 by 25/z for n=5x 10' cm and by
65% for n=10' cm '. In fact, the neglect of degen-
eracy for n& 2& 10'8 cm leads to the absurd pre-
diction that p, actually increases with increasing
n. Such behavior can be ascribed to a rapid de-
crease in scattering rate which follows from Eq.
(6) in the limit of large free-electron concentration.
We also note that the Born approximation fails in

this limit, although for all cases described in this
paper (Figs. 1-7) the Born ap'proximation is valid.

Figures 4 and 5 present the thermoelectric power

Q vs n at 300 and 77'K. Phonon-drag effects are
not included and should not be important at 300 K,
although some complication on this account may
arise at 77 K. The authors were successful in

discovering only the few experimental data points
of Emelyanenko et al'. shown in Fig. 4.
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FIG. 6. Electron drift mobility vs temperature in-
cluding ionized-impurity scattering. The curves are
calculated for acoustic-deformation potentials of 7 and
11.5 eV. Experimental data by Bolger et al. , (Ref. 23)
from Hall-statistics analyses yield the values of n and

used in the calculations. The upper ends of the
vertical bars correspond to measured Hall mobilities
(Bef.. 23) and the lower ends of the bars are calculated
lower limits to the corresponding drift mobilities. The
true drift mobility lies somewhere along the length of a
given bar N'= 6.1 x10~4 cm 3 and N = 3.5 &10~4 cm 3

at room temperature (Bef. 23).

The last two figures, 6 and 7, illustrate typical
experimental results for Hall mobility vs tempera-
ture. These two samples ' are quite pure, how-
ever, with N=10" cm in both cases. The actual
values of N' and N were derived independently of
mobility from Hall-statistics analyses by the ex-
perimenters' ' and these derived values were used
without modification in the present mobility calcula-
tions. (We assume the acceptor energy levels to
be low lying so that N remains constant over the
full range of temperature. ) The solid curves are
calculated for acoustic deformation-potential values
of 7 and 11.5 eV. The difference between the two
curves is not sufficiently great to warrant a pref-
erence for either one over the other. The vertical
bars represent the experimental data, but the ver-
tical lengths of the bars do not correspond to ac-
curacy estimates. 5"e have placed the experimental
values of Hall mobility at the upper ends of the
bars. The lower ends of the bars correspond to
drift mobilities where Eq. (16) was used to derive
the Hall factor. For example, ionized-impurity
scattering dominates at the lowest temperatures,
and the lengths of the bars indicate the factor
rs = 1.93 (see Table I). The true experimental
drift mobilities should lie somewhere along the
lengths of the bars since pB varies above and be-
low unity for the temperature ranges of Figs. 6
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FIG. 7. Identical to Fig. 6 except that the experi-
mental data are taken from Stillman et al. (Bef. 18);

'=1.1x10 cm and N =3.3&&10 cm 3 at room tem-
perature (Bef. 18).

and 7. 8=5. 1 kG ' for the data of Fig. 6, and
8= 5 kG' for the data of Fig. 7. Although Mat-
thiessen's rule has not been used in the calculation
of mobility, we wish to illustrate the danger of its
use in connection with p, -vs-r plots. Calling p,„
the drift mobility derived from Eq. (14), the cal-
culated ratio p,„/p is presented in Table II for the
experimental data appearing in Figs. 6 and 7.
Note that p overestimates the drift mobility by
more than 30/g at 100 'K.

The agreement between theory and experiment
in Fig. 6 is fair for temperatures greater than
20 K. It appears that the impurity concentrations
quoted for the data shown in Fig. 7 may be some-
what low since the calculated curves lie too high.
In any case, a lowering of the curves in Fig. 7 to
achieve coincidence with experiment would show
that the calculated mobility below 10 'K is too low.
Figure 6 shows more clearly a similar discrepancy
below 10 K. %e believe this appearance of failure
to be attributable to the formulation of ionized-
impurity scattering as discussed in Sec. II. The
Born approximation at 10'K is well satisfied, but
we notethat Eq. (11)is violated between10and 20'K.
The respective free-electron concentrations at 10and
20'K are 1.4&&10' cm and1. 35x10' em for the
sample of Fig. 6. The measured Hall mobility" gives
pz=12m /V sec at 10'K and 33m /V sec at
20'K for Fig. 6, . whereas the respective values of
eo/nm* [see Eq. (11)]are 13'I and 14. The latter
values 33 and 14 satisfy Eq. (11), and the former
values violate it. At even lower temperatures the
ionized-impurity scattering events bear still less
resemblance to the binary process required by the
present formulation. Since the deflection time for
an electron undergoing a scattering event is greater
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TABLE II. Accuracy of Matthiessen's rule.

T('K) v /v I /v

(data from Ref. 23) (data from Ref. 18)

10
20
40
60
80

100
120
150
200
300

1.00
1.02
1.11
1.24
1,34
1.35
1.30
1.22
1.12
1.04

1.00
1.02
1.10
l. 21
1.34
l.37
l.32
1.24
1,15
l.07

than the average time between scattering events,
the electron senses the presence of several scat-
tering centers simultaneously. At these low tem-
peratures the material is highly compensated so
that the scattering centers consist of positive as
well as negative charges. This hybrid complex of
charges of both polarities would be expected to be
less effective at scattering than the same number
of isolated charges so that, as in Figs. 6 and 7,
the measured mobility should exceed the calculated
values.

The criterion for satisfaction of the Born ap-
proximation depends upon large values of k /P- T /n in the nondegenerate case which we have at

hand. Similarly, Eq. (11) concerning the existence
of binary scattering relies upon large values of
n p T /n for uncompensated material (the inclusion
of compensation strengthens the argument). The
criterion for binary scattering fails more rapidly
with decreasing temperature than the criterion
regarding the Born approximation (as 7 in the
former case and as 7 in the latter case). There-
fore, far purer materials than those presently
available are necessary if one wishes to observe
the failure of the Born approximation. Although we
mentioned 20'K in Sec. I as a lower temperature
limit for application of the present results, it is
now clear from Eq. (11) that this limit depends
upon n when impurity scattering is important. For
pure lattice scattering, previous results" indicate
that the present description should suffice down to,
and perhaps somewhat below 2 'K.¹teadded in proof The .experimental data of
Wolfe et al. '3 which exceed the uppermost curve in
Fig. 3 were inaccurately collected by one of us
(D. L. R. ), and the subsequent assistance of Dr.
Wolfe has shown Ref. 32 and Fig. 3 to be in excel-
lent agreement. The present work has also been
extended to the Hall effect for finite magnetic field,
and these results lead to only slight alterations of
detail. In particular, the agreement with experi-
ment in Fig. 7 is in concordance with the estimated
20% accuracy in impurity concentrations personally
communicated to the authors by Dr. Stillman. '
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A modelanisotropic system, suggestive of the graphite structure, is investigated: It con-
sists of a series of equally spaced parallel planes. A finite two-dimensional density of elec-
trons in each plane is allowed to Inove freely in the plane, but tunneling between planes does
not take place. The dielectric screening of a point charge is evaluated exactly in the random-
phase approximation. For realistic electron densities and interlayer separations the screened
potential drops off very rapidly both in the plane of the charge and perpendicular to it. The'

induced charge density is determined, and validity of the Thomas-Fermi approximation is
discussed.

I. INTRODUCTION

In this paper we calculate the screening properties
of a model anisotropic system, chosen for its re-
semblance to the graphite structure. The system
consists of electrons constrained to move on paral-
lel equally spaced planes; the single-particle states
in the absence of interactions are two-dimensional
plane waves.

The screening properties are investigated by
calculating the dielectric response of the system
to an external point charge on one of the planes.
We use the self-consistent-field dielectric formula-
tion of Ehrenreich and Cohen, ' which is equivalent
to the random-phase approximation (RPA). We in-
troduce an infinitesimal perturbation V'*'(taken to
be e /r), compute the induced potential V" owing
to the density fluctuations caused by some total
potent jal P and solve y tot y e xt + y i for

It is of interest to see whether there is a strong
anisotropy in the screening, with the total potential
decreasing at very different rates in the plane of
the test charge and perpendicular to it. It is found
that, in spite of the extreme anisotropy of the model,
the screening lengths are comparable, and only
under very extreme conditions is such strongly
anisotropic screening found.

II. DERIVATION OF SELFWONSISTENT-FIELD EQUATIONS

have wave functions

(r, z) =W-'"a. e"'g(z-mc),
where k is a two-dimensional vector, the integer
m labels the planes, and g, is a spin eigenfunction.

We consider only the limit in which the wells are
arbitrarily deep and narrow, so that only the
lowest one-dimensional eigenstate y(z) can be oc-
cupied by an electron of finite energy. X(z) is then
effectively the square root of a 5 function; that is,
it is arbitrarily highly localized and

f; X'(z)«=l

for any & &0.
Except for the energy contribution due to y (which

is the same for all states), the unperturbed eigen-
values are

Assume the system is in its unperturbed (non-
interacting) ground state, with a two-dimensional
"Fermi disk" of radius 4~, where

2A
An= Z 2=

(2 )z mkJ, .
1%) & ey

Thus the density of electrons (per unit area) n is

Consider a system of noninteracting electrons
moving in a potential which depends only on z and
has very narrow deep potential wells centered
around z = 0, + c, + 2c, . . . . For purposes of nor-
malization assume r = (x, y) is confined to a region
of area A. The unperturbed eigenstates will then

The one-particle density matrix is then

po-— g ~R, a, m)(k, o, m( =g f ~s)(8~,

where s = (k, o, m) and f, is the occupation number.


