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An equation for the limiting-point (LP) cyclotron effective mass as a function of magnetic
field direction is derived for the Cohen nonellipsoidal nonparabolic (NENP) model of the elec-
tron Fermi surface of Bi. The general NENP equation is used, in which the L-point valence
and conduction bands are not assumed identical. For some orientations of the magnetic field,
the NENP model, unlike the ellipsoidal nonparabolic (ENP) model, predicts a LP mass larger
than the central-orbit extremal mass by as much as a factor of 2 for pure Bi. The previously
published LP-mass data of Edel'man and Khaikin are found tobe in good agreementqualitatively
with the NENP model; the NENP fit is clearly superior to the ENP fit. Attempts to determine
unambiguous values for the adjustable band parameters in the NENP model by fitting the ex-
perimental data were unsuccessful, but in general the experimental data indicate that the
L-point valence and conduction bands have essentially identical parameters. For identical
bands, the value E+/E~= 0. 50 is required in order to fit the data.

I. INTRODUCTION

Edel'man and Khaikin' (EK) have published the
most accurate and definitive study of cyclotron
resonance in Bi to date. Their graphs showing
the dependence of the cyclotron effective masses
upon magnetic field direction contain numerous
instances in which the data points deviate sub-
stantially from the curves derived from the el-
lipsoidal parabolic (EP) or ellipsoidal nonpara-
bolic' (ENP) models. These are the models often
used to interpret Fermi-surface data for Bi and

dilute Bi alloys. In an earlier paper' (hereafter
referred to as I), we interpreted EK's effective-
mass data due to electrons whose orbits were ex-
tremal (central orbit, or CO, masses) on the basis
of the Cohen nonellipsoidal nonparabolic (NENP)
model. We found that, in one of the two cases
where deviations existed, the data points fit the
NENP model very well, and that the value of E/E,
(E, equals the energy gap between the fp i otn
valence and conduction bands) required agreed well
with the value derived from magneto-optical mea-
surements. ' In the other case the data points fit
the NENP model no better or worse than the ENP
model. These results, taken in conjunction with the
cyclotron-resonance data of Kao' and the deHaas-
van Alphen results of Bhargava, both of which were
also investigated in I, allowed us to conclude that the
NENP model gives a better des cription of the Fer mi
surface in Bi than does the ENP model.

EK were also successful in observing cyclotron
resonance due to electrons at the limiting points,
i.e. , those points where the Fermi velocity is
parallel to the magnetic field. Their results are
very intriguing, for at some orientations of the

magnetic field the limiting-point (LP) mass is as
much as 33~/p larger than the CO mass. It is easy
to show that the ENP model predicts that the CO
and LP masses are identical for all orientations
of the magnetic field. The 33%%uf) difference is of
course far outside any conceivable random experi-
mental errors and hence the ENP model fails con-
vincingly in accounting for the LP data.

The purpose of this paper is to compare the
LP-mass data of EK with the NENP model. Our
basic motivation is to verify with higher confidence
the validity of the NENP model for Bi. In I, both
the number of cases which could be analyzed and

the deviations involved between the two models
(at best, about 8/o) were rather small. For EK's
LP-mass data, however, both these objections are
overcome: There are four cases presented by EK
which can be analyzed, and the deviations involved
are as much as 33%%uo, as mentioned above. Additional
motivation is supplied by a recent paper by Bate,
Einspruch, and May (BEM)" in which doping of Bi
with dilute concentrations of Sn was used to lower
the Fermi energy into the L-point valence band.
Their measurements on the holes thus produced
at the top of the L-point valence band indicate that
this band is far from being a "mirror" band of the
I. -point conduction band. This finding is in con-
tradiction to many experiments ' ' ' which indicate
that the L-point valence and conduction bands have
identical parameters. Fitting the LP-mass data
of EK to the NENP model allows conclusions to be
drawn about the L-point valence band, because in
its most general form the NENP model does not
require the valence and conduction bands to have
identical parameters, as does the ENP model.

In Sec. II we derive an equation for the LP-mass
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anisotropy and in Secs. III and IV compare the
data of EK with this equation. As in I, we find that
the experimental data are in better agreement with
the NENP model than the ENP model, although there
ar e some inconsistencies.

Il. THEORY

The basic features of the Fermi surface of Bi
are summarized in I, and here we simply repeat
the equations necessary for what follows. The
energy-momentum dispersion relation for the ENP
model is given by

Pl P2 P3E 2 2 2

E 2m~

and for the NENP model by

2 4 2 2

E(1 ~) P2 Pa Pi Ps
4~2E,

where

r =m, /ma, '=E/E„~= I+'

(3)

Equations (1) and (3) are both written in the prin-
cipal-axis syster. . of any one of the three ellipsoids"
which make up the electron Fermi surface of Bi.
One must be careful when comparing experimental
data with Eqs. (1) and (3), since the measured cy-
clotron effective masses are energy dependent
and the derived valueS of m„m2, n 2, and m3 will
depend on the value of E/E, used. In the Appendix
we derive equations for the relationship between
the measured cyclotron effective masses and the
effective-mass tensor components.

The importance of limiting points in cyclotron
resonance is discussed in some detail by Azbel'
and Kaner. '6 The limiting points on any Fermi
surface are defined as those points at which the
electron velocity is parallel to the external mag-
netic field H; since the velocity is always perpen-
dicular to the Fermi surface, the surface itself
is then perpendicular to H at the limiting points.
As discussed in Ref. 16, the effective masses
measured when H is oriented parallel to the micro-
wave electric field E are effective masses as-
sociated with electron orbits at or near the limiting

2m2 E~ 2m2E 2m) 2ms

E, is the energy gap between the valence and con-
duction bands; m&, m2, and n.

& are the effective-
mass tensor components at the bottom of theL -point
conduction band; and mz is an effective-mass ten-
sor component at the top of the L-point valence
band. In I we began by setting n. 2=m2'; however,
for reasons given in Sec. I, we will not assume
that ~2 and n 2 are the same in this paper. For
computational purposes we can put Eq. (2) in a
more convenient form:

points. Actually at the limiting point itself, one
ceases to speak of "orbits, " since the Larmor
radius is zero. The "normal" Azbel'Kaner cyclo-
tron-resonance geometry has E „perpendicular
to H and is sensitive to CO effective masses.

In general the CO masses will be different from
the LP masses. In the case of the ENP model
[and more generally for any energy surface of the
form f(E) =p ~ n ~ p, where f(E) equals any function
of energy and & equals the inverse effective-mass
tensor], however, the CO and LP masses are identi-
cal, as mentioned earlier. This is a well-known
result, but we show it explicitly for the case given
in Fig. 1 for comparison with a similar calculation
which we will do for the NENP model. The area of
the cross-hatched section is easily found from Eq.
(1) to be

g =2w(m&m&} [E(1+E/Ez) —(Pq)0/2m3]. (4)

Then, since the cyclotron-effective mass for a given
orbit perpendicular to H is given by

1 ea
2n &E

we have

m'= (m,m, )"'(I+2E/E, ), (5)

independent of (p~)o. Hence, the effective mass
is the same at (p,),= 0 (CO mass) and (p3)Q ( p3)
(LP mass}. A similar result holds for any orienta-
tion of H.

We will now do an equivalent calculation for the
NENP model. For simplicity we will take m 2 =m2
for this particular calculation, since none of the
conclusions are affected by doing this. Setting

p3 (p3)0 in Eq. (2), an equation in the two variables
p& and p2 is obtained. The area enclosed by this
curve is then the area required for Eq. (5). The
computation of this area proceeds in the same man-
ner as the area calculation in I, except that the
constants are somewhat different. We can take a
shortcut to the result desired here in the following
manner. Defining R=(p, )J(p,) „,we canwrite
for the NENP model

P3

3) mpx

(P3)0

I"IG. 1. Geometry for calculating the variation of the
cyclotron effective mass as a function of tp3)p.
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FIG. 2. Cyclotron effective mass vs (p3)0 in the
NENP model, as given by Eq. (9) and Eqs. (A5) and
y.6).

(P ) = 2m R E(1+E/E ). (7)

Substituting Eq. (7) into Eq. (2) with p2= (p2)2 and

rearranging, we obtain

+ =
2 + (1 R2)E 1—+—. (8)

2m1 2m' 4m 2 &,
Equation (8) is identical to the equation of the
curve enclosing the extremal area (i.e. , the area
with p, = 0) for this orientation of H, except for the
factor of 1 -R . Since this factor will in no way
affect the energy derivative needed to compute the
effective mass, the equation needed here can be
obtained by (a) reducing the general equation for
m"(8, II}obtained in I [Eq. (7} in I] to the case
where H is along axis 3 (i.e. , set 8 = 0= 0} and
then (b) replacing (E/E, ) (1+E/E, } by (1 —R')
& (E/E2) (1+E/E2) Doing .(a) and (b), the following
equation results:

y[( ) ]
~(I + 2E/EE)(~1~2} R[(I r)-1/2]f30t y1/4

(9)

where

b =(1 —R ) (E/E2) (I+E/E~)+-,',

r = [(b)'"+ l]/[(b}"' —-'],

and K is the complete elliptic integral of the first
kind.

Figure 2 is a plot of Eq. (9). The main conclusion
to be drawn from these curves is that the LP mass
is from 33 to 100k larger than the CO mass for
E/E, between 0. 5 and 2. 0. Since the ENP model
corresponds to the case where the CO and LP
masses are equal, there will be the same percen-
tage differences between the ENP and NENP models.
For the CO mass, on the other hand, the NENP
and ENP masses differ by only about 8k. The ob-
servation of LP cyclotron resonance in pure Bi
offers a sensitive method for testing the NENP
model, and for establishing a value of the param-
eter E/E, .

The above calculation is designed to show that
one does expect an LP mass different from the CO
mass in the NENP model. A full comparison with
any experimental data requires an expression for
m 1*,r(a, p), where n and p are angles defining the
direction of H with respect to the crystallographic
axes [Fig. 3(a)]. Our approach here is the same
as the approach used in I: We first compute m~
(8, 0), where 8 and 0 [Fig. 3(b)] are defined in
the principal-axis system of any one of the three
ellipsoids. The actual tilt and rotations about the
trigonal axis of the ellipsoids are then accounted
for by three transformations (one for each ellip-
soid) from the principal-axis system to the crys-
tallographic-axis system. We now compute
m„*,(e, n}.

In principle we could proceed along the lines sug-
gested by the calculation above, i.e. , compute
m~(R, 8, 0) and take

~;,(8, n) = »m[m~(R, e, II}].
R-1

TRIGONAL

B---

= BISECTRIX = P2

BINARY

(a)

FIG. 3. Definition of magnetic field direction in (a) crystallographic-axis system and (b) ellipsoid principal-axis sys-
tem. In both cases plane ABCD is rotated counter clockwise about the bisectrix or p& axis as one looks along it in the
negative direction. P and 0 are angles in these rotated planes. The rotation about the bisectrix or p2 axis is specified
as occurring first.
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A more straightforward method is to use the equa-
tion"

m L'v = [ I vr I
(K)'"] ',

(,), , (, co) e)an ()
(

(,),
2 2

m m p )m1

where

(16)

where vF and K are the Fermi velocity and Gaussian
curvature, respectively, at the limiting point. The
calculation will be done in two steps: First, for
a given field orientation, equations giving the loca-
tion of the limiting point on the surface are calcu-
lated in terms of Cartesian coordinates, i.e. , equa-
tions of the form p,'=p,' (8, 0}, p(, =pa(8, 0}, and p,

'

= p,'(8, 0), where (p,', pz, p,') are the coordinates of
the LP, are derived. Then, an equation of the form
m (,p = m fp (P] Pz P3) is calculated using Eq. (11) ~

From the definition of the limiting point it is
clear that it is located on the surface at that point
where a plane normal to the magnetic field direc-
tion intercepts the Fermi surface at one point only.
From symmetry it is clear that limiting points
occur in pairs on each ellipsoid. To derive the
coordinates of the limiting point, we compute the
equations of a line whose direction is normal to
the Fermi surface at the LP and which passes
through the origin. From Eq. (3) and elementary
solid geometry, the equations are easily found
to be'

m 2 tan2Q

(m, +m, tanz8)

Equations (14)-(16) are the equations for the loca-
tion of the limiting point in terms of 0 and 8. Having
obtained the location of the limiting point, we now

use Eq. (11) to compute the LP effective mass in
termS Of p&, p2', and p3.

The Fermi velocity magnitude at the limiting
point is given by

I
v

I
=

I v(( E(p) I

5= (n', , OZ, t)'3& (16)

and is calculated to be

r(r + 1)y, „, r'(r + 1)'(p,')'
3E 4 P2& +

4m 4E2

where ~= 1+2K —(1-r)(p2) (1/2m2E, ). The Gaussian
curvature is computed by first rewriting Eq. (3) in
vector form as

mlPf m2EzP2 m3I 3

p] mzyEzpz+ r(pz) pg
(12} m r.

1/2 2P2 P2

p„=p2p2+pj p(+ —
" 4E (1+ A, —

m2

The equations of a line parallel to the magnetic
field direction which passes through the origin are
given by

~4& 2p2 jI 2

(2o)

Pi f)2 P'3

cos Asine sinA cosOcos8 (13)

—4mzE E(1 X)p+=0, (14)

(p )z
m g p[2E(1 + &) —y(pz)'/mz -r(pz)'/2m2 E.]

m, cot'8 tan29
(15)

l

Equations (12) and (13}must represent the same
line; hence, Eqs. (13), (12), and (3), and Eq. (3)
evaluated at (p], pz, p,') represent six equations in
the six unknowns p» p» p» p,', p2, and p3'. These
may be solved in a straightforward manner to
yield the following series of equations:

2r (p2} +rmzE~(4y+ p)(pz) +2mzE~ y(y+p)(pz)

where p„ is a radius vector from the origin to the
surface, and then using the following equation':

where

Ar42 —B
CqC2 D

(21)

A
en &p„& 1 n ~e &n &p„

&P] eP]
' 2 &P'y &$2 ~$2 OPS

py ~8 ~8

BP'2

and n is the unit outward normal to the surface. The
computation required is very lengthy, and we pro-
ceed directly to the answer. Evaluating the result
of Eq. (21) at the limiting point and substituting it
and Eq. (19) into Eq. (11) gives

~PP1 p P, Sl2
x + — +~ z v ~+(1p+zX)f ~ zz+x2

(2m E)~fz(1+))L m~ (1+3.) m3 mz ~3m,*p =
VV F

2 2 2 2 2 2 mir. [p'+ vy+ 6&vry'] —p'z'x' ' —1
-'R 3

(22)

where x' = ( p,')'/[2m, (1+X)E],

g = (m, /m, )x'+z',

y' = (p,')'/2m, E,
p. = pp + 2A.gg

z =(P')z/[2m (1+)()E],
v= 1+1—)'p —&A,y
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Obtaining the final expression for m f P(o, s) re-
quires one more set of equations: the transforma-
tion for each ellipsoid from its principal-axis sys-
tem to the crystallographic-axis system. The
equations are derived in I and we repeat them here
for reference:

50-

4Q—

30—

20$

SURFACE
TRANT

sinQ= —sing cos8, cosgsinn+cos@ cos8, sing

(23)

r & 1 and A. & 1/(r —1); (25)

i. e. , the Fermi surface is reentrant if Eq. (25) is
satisfied. If the surface were reentrant, two large
periods in 1/H would appear in quantum oscillation
experiments for H near the p, axis, rather than
one, because of the two extremal areas. Since no
such doubling of the periods has been observed in
any de Haas-van Alphen or de Haas-Schubnikov
experiment in Bi, we must require that

+ sin8, cosP cos &,

cosp sinn+ sing tangtan8 =
sing sin8, sin & —cosf sin8, tanP + cos8, cos &

(24)
where 8, is the angle of tilt of the Fermi surface
(equal to about —6. 3' for the data of EK), and p = 0',
120', —120' for the m~i, ~n~v, and mr*rr ellipsoids,
respectively. In summary, to find m*„r (e, R), one
computes 0 and e from Eqs. (23) and (24), sub-
situtes into Eqs. (14)-(16) to find P,', Pz, and P3,
and in turn substitutes these values into Eq. (22)
to find the LP mass.

Although it is not immediately obvious, one can
rewrite Eq. (22) in a form where E and E, enter
only as the ratio &= Z/E, . Hence, there are only
two adjustable parameters: & and x. In general
they are both independent and can assume any
value. For Bi, however, we can appeal to experi-
ment and find that there is a condition which the
two parameters must meet. One can easily show'
from Eq. (3) that the areas of the normal sections
increase with P2 near P& = 0, if

IQ— FERMI SURFACE
NON-REENTRANT

I 0 2.0 3.0 4.0 5,0 6.0 7,0

FIG. 4. Values of r(=m~/m&) and X(=E/Eg) which

give a reentrant and nonreentrant Fermi surface, accord-
ing to the NENP model [Eq. (2)]. The curve is the bound-

ary between the two regions and is given by Eq. (26).

X & 1/(r —1).

This inequality is plotted in Fig. 4.

(26)

III. COMPARISON WITH DATA OF EDEL'MAN

AND KHAIKIN

EK performed their cyclotron-resonance experi-
ments at a. frequency of 9 GHz on samples of three
different orientations: I, the normal to the sample
N parallel to the binary axis; II, N parallel to the
trigonal axis; and III, the binary axis perpendicular
to N, with the angle between the trigonal axis and

N being 84'. Orientation III causes the plane of the
sample to be the Pz plane in the principal-axis
system of one of the ellipsoids. The experimental
values of the effective-mass tensor components at
the Fermi level, deduced from the CO-mass data
of EK in a manner described in the Appendix, are

m, = 0.0059, my = 1.304, mal=0. 011. (27)

These are the values which are used in Eqs. (A5)-
(A7) and whence in Eqs. (14)-(16) and Eqs. (22)-
(24) to compute the LP-mass curves.

Figures 5(a) and 5(b) are graphs designed as
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FIG. 5 N ENP model theoretical angular variation of the limiting-point cyclotron effective mass mrr. The curves are
computed from Eqs. (22)-(24), (27), and (A5)-(A7). p refers to Fig. 3(a) with n =0. (a) m2/m2 is constant and E/E~ is
a parameter. (b) E/E~ is constant and m&/m', is a parameter.
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TABLE I. Electron LP masses of EK (Ref. 1) analyzed
in this paper. See the beginning of Sec. III for an ex-
piation of the sample orientations. O. IO

j I j I j I

Case
No.

EK
desig-
nation

Sample
orien-
tation

Conven-
tional
desig-
nation

Fig.
No.

005

mr

mrr

000
0

(
TRIG)

I j I j I I I

4 8 12

P ( DEGREES )

Reference 1.

examples to show the type of LP-mass anisotropies
predicted by the NENP model. Figure 5 is typical
in that significant differences between the ENP and
NENP models and significant changes in the curves
as a function of changes in the values of the two
parameters occur only near the directions of H

where the cyclotron effective mass is a maximum.
Most of the LP data displayed by EK is in fact

confined to these angles. In Table I we list the
four such cases given by EK and identify them by
the more common notation; in Sec. IV we will
analyze them in detail, but we make some general
comments here. Cases 1-3 are all very similar
in their characteristics and are shown in Figs.
6-8. The criteria for fitting the curves to thedata
in all cases involved matching the data point at the
peak to the theoretical curve; originally, it was
hoped that the best values for r and ~ couM then
be chosen unambiguously on the basis of the best
fit to the remaining points. Unfortunately, the

FIG. 7. Angular variation of the limiting-point cyclo-
tron effective mass mi for the magnetic field in the binary
plane (referred to as case 2 in Table I). The experi-
mental points are from Fig. 3 of Ref. 1. The solid
curve is computed from the NENP model [Eq. (22) ] with
X=0.50 and r=1.0; the dashed curve is the ENP model.

P refers to Fig. 3(a) with Qt =0.

general shape of the curve is relatively insensitive
to the various combinations of r and ~, once the
peak theoretical and experimental values have been
matched. As an example, in Fig. 6 we have demon-
strated this point by plotting curves for two widely
different combinations of r and & for case 1. As
is evident, it is difficult to say that one curve fits
the points any better than the other. The situation
is the same for cases 2 and 3, although for sim-
plicity we have chosen only to plot the curve for
the parameter values r =1.0 and &=0.5. Case 4
is shown in Fig. 9. Although the NENP curve com-

I
'

j
'

I

0, IO

Q IO—

m~
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0. .5
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!
8 I6 24 32

( ( DEGREES j
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8 24
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FIG. 6. Angular variation of the limiting-point cyclo-
tron effective mass mlr (= m~~~) for the magnetic field in
the binary plane (referred to as case 1 in Table I). The
experimental points are from Fig. 3 of Ref. L. The
solid curve (X=0.50 and r = l. 0) and dash-dot curve
(X =-0. 18 and r=3. 0) are computed from the NENP model
[Eq. (22}]; the dashed curve is the ENP model. P refers
to Fig. 3(a) with & =0.

FIG. 8. Angular variation of the limiting-point cyclo-
tron effective mass mz& for the magnetic field in a plane
rotated about the binary axis approximately 6' from the
trigonal axis (referred to as case 3 in Table I). The

plane is approximately the p2 plane in the principal-axis
system of ellipsoid I. The experimental points are from
Fig. 5A of Ref. 1. The solid curve is computed from
the NENP model [Eq. (22) J with X = 0. 50 and r = 1.0; the
dashed curve is the ENP model. $ is an angle such that
its complement is the angle between the magnetic field
and the binary axis.
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FIG. 9. Angular variation of the limiting-point cyclo-
tron effective mass ml for the magnetic field in the tri-
gonal plane (referred to as case 4 in Table I). The ex-
perirnental points are from Fig. 4 of Ref. 1. The solid
curve is computed from the NENP model [Eq. (22)] with
X —0. 23 and r = l. 0; the dashed curve is the EN P model.
P refers to Fig. 3(a) with e =90'.

pares with the experimental points in a manner
similar to the other three cases, the various com-
binations of the two parameters needed to match
theory and experiment at R= 0' (the location of the
effective-mass peak) are considerably different
from the combinations required for cases 1-3.
This difference is demonstrated by Fig. 10. Whereas
the curves for cases 1-3 are essentially identical,
the curve for case 4 departs radically from the
others. The original motivation for plotting the
curves in Fig. 10 was to determine if they inter-
sected at any point; a point common to all four
cases would presumably give the best determination
of r and ~. However, since the curves do not in-
tersect, an unambiguous determination of r and ~

by comparing the LP-mass theory and experiment
is not possible. We discuss some of the implications
of the theory and of Figs. 6-10 in Sec. IV.

quantitatively is to assume a value for one of the
parameters (r or &) and, from Fig. 10, determine
a value for the other parameter. The difficulty
with this procedure, of course, is that neither r
nor & has been determined with any high degree of
confidence. A large number of experiments '" "
have produced results consistent with assuming a
value r= 1.0; however, as mentioned in Sec. I,
the de Haas-Shubnikov results of BEN' gave r
= 3.0. We shall initially assume that r = 1.0. From
Fig. 10, this value for r gives a value ~=0. 5 for
cases 1-3 and gives X =0. 23 for case 4. The only
direct measurement of X(independent of any assumed
model) was made by Esaki and Stiles'9 using tun-

neling spectroscopy, andtheyfound&=0. 75. Values
derived from experiment using the ENP and NENP
models have ranged from 0. 5 "to 2. 0 '; in general,
the values derived on the basis of the NENP model
tend towards the lower number. The basic problem
in obtaining an accurate measurement of ~ in pure
Bi is the rather high sensitivity of the Fermi
energy to any impurities present because of the
low carrier concentration in pure Bi. The value
X = 1.7, derived from magneto-optical data, has
frequently been quoted as the generally accepted
value of ~ for pure Bi, although to the author' s
knowledge there is no reason for ~=1.7 to be a
better value than ~ =0.75, the directly measured
value. In I we found that the de Haas-van Alphen
data of Bhargava" in conjunction with the effective
mass values of EK supported the NENP model with
a value of ~=0.50. In short the value &=0. 50 re-
quired for cases 1-3 seems reasonable for pure
Bi. A discrepancy does exist, however, for case

2 0

1,5—

t' 1,0—

0,5—

IV. DISCUSSION 0
0.5 1,0

I

1.5
I I

2,0 2, 5 5,0
Perhaps the most mportant conclusion to be

drawn from Figs. 6-9 is that the NENP model is
capable of explaining at least qualitatively the
existence of a LP effective mass different from
the CO effective mass in Bi. Within about 5'-10'
of the peak the points fit the NENP modelreasonably
well, but beyond this interval the NENP model un-
derestimates the experimental points by about 10/(.

The best one can do to interpret the results

FIG. 10. Values of r and X which match the I.P
cyclotron effective masses given by the NENP model
with experiment at the peak in the anisotropy curves of
Figs. 6—9. The dashed curve is for Figs. 6—8, all of
which are essentially coincident; the solid curve is for
Fig. 9. The dash-dot curve is the boundary between a
reentrant and nonreentrant Fermi surface, taken from
Fig. 5.
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1 when it is compared with the corresponding CO-
mass data (EK do not present CO-mass data for
cases 2 and 2), since in I we found that a value of
&=1.7+0. 5 was required for a good fit to the NENP
model for the CO-mass data of case 1. The need
for widely different values of & for the CO and LP
masses is probably a result of the approximations
used in deriving Eq. (2). A more positive con-
clusion would require more cases in which both
CO- and LP-mass data points are known.

The low value of ~=0. 23 required for case 4
could be explained within the context of the NENP
model in at least two ways. One, the sample used
had an undetected acceptor impurity in it and there-
by lowered the Fermi level below the pure Bi
value. Or, two, if a data point had been taken
for the field exactly parallel to the binary axis,
it would have been somewhat higher than m ~/ma
=0. 138, which is the value at P=O for &=0. 23,
and hence & would be larger. The value 0. 23
was selected, for lack of more information, by
assuming that the value of m*/mo at P=O' is
approximately the same as the value at /=0. 25',
the nearest experimental point. The first possi-
bility seems unlikely, since very-high-purity Bi
is easily obtained. The second possibility probably
explains at least part of the low value of X, partic-
ularly since the curves of Fig. 4 show that near
the effective mass maxima, the NENP model pre-
dicts a rather sharply peaked dependence. Ex-
perimental points from the other two electron
masses (m f, and m,'») near the effective mass
maxima would clarify the situation, but EK do not
present this data. EK also give the CO-mass
experimental points for case 4 and they were com-
pared in I with the NENP model. We found that
the fit to the NENP model was no better than the
fit to the ENP model; the points agreed fairly
closely with the ENP model, or in other words
the points also compare well with the NENP model
with a low value of ~, say between 0 and 0. 25.
Hence, there is consistency for case 4 between the
LP-mass and CO-mass data within the context of
the NENP model. This consistency actually gives
some support to the hypothesis that an acceptor
impurity was present in the sample of orientation II.

Since the value of ~=0.50 found above is perhaps
somewhat on the low side, it is logical to allow r
to vary and determine what value of r brings & more
in line with other experiments. For cases 1-3
from Fig. 10 we find that r = 0. 65 when ~ = 0.75,
and r =0.25 when &=1.7. Hence, to increase &,

r must be made less than 1.0, whereas BEM found
that r = 3. If one were to assume that the Cohen
model is accurate and valid in Bi in all respects,
this result would seem to imply that the value of
r found by BEN for Bi-Sn alloys does not apply to
pure Bi. That is, this result indicates that the

level of Sn doping needed to lower the Fermi level
into the L-point valence band seriously distorts the
band itself. On the other hand, if r = 3 is actually
the pure Bi value, then a serious flaw in the NENP
model is indicated. At the present time, we are
unable to resolve completely this discrepancy. As
stated before, many experiments have indicated
that r=1; our results here strongly substantiate
this value, and even suggest that r &1. We hesi-
tate, however, to attach too much quantitative
significance to the values of r required to match
the Cohen model and experiment, for the following
reason. Several experiments' ' ' ' have indicated
that bands other than the four used in Cohen's
calculation leading to the NENP model are im-
portant in Bi. The four bands included in the
NENP model are, in the notation of Golin, L„
L6, L7, and LS. Normally, because of time re-
versal symmetry, L, and L, are degenerate, as
are Lv and L,. In the two-band model' L

&
and L6

form the conduction band and Lv and Ls form the
valence band. The degeneracy is lifted in Cohen's
calculation by the inclusion of spin-orbit coupling.
We emphasize that these four bands are all fairly
near the band gap. Interactions between these
four bands and higher-order bands were initially
included in the usual manner of k p perturbation
theory, but the higher band interactions were dis-
carded by Cohen because the relevant band gaps
were thought at the time of his work to be large
enough (™-1 eV) so that their effects could be ne-
glected. Subsequent experimental work, "however,
has shown that a band edge occurs much lower than
1 eV at E = 0.07 eV, and this band clearly has some
effect on the Fermi surface and cannot be neglected.
Hence, the Cohen NENP model cannot be expected
to be quantitatively accurate in all details.

In this regard we return to a point originally
raised in I: Is it possible that the NENP model
might explain the spin splittings observed in pure
Bi in large magnetic fields for the low-quantum-
number Landau levels? As discussed in I, the
energy-band calculation of Baraff~ explains the
spin splittings, but a rather large number of param-
eters are introduced in the process. The NENP
model, it was hoped, might explain the spin split-
tings with no additional parameters required. It
now appears that the NENP model is not successful
in this regard. Basically, the NENP model is
incapable of explaining a spin mass different from
the orbital mass. This is not surprising, for, as
Baraffs points out, Cohen's derivation of Eq. (2)
neglects the antisymmetric part of the effective-
mass tensor which gives rise to the spin energy.
Hence, we probably should not expect the NENP
model to explain high-field, low-quantum-number
effects in which the spin is important. Rather,
the NENP model seems well suited to low-field
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phenomena such as cyclotron-resonance and
quantum-oscillation experiments, such as the
de Haas-van Alphen effect, for large quantum
numbers.

V. CONCLUSIONS

The NENP model predicts a LP cyclotron ef-
fective mass which differs at some angles from the
CO mass, unlike the ENP model. The fit of the
data of EK to the NENP curves is clearly superior
to the fit to the ENP model, although attempts to
determine unambiguous values of ma/mz and
E/E, from curve fitting were not successful. How-
ever, a value of m2/mz = 1 seems to fit the data
best; this value is in general agreement with many
experiments, but disagrees with the recent experi-
ment of BEN, who find that mz/mz =3. For m2/m2
=1.0, we find in three of the four cases analyzed
that the value E/E, =0. 50 is required for a good fit
and is a reasonable value for pure Bi. In the fourth
case the anomalously low value E/E, =0. 23 is re-
quired to fit the experimental points; the source
of this discrepancy is not clear. In summary,
combining the results of this paper and I, the Cohen
NENP model, convenient because its dispersion
relation is expressible in an analytic form, is ca-
pable of explaining some rather detailed structure
observed in the cyclotron effective-mass anisotropy
curves.

The results of this paper and of I are motivation
for a careful, precise remeasurement of cyclotron
resonance in pure Bi. The authors are presently
undertaking this experiment in conjunction with
surface-impedance quantum oscillations which we
have observed to begin (at 24 GHz), at magnetic
fields slightly above the highest cyclotron-resonance
fundamental. Combining the effective-mass data
of cyclotron resonance with the extremal-area data
of the quantum oscillations allows us to analyze the
data in terms of the NENP model in a manner sug-
gested by Bhargava'. The ratio of the cyclotron
effective mass to the cross-sectional area is a
constant independent of magnetic-field direction
for the ENP model; for the NENP model, however,
the ratiois afairly sensitive function of field orienta-
tion. This experiment should clarify some of the
inconsistencies found above.
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APPENDIX

In this appendix we derive the equations relating
the experimentally measured effective-mass ten-
sor components to the bottom-of-the-band values
used in the NENP model. Customarily, the three
experimental values are referred to as m&, n 2,
and m3*, where the subscripts refer to the ellipsoid
principal axis which is parallel to the magnetic
field. The Fermi-level effective-mass tensor com-
ponents (m,', rnid, and n7~) are then computed on the
basis of an ellipsoidal-parabolic model, i.e. ,

m,
' = (m,*m 3$/m,*,

m,'= (n;m f)/ma,

m,'= (m,'m,')/m f .

(A1)

(A2)

m,' = (m,m, )"'(1+2~), (A3)

m ~
= (2/vr) (m,m z)" (1 + X + Xr)" [K(k) + (r —1)e (k)],

where

k =rX/(1+ &+ &r)

(A4)

and K(k) and c (k) are complete elliptic integrals of
the first and second kinds, respectively. Sub-
stituting from Eq. (Al) into Eqs. (A2)-(A4) and
solving for the m& gives

m, = m,'/(1+ 2X), (A5)

m 2=
v ' r~(1+2K) m'

(A62 (1+ A+ Ar)[K(k) + (r —l)e(k)]2

m, = n~,'/(1+ 2X). (A7)

Equations (A5)-(A7) are the desired equations.

The values given in Eq. (27) are obtained from
Eq. (Al) by substituting for m f, mz~, and m f from
the data of EK. We now require equations which
relate the n j to the NENP bottom-of-the-band
values of the effective-mass tensor components,
m&. For the case r =1 these equations can be
obtained directly from Eq. (7) in l. For r 0 1 the
derivation of the necessary equations proceeds
exactly as the CO effective-mass calculation in I,
except that the computation of the derivative aa /aE
(a is the extremal area) is more complicated when
r &1. The results are

m f = (2/vr) (m 2m, )
"~ (1 ~ & + &r)" [K(k) + (r —1)e (k) ],
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We propose a model Hamiltonian to describe resonant energy transfer between discrete elec-
tronic states each of which is coupled to the same boson field. In this model, the calculation of
the transition probabilities for resonant energy transfer, radiationless intraimpurity electronic
transitions, and phonon-broadened electromagnetic transitions among the electronic states of
a given impurity are rendered formally equivalent, differing only in the selection of various
model parameters. The relation of those parameters to microscopic models is described in
detail for the case of resonant energy transfer between localized impurity states. A calculation
of the energy-transfer probability is presented which is valid to arbitrary order in the electron-
phonon interaction, but is the linear-response-theory treatment of the electronic-transfer term.
Explicit comparison between the predictions of our model and those of the F5rster-Dexter model
are given. We present an analysis of the time-dependent Schr5dinger equation which permits
us to distinguish between dissipative and multiply periodic solutions to the Schr5dinger equation
and gives a precise definition of weak- and strong-coupling limits. Finally, we indicate the ap-
plication of our results to describe experimental systems involving radiationless energy transfer and
electronic relaxation in rare-earth impurities in crystals.

I. INTRODUCTION

Recently there has been considerable interest in
energy transfer between localized states in a wide
variety of connections —including sensitized lumi-
nescence, exciton diffusion, molecular electronic
relaxation, polaron conduction, and energy transfer

in biological systems, to name a few. We discuss
the transfer of energy between two impurity ion
states which, in addition to being coupled to each
other, are coupled to the same quasicontinuous
modes of vibration of a crystal lattice. ' We propose
this simplified semiphenomonological Hamiltonian
in order to describe the absorption (emission) of


