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A systematic study is undertaken of the polarization anisotropies observed in electroreflec-
tance, with the objective of obtaining information about the Brillouin zone (BZ) location and
E (k) topology of the transition. The analysis permits the extraction of such symmetry informa-
tion from properly designed experiments, independent of the details of the spectral line shape,
and magnitude and inhomogeneity of the modulating field. It is shown that transitions origina-
ting from (111) and (100) directions in the BZ can be identified. Criteria are established for
determining the validity of the weak-field approximation in calculations of the electro-optic ef-
fect, and for determining the effect of the electric field on the transition matrix element. The
effect of the electric field on band degeneracies is considered, and their correlation to ob-
served anisotropies is discussed. Comparison of the analytical results with electroreflectance

measurements in germanium is made.

L. INTRODUCTION

Semiempirical band models depend on an accurate
correlation of optical spectra to critical points in
the band structure, as characterized by transition
energy, location in the Brillouin zone (BZ), and
topology of the interband energy surface.! Only the
first of these criteria of identification can be di-
rectly read out from static reflectance spectra.
Consequently, band-structure analysis faces the
problem of unfolding the observed one-dimensional
sequence of transition energies into the three di-
mensions of the BZ,

As the source of experimental information in this
assignment procedure, modulated reflectance is
superior to static reflectance for two reasons.
First, the modulated response correlates to local-
ized rather than extended regions in the BZ,2
thereby giving experimental information which is
more directly comparable with calculated energy
gaps. Second, modulation by an electric field or a
stress establishes a preferred direction and lowers
the symmetry of the sample crystal; consequently,
anisotropies of the reflectance response are ob-
served as the modulating vector rotates relative to
the crystal frame.®”® Of the two, the latter has
received the least attention. It is the object of this
work to examine the diagnostic potential of these
anisotropies in electroreflectance (ER).

In an attempt to explain these anisotropies,
Phillips” suggested that they occur at two different
levels. Nontensorial anisotropies arise from the

intraband mixing caused by the electric field (the
electro-optic effect), complemented by tensorial
anisotropies expected to arise from the transition
matrix elements. Furthermore, these anisotropies
when considered in properly designed ER experi-
ments would then provide information about the BZ
location and interband topology of the transition
under study.

The present study executes Phillips’s suggestion
and presents a general method for analyzing direc-
tional ER experiments in a manner which allows a
direct correlation of the spectra to features of the
band structure. It leads considerably beyond a
previous study of Bottka and Rbssler® and general-
izes Aymerich and Bassani’s treatment of a special
case.® In goal and spirit, this study is similar to
the symmetry analysis of piezoreflectance spectra
recently presented by Sell and Kane, *°

We introduce in Sec. II the basic definitions and
assumptions of the symmetry analysis, justifying
them by experimental facts. The correlation be-
tween the observed change in reflectance AR/R and
the dielectric function is then presented.

We describe the change in reflectance by a prod-
uct — or the sum of products — of two factors rep-
resenting separately the two levels of anisotropies,
tensorial and nontensorial,” The nontensorial elec-
tro-optic effect is assumed to depend only upon the
modulating field. This dependence is strong, both
in the magnitude and direction of the electric field.

‘The tensorial factor representing the sampling of

the field-perturbed dielectric function by the inci-
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dent light depends, in general, upon both modulating
field and direction of polarization, because the ma-

trix element involves field-perturbed wave functions.

The electric field dependence in this case is much
weaker.

Being interested in the response of AR_[R to
changes in divection, not magnitude, of ¥, we cal-
culate the ratio of the ER response for two orthogo-
nal polarizations of incident light. In general, this
ratio will not depend strongly upon the magnitude of
the electric field. Four special geometries of ex-
perimental interest are investigated in detail, as-
suming initially that the matrix elements are not
affected by F.

Direct transitions having principal axes along the
three directions (100, (111), and (110) of a cubic
reciprocal lattice (having, respectively, fourfold,
threefold, and twofold rotational symmetry) are con-
sidered, and the “ratio signature” is calculated for
the four chosen geometries. A discrimination is
shown to exist among the three transitions for elec-
tric fields along high-symmetry directions in the
crystal, independent of the electro-optic mechanism.

We conclude Sec. II by generalizing some of the
most 1mportant results to explicitly account for the
effect of F on the transition matrix elements and on
essential band degeneracies. Group-theoretical
compatibility relations are em}gloyed to determine
how the vectorial perturbation F reduces the sym-
metry of the point group associated with various BZ
locations. The results give the selection rules and
basis wave functions to be used in calculating field-
perturbed matrix elements. Comparison of the
signatures calculated here with those obtained under
the field-free—matrix-element assumption leads to
clear-cut experimental tests for the validity of that
assumption. Signatures for transitions involving
band degenerate levels are developed and sugges-
tions for observing them in experiments are given.
Section III presents experimental results as a test
for these analytical predictions. Limitations of the
current work and suggestions for extending the anal-
ysis are then presented in Sec. IV.

IL SYMMETRY ANALYSIS

A. General Considerations

We assume that the anisotropies in ER arise in
the following manner. For transitions occurring
off-center of the BZ, the incident polarized light
samples individual branches of the star of k differ-
ently, depending upon the direction of the polariza-
tion vector € with respect to each branch E,. In
cubic crystals with no applied field, the different
sampling of € averages out after summing over the
equivalent branches, and we obtain the usual po-
larization-independent isotropy. In the presence
of the electric field perturbation the degeneracy of
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the star of k is lifted, each branch being affected
differently by the applied field, This results in
nonequivalent individual contributions to the total
ER response, The different sampling of the polar-
ized light weights the nonequivalent electro-optic
effect at each branch E,, producing an observable
anisotropy in ER. In principle, this anisotropy can
result both from the field-affected matrix element
and the electrooptic effect at each IT:‘.

We incorporate these anisotropies into the sym-
metry analysis with the following “trial solution.””
For points off-center of the BZ, the change induced
in the dielectric function by the electric field, due
to transitions at the 7th branch of the star of E, is
described by a factor f;Q;, where f; represents_.the
matrix element as affected by the presence of F,
and @, is the dynamical factor describing the effect
of F on the Hamiltonian of the crystal. We write
the field-induced change in the imaginary part of
the dielectric function as

A€y=23; Qi 5 1)

where we have summed over the branches of the
perturbed star of k. The removal of essential band
degeneracies!! can be accounted for by a second
summation over the members of the multiplet, as
discussed later.

The observed modulated response AR /R depends
on the effect of F on €, as well as €,. Therefore
we must calculate Ae,; via the Kramers-Kronig in-
tegral.'® In field-free calculations of €, we have
to integrate over the entire spectrum; in calculat-
ing Ae, it suffices to integrate only over other
structure in A€, in the immediate vicinity of the
frequency w. This is a direct consequence of the
localized nature of the.structure.®''* For the
same reason we can remove f; from the integral,
assuming it to be a slowly varying function of w
over the width of Ae,. Consequently,

Aix(w)— " 21 fP f

dw'w'?

Ty Qi(w')=2fiQtl~

()

Finally, by adding the properly weighted contribu-
tions from field-induced changes of both optical
constants we obtain the fractional change in reflec-
tance!®1

(AR/R)(w) = a(w)Ae, (w) + B(w )A€, (w)
=21 fi(aQ{,+ BQ;)=Z)¢ fiD;, (3)

where we have defined D;, the dynamical factor,
as

= OlQ;+ BQ; . (4)

D; will, in general, be a function of both the
magnitude and the direction of the electric field:
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FIG. 1. (a_.) Polar coordinates ¢ and ¢ of the electric
field vector F referred to the local frame of the ith
reciprocal-lattice vector 12, . The unit orthogonal com-
ponents of the local frame are designated by #, §, and 2,
with E, IIz. (_l_o) Polar components ¢ and ¥ of the electric
field vector F referred to the cubic crystal frame. The
unit components #, 9, and # are along the cube edges.

D,;=D;[F(8, ¢)], because of the anisotropy in the

reduced mass. T}_l_e polar angles ¢ and 6 specify
the orientg.tion of F with respect to the principal
direction k; in the BZ contributing to the transi-

tion, ’

Since each ki is generally intersected at a differ-
ent angle by the external perturbation F, it is use-
ful to associate with each branch of the star of k
in the first BZ a “local coordinate” system for
which the origin coincides with the tip of the vector
k, and the z axis is parallel to k;. Figure 1(a)
shows such a system along with the polar angles
mentioned above. Note that for k; of greater than
twofold rotational symmetry. D; is independent of
¢. Also, for cubic symmetries the following re-
lations hold:

9,
——%(9,(]5):0 for 6=0, irforall¢,  (5)
21 1

6,¢6)=0 for =0, swforall b, 6)

These relations will be useful later when we per-
form the summation over i in (3).

In Eq. (3), the factor f; is the transition matrix
element between states j and j’, and is given in the
dipole approximation by

2=(j|eD

where p=—i#V is the momentum operator. When
considering the orientation of & in the crystal with
respect to each branch of E, it is advantageous to
decompose f; along some convenient coordinate
system. One logical choice would be to use the

fi= My, (7)

local coordinate system given in Fig. 1(a). In this
system

(_é -13)1 xlpx"' eyi py+ ezi pz 3 (Sa)
where
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e, =8%;, etc. (8b)
fc,- being the unit vector, from which

fi= X+ Y+ 242, ©)
where, for example,

X;=(jlex, el 3. (10)

The quant1ty X; is the matrix element for the tran-
sition at k, if € is parallel to the x axis of the ith
local coordinate system. The matrix element for
any orientation of & can be expressed in terms of
the components X;, Y;, and Z;. This decomposi-
tion will be useful When we treat the case of field-
free matrix elements in Sec. IIB.

To treat the case of field-perturbed matrix ele-
ments, we will choose a new decomposition of f;,
namely, the component parallel to F, denoted by
P;, and the component normal to F denoted by
N;. The components N; and P; are related to X ;,
Y;, and Z; by a coordinate transformation corre-
spondmg to rotation through 0;, the angle between
F and k

The selection rules prescribed by the symmetry
of the transition, the possible lowering of the sym-
metry by the field, and the actual strength of the
transition are, in principle, all contained in (9).
For example, if we apply an electric field F along
ki, the symmetry of the wave functions assocm.ted
with that particular branch of the star of k will not
be lowered (unless the tip of E is at the surface
of the BZ), and the field-free e polarization selec~
tion rule will still apply. If F is not parallel to k,,
the symmetry of the point ki associated with the
transition will be lowered, degeneracies may be
lifted, and a new set of selection rules will apply.
Some of the components of the matrix element
which were previously zero will now be nonzero;
the magnitude will depend on the strength and
orientation of the field. As before, the following
symmetry condition holds:

8.0 2y ate-0, i 11)
The compatibility relations associated with the
lowering of the symmetry by the field, the corre-
sponding selection rules, and the form of the ma-
trix elements will be discussed in detail in Sec.
IIC.

Having dealt formally with the factors f; and D;,
which we have assumed to be the two components
of ER response, we now must arrive at a reliable
method for experimentally extracting the symmetry
information contained therein. We will assume an
experimental geometry in which the orientation of
F may be varied with respect to the crystal axes
and call it the trajectory of F Figure 1(b) shows
the polar angles £ and v of F with respect to the
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FIG. 2. Trajectories of the electric field Fin crystal
coordinates. The polarization vector & perpendicular or
parallel to the field T is designated by TE, and & perpen-
dicular or parallel to the axis of rotation by LE.

crystal axes; these two angles become the indepen-
dent variables of the experiment. In this study we
will consider only trajectories in which the incident
light direction is normal Lo the plane of reflection
and the modulating field F is parallel or normal to
the incident light beam. These are classified in
experiments as the longitudinal (LE) and transverse
(TE) geometries, respectively.

Four trajectories will be treated in detail; these
are shown in Fig. 2. In the LE trajectory, the
sample rotates about the [110] direction!?; the
azimuth y is constant at 27, and the trajectory
parameter 5 (measured from [001]) defines the ori-
entation of F in the plane of rotation. The light
incidence is parallel to F and lies in the plane of
rotation; reference directions of € are normal and
parallel to the axis of rotation. In the LE trajec-
tory, € is alwgys normal to i‘" In the other three
trajectories, F lies in the reflecting plane®; these
planes are (100), denoted by TE-1; (110), denoted
by TE-2; and (111), denoted by TE-3, The refer-
ence polarizations are normal and parallel to F.
For TE-1 and TE-2, ¢ defines the orientation of
F relative to [001] in the reflectmg plane; the
azimuth y is fixed at 0 and 3, respectively. The
only difference between LE and TE-2 is the man-
ner in which the individual D;’s are sampled by the
polarization vector; each D; is identical for these
two trajectories.

Over these four trajectories we will evaluate the
“polarization ratio signature, ” defined by

AR(EL[110])/R, AR, (3L[110)])
AR(&N[110])/R, ~ AR, (éI]110))

for the LE trajectory, where [110] is the axis of
rotation, and

S(¢,LE)=

12)

AR(BIF)/R,
AR(GIF)/R,

ARl(ElF)
AR,(GI'F)

S(¢, TE)= (13)
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for the TE trajectories. We choose this signature
because in forming the ratio (12) or (13_2 as we
vary &, we “divide out” variations in |F| along the
trajectory!’; any observed change in ER response
as we rotate € at fixed ¢ will have its basis in the
symmetry of the transition. The correlation be-
tween experiments and Eqgs. (12) and (13) is made
by recording the magnitude of the ER structure as
a function of £ and polarization direction.

We assume in (12) and (13) that the reflectance
R is polarization independent, implying an un-
strained cubic system. The extension to noncubic
cases is tedious but straightforward.

B. Field-Free Matrix Flement

We apply Egs. (3), (12), and (13) to the principal
BZ directions A and A, assuming initially that the
matrix elements of the field-free crystal provide
an adequate description of the optical sampling in
the presence of F,™!? and that the bands involved
in the transition are nondegenerate.

Two simplifications result from the assumption
of field-free matrix elements. First, the matrix-
element components (9) are no longer functions of
F and are thus identical for each branch of the
star of k (although the individual f; will be different
because the angles between € and each k; are dif-
ferent). Second, the principal axes A and A re-
main fourfold and threefold rotationally symmet-
ric, respectively; the matrix-element components
(9) can thus be simplified because X;=Y;. There-
fore we introduce the “radial component” R;=2X;.

Tables I and II summarize the main steps in
calculating the ratio signatures for F along high-
symmetry directions in the crystal. Table I shows
the equivalence relations among the D;’s for each
transition; the _angles in parentheses indicate the
angle between F and E,, the parameter £ and the
index 7 identify F and ki in the crystal frame [Fig.
1(b)], respectively. Table II exemplifies the ma-
trix element decomposition [Eqgs. (8)-(10)] for a A
transition in the TE-1 trajectory; the two refer-
ence polarizations €, and €, are expressed in
terms of the unit vectors of the crystal coordinate
system [Fig. 1(b)] and then Eqs. (8)—(10) are fol-
lowed through for the six branches of the star of k.

Table III presents the results of calculating S via
(12) and (13) for transitions of A and A symmetry;
these are the basic results of our symmetry anal-
ysis. Table III contains the following information:

(i) There are values of trajectory parameter &
for which S=1; in other words, the ER response is
identical for both reference polarizations. These
S=1 values fall into two categories. (a) In the LE
trajectory, S=1 for A and A symmetries (the same
is true for any symmetry) with Fi[001] or [T11]
(6=0° or 54°44"'); these unit entries merely reflect
the cubic structure of the crystal and make no dis-
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TABLE I. Equivalence among the dynamical factors D; when the electric field is along the principal symmetry direc-
tions in the crystal. The angles in parentheses correspond to 6 and ¢ shown in Fig. 1(a). The trajectories are defined
in Fig. 2.

Trajectory
Trajec-  parameter Field
tory £ direction A A z
Dy=Dy=D(90°,90°)
0° [o01 D;=Dy=D(90°); D3=D(0°)  All D, =D(54°44’ 1772 ’
I 1 2 ( ) 3 ( i ( ) D3:D4:D5=D6:D(45°,45°)
TE-1
45° [011] Dy=D(90°); Dy=D3=D(45°) D;=D,=D(35°16") Dy=Dy=D3=D;=D(60°,60°
Dy=D,;=D(90° D5=D(0°,90°); Dg=D(90°, 0°)
0° [001] Dy=D,=D(90°; Dy=D(0°)  All D;=D(54°44’) Dy=D,=D(90°,90°)
Dy Dy=Dg=Dg=D(45°, 45 °)

TE-2,

LE 54°44’ [T11] All D; = D(54° 44") Dy =Dy=D,=D(70°32") D1=D3=Dg=D(90°,35°16')
Dy=D(0% Dy=D,=D5=D(35°16’,90°)
90° [T10] D;=Dy=D(45°); D3=D(90°) D;=Dy=D(90°) D;=D(90°,0°); Dy=D(0°, 90°)

D,=D,=D(35°16") Dy=D,=Dg=D(60°, 60°)

tinction among transitions of different. symmetry. entries S(0°, A, TE-1), S(0°, A, TE-2), S(54° 44,

This is an inherent feature of the LE trajectory, in
which both reference polarizations are perpendlcu—
lar to F. If F is parallel to a direction of greater
than twofold symmetry, the symmetry of the plane

A, TE-2) result from the equivalence of the D,’s;
the other unit entries result from the equivalence
of matrix-element components for both reference
polarizations.

(iii) The values of S(90°, LE) and S(90°, TE-2)
are identical for A; the same is not true for A. We
also have the trivial result that S(0°, TE-1)
=5(0°, TE-2) for any symmetry.

The nonunit entries in Table III also contain sym-
metry information, but require some knowledge of
D(6) and the matrix-element components R and Z
before they can be utilized. Or, turning the state-
ment around, having experimental results corre-
sponding to the entries in Table III, we should be
able to extract information about D(8), R, and Z.
We will discuss this in detail in Sec. III.

As an example, we now consider a specific se-

normal to F is not altered and the dipole matrix
element remains independent of the angle of polari-
zation in that plane. This result also carries over
to the case of field-perturbed matrix elements, as
discussed in Sec. IIC. (b) Inthe TE-1 and TE-2
trajectories, on the other hand, the S=1 entries
now occur for different values of £ according to
whether the transition is of A or A symmetry.
There are two independent signatures which allow
unambiguous assignments: S(0°, TE-1)=1 for A
but not A, while S(45°, TE-1)=1 for A but not A.
Similar discrimination holds for TE-2.

(ii) Referring to Table I, we see that the unit

TABLE II. The projection of the polarization vector & along the local coordinates of the star of k having symmetry A,
¢ is given in terms of the unit vectors of the crystal coordinate [Fig. 1(b)] for cases perpendicular (&,) and parallel
(8,) to the electrlc field; F Jotates in the TE-1 trajectory. The matrix elements are expressed in terms of Z, the pro-
jection of & along the axis k,, and R in the plane perpendicular to k The primed indexes refer to the stars of ki diago-
nally opposite to the unprimed ones. The upper sign refers to the unprimed, the lower sign to the primed index of 7.

‘ . éy=—1Dcost +dsing 8,="Dsint +ibcost
Z 1, 1/ 2, 27 3, 3’ 1, 1’ 2, 2/ 3, 3’
& % —cost 0 0 +sing 0 0
G- 3 sin§ sin& —cosé cosé cosé siné
&.2; 0 +cost +siné 0 +siné +cosé
Eri 1 siné cosé 1 cosé sin¢

GPIE Dl R Rsint ¥ Zcosé Rcosé + Z sint R Rcost +Z sint Rsiné + Z cosé
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TABLE III. Polarization ratio signature for A and A symmetries, withthe electric field along high-symmetry directions
in the different trajectories. The results are given in terms of the dynamical factor D; and the components of the matrix
element parallel (Z) and perpendicular (R) to the nonequivalent principal directions of 1?,-. The subscript angle refers to
the angle between the electric field and the star of Ei These results are valid when the matrix elements of the unper-

turbed system are applicable.

Trajectory Polarization ratio signature
parameter Field
Trajectory £ direction A symmetry A symmetry
0° [o01] 1 1
LE 54°44" [T11] 1 1
90° (i10] 2D50 R? + Dy0 2 (D3se 150 +Dyy?) (2R*+Z%)
(Dys0 + Dygo) R? + D50 Z2 3Dgg0 g0 R + Dyyo(R2 +227)
o o 2 o 2
0° [001] (Dyo + Dyy?) R? + Dyyo Z 1
2Dy eR? + DyoZ?
TE-1 2 2
45° fo11] 1 (8Dg50 yg¢ +Dyge) R +2Dgg0Z
(Dy5e 16 +3Dyge) R? +2Dg50 460 Z*
o O R? W72
0° [001] (Dye +Dyy°) R* + Dyyo Z 1
2Dg°R? + Do Z 2
TE-2  54°44' [111] 1 (8Dyo +5D1¢° 5pe) R® +4Dyge 390 Z2°
8Dyge g0 R%+ (3D + Dygo 590 ) 22
90° [T10] 2D5°R% + Dy Z° (Dggo 16+ +Dgge) (2R2 +22)
(D450 + Dyge) R*+ D50 Z° (Dgso 1ge +3Dyge) R? +2Dg50 10 22
TE-3  eeo [T01] (5Dy5° +Dyye) R + (D50 + 2Dy) Z* (7Dy5e 150 +5Dpy°) R? + (2Dg50 40 +4Dye) 2

3(Dy50 + Dygo) R% +3D 5022

(3Dg50 16+ +9Dgge) R? +6Dys0 10 Z2

lection rule, namely, R=R,, Z=0 (that is, 61k,
allowed, which is common in diamond and zinc-
blende lattices), and a simple model for D(d). We
assume direct transitions in a one-electron band
structure, in which the field perturbation of €, is
characterized by the curvature of the interband en-
ergy surface along the field direction; if F is along
a direction of zero curvature, we require D(6)=0.
This can be formalized by writing

D(6)~+ F2(0)/ et F2(0)/uy £ F2(0) /1.  (14)

Ky, My, and u, are the components of the reduced
masses in the local coordinate. The signs are
chosen to represent the signs of the curvatures
along the local coordinate axes, Fig. 1(a); as usual,
the z component is parallel to Ei. Equation (14) is
rigorously true at low!® |¥| because the line shape
of AR/R is independent of the magnitude of F. If
all signs are identical, the interband energy sep-
aration at Ei is an extremum; if not, we have a
saddle point. The four possible cases are classi-
fied™ by M,, where [ is the number of negative
masses in (14). For BZ directions of greater than
twofold rotational symmetry, u,= u, and we define
c=p,/p,. For M;&) and M,(-) types, we have

D(8) ~ + (sin?6 - ccos?6) , (15)
whereas for M,(+) and M,(=),
D() ~+ (sin®0+ ccos®6) . (16)

These functions are plotted in Fig. 3 for several
values of ¢. Note that they satisfy the symmetry
requirements (5).

Equations (15) and (16) have the same symmetry
properties as the generalized Franz-Keldysh the-
ory.'? 1 For a saddle point (M, M,), D(6,)=0,
where tan?d, =c; physically this means that there is
no response if ¥ is along a direction of infinite in-
terband mass. Furthermore, D(6) changes sign as
F crosses 8,; this corresponds to the change in
spectral line shape from one to the other of the
electro-optic functions!? as ¥ crosses the cone de-
fined by zero curvature of the interband energy sur-
face.

We have computed S¢) for A and A in the TE-1,
TE-2, and LE trajectories (a transformation from
0 to ¢ is involved); the results are shown in Fig. 4
for transitions of M; or M, type. Since M, differs
from M, (and M, from M,) only in the sign of each
of the D;’s, the particular signature we have chosen
does not distinguish between the two types of saddle



FIG. 3. Amodel electro-optic mechanism D(6) as a
function of the angle 6 between the Fand the principal
axis K, given by Eqs. (15) and (16). The parameter ¢ is
the reduced mass ratio, c¢=pu,/p,.

point (or the two types of extremum). The TE-1
and TE-2 trajectories in Fig. 4 yield an unambig-
uous choice between A and A symmetries; in prin-
ciple, one can determine both the symmetry and
mass ratio ¢ from either trajectory. The LE sig-
nature, shown in the bottom of Fig. 4, is ambiguous
with respect to the mass ratio: a A transition with
¢ <1 is indistinguishable from a A transition with
c>1,

Note that the S(¢) curves of Fig. 4 go through cer-
tain high-symmetry values of £ with zero slope, as
required by the symmetry condition (5) on D(6).

For the LE trajectory, it can be shown that the com-
bination S=1, dS/d£ =0 can only occur at £=0, re-
gardless of the symmetry of the transition.
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FIG. 4. General signature pattern for the different

trajectories for A and A symmetries.

Equation (15) was

used for D(6) with the selection rule Z=0.
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C. Effect of F on Matrix Elements and Band Degeneracies

We now consider alterations to the signatures of
Table III which result from field-dependent matrix
elements and the removal of essential band degen-
eracies. We will employ results from group theory
in which the electric field vector F is the symmetry
determining axis, so it becomes convenient to de-
compose the matrix element f; into components N;,
€ normal to -f, and P;, Eparallel to F:

f{Z(NﬁPi)z, N,=|(jié:--p.|j')’ ’

Pi=[Glé - BliNI (17)
where the subscript on é refers to its orientation
with respect to F.

In general, the effect of ¥ on the unperturbed
system (described by the group of the star of K)
will be to reduce the symmetry; the new system
will have to be compatible with the previous sym-
metry. The consistency between the old and new
system is given by compatibility tables (for exam-
ple, Ref. 20). Toillustrate, consider the point I'
in the BZ which has the symmetry of the full cube,
i.e., the point group O,. By applying F to this sys-
tem, we establish a symmetry axis, and instead of
0, we will have F1(100), (111), and (110) compat-
ible with C,,, C,,, and C,,, respectively. In Fig.

5, we show the effect of (100) and (111) fields on
the I';, I';, and I'; levels in the diamond lattice;

the new selection rules in the presence of ¥ are in-
dicated. The I'y degeneracy is removed for anyori-
entation of _F"; the ordering of the split levels is that
suggested by Enderlein ef al.!

For points off-center of the BZ, we must consider
three cases. (i) At an interior point, ¥ Il k; does not
affect the symmetry, although the actual amplitudes
of the wave functions may change. If the field-free
matrix elements are R=R, and Z =0, the new values

0, Cav Cav
. A, A,
i L 1l 1
ALL
ALL
+ Dg = AFAg i
M
A7 r=2 /\6 r=2
+
r N—— Ne——
F=0 F Il 00> Fu dmw
FIG. 5. Schematic representation of the point group

O, and the energy levels I';,T'j, and I';. The compatible
symmetries are shown as the electric field is applied
parallel to (100) and (111). The polarization selection
rules are referenced to the electric field direction, either
ZIF or 8LTF. The T'; degeneracy is removed by F; the
lower-energy member of the T'y—I'7 doublet is only al-
lowed for & L F.
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FIG. 6. Schematic representation of the point group

C,, and the energy levels Ag(T'g), Ar(T;) of the diamond
lattice involved in the transition. The compatible sym-
metries are shown as the electric field is applied parallel
or perpendicular to the A axis. In labeling energy levels,
we give the usual band-structure notation first, then the
notation of Ref. 20 in parentheses.

with ¥ I1K; will be R=R and Z=0 (or, in the new de-
composition scheme, N=N and P=0). The selection
rules for representative A and A transitions with
Fik, (Fi 2) are shown in the left-hand sides of
Figs. 6 and 7. (ii) For points on the zone face,

Tl K, removes the inversion symmetry of the plane
perpendicular to 1::', but does not affect the rotation-
al symmetry. In the absence of essential band de-
generacies, the selection rules simply revert to
those of an interior point having the same rotation-
al symmetry (for example, i E, reduces the L -
point selection rules to those of the A direction in
diamond). If such degeneracies do exist, they will
be lifted by Fu E,. This is shown for the degenerate
X5 level in diamond in the center diagram of Fig.

8. (iii) For ¥ LK,, the rotational symmetry of
threefold and fourfold K; will be lowered, degener-
acies will be lifted, and new selection rules will

(k)2
CSV
9
R
F=0,FIIZ FIIR
CSV CS r
LAy ¢
Xy XYz x vz 13
0) W
L+, L
(Ag+Ag) )
L(Ag) — ?
3

FIG. 7. Schematic representation of the point group
Cs, and the energy levels Ag(Ty), A4(T'5) +A5(Tg) of the
diamond lattice involved in the transition. 'The compatible
symmetries are shown as I is applied parallel and per-
pendicular to A.
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apply. This is shown schematically in the right-
hand diagrams of Figs. 6-8 for A, A, and X, re-
spectively. The group-theoretical basis is given
explicitly in Refs. 20-23.

Certain conclusions about the signature can be
drawn immediately by considering how F in certain
directions affects the symmetry of the crystal. In
the LE trajectory the polarization vector is always
perpendicular to the electric field perturbation,
and for ¥ parallel to (100) or (111) the plane of
polarization remains fourfold and threefold rota-
tionally symmetric, respectively. Since we con-
sider dipole transitions only, we conclude that the
S=1 points in the LE trajectory (Table III) are still
valid. This will not be generally true for the TE
trajectory since e samples parallel and perpendicu-
lar to the field, or perturbation, axis. Thus the
TE signatures should provide the most straightfor-
ward evidence for degeneracy and matrix-element
effects.

As an example, consider S(0°, A, TE-1), where
¥ [001] and € rotates in the (100) plane. One
branch of the star has ¥ il K; (or ¥ 12 in Fig. 6) and
the group E,- is still C,,. For this star, components
of the matrix element that were zero in the unper-
turbed case are still zero; the others might not have
the same magnitudé. The other two branches have
FLEK, (F 1% or § in Fig. 6); the symmetry is re-
duced to C, and the time-reversal degeneracy of
both initial and final states is lifted. The exact na-
ture of the matrix element depends upon the specific
A transition being considered as well as the orien-
tation of €. The transition Aq = Ag in the diamond
lattice has R= Ry, Z =0 in the absence of ¥, so the
branch with ¥ 11 k; has N=N and P=0 in the presence
of . For the other two branches, A, and Ag both

9
L
r----4__ 8
F=0 FlI2 FI§
Dlh CJV CZV
L —3 3
x6 h rS r3 l}
Xy xy.z %z
|y MR X
1
L
. l"7 5 1:
X, - — L Ly

FIG. 8. Schematic representation of the X point at
the BZ face in the diamond lattice. The compatible sym-
metries along with the selection rules for the electric
field along different directions in the crystal are shown.
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split into 'y +T', (using the notation of Ref. 20), and
the selection rules indicated in Fig. 6 lead to

N(CJ)= [(Ty| &, - B| Tg) +(Tyf & - I T)[?, (18)

PA(C)= [(Ts) e PITy) +(Ty| &+ I T5)|2. (19)

The signature (13) for this transition contains ma-
trix elements appropriate to C,, for the branch with
Fu f(’i and to C; for the two branches with FiL Ei,
given in (19) above.

Let us now consider what happens to the S=1 en-
tries for the TE trajectories in Table II which were
based on the equivalence of the D, (F i (100) for A,
Fi(111) for A). In both of these cases, F makes
“an angle of 54° 44’ with each K;. The symmetry
cannot be reduced below C, (the group of C, consists
of the identity and a reflection using the notation of
Ref. 20) so the selection rules for ¥ oblique to k;

are identical to ¥ LK,, as shown on the right in Figs.

6 and 7. The signature in both cases is simply the
ratio of field-perturbed matrix elements with &L
and Il ¥:

S=N¥(C,) /PA(C)) ,

where the matrix elements are given in (18) and
(19). This new value is not unity; it must approach
unity as |F | is reduced in the experiment.

Finally, we treat the case in which the transitions
originate from degenerate bands, namely, the '
point in the diamond structure. We retain the prod-
uct f; D, for the ER response, where now the sub-
script labels the degenerate levels; we assume that
the total ER response arises as a superposition of
contributions from the degenerate levels. In ex-
periments, the effect of F is not to split observed
peaks, as in piezospectroscopy or the Stark effect
of atoms, but simply to introduce anisotropies of
the peak size as the polarizer is rotated. As in the
case of K-star degeneracies, polarization anisot-
ropies in ER will be expected only if the degenerate
levels have different effective masses and the se-
lection rules show polarization discrimination as
¢ samples parallel or perpendicular to F, i.e.,
fEeLF)# f(en¥). In Fig. 5, the transition connect-
ing the degenerate I'; level (»=1, 2) and I'; will have
the following signatures:

f1(€1 [001]L F) D, +£,(e 1l [001]1 F) D,

S(LE, 90°)= 1@ [110] L ¥) Dy +f,(e 1 [110] LF) D,
(20)
for the LE trajectory, and
S(TE) - f1(eLF) Dy +fy(e LF) D, 21)

(el F) Dy +f,(e I F) D,

for the TE trajectory.
From the selection rules in Fig. 5, it is seen that
ER in the LE trajectory will not show polarization
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anisotropy unless the energy surface surrounding the
critical point is nonparabolic. In the TE trajectory,
polarization dependence is possible, provided the
effective masses of the degenerate levels are dif-
ferent from one another, and again, that FfELF)
#f(en F).

In the case of band degeneracies for points off-
center of the BZ (like the X point in diamond) polar -
ization anisotropies would always be expected, the
total contribution coming both from the star of k and
band degeneracy. Thus, for the X;-X; transition
shown in Fig. 7, we would expect a polarization de-
pendence even when bl (111), i.e., the sum in Eq.
(3) would reduce to a sum over the four levels of the
doubly degenerate X; states. Detailed treatments
of field effects on I'- and X-point degeneracies are
given in Refs. 11 and 24.

III. DISCUSSION

In this section, we present guidelines for applying
the results of Sec. II to experiment. Evidence to
support the present treatment will be given.

The first experiment should seek to confirm the
field-free —-matrix-element assumption, namely, by
measuring S as a function of |¥[. A constant sig-
nature over a range of |¥| would indicate that the
results of Sec. II B apply. The following order of
investigation would then be appropriate:

(i) The TE entries of Table III can be applied di-
rectly to obtain the principal axis of the transition.
A A transition will produce no polarization depen-
dence (S =1) for ¥ 1(100) in either the TE-1 or TE-
2 trajectory, whereas a A transition will exhibit
S=1 for ¥ 11 (111) in the TE-2 trajectory, or ¥
I1{110) in TE-1. The first three of these unit entries
are based upon the complete equivalence of the vari-
ous D;’s (see Table I), and are thus totally inde-
pendent of the details of the electrooptic mechanism.
If none of these experiments produce S=1 and if the
field-free—matrix-element assumption has been
verified, then the symmetry of the transition must
be twofold or less. If S(TE)=1 for any orientation
of ¥, a T transition is indicated.

(ii) If experiment does provide a clear-cut dis-
tinction between A and A, then we can consider their
specific polarization selection rules and make mea-
surements on the remaining configurations in Table
III. These give three independent equations in the
three unknowns D(0°), D(45°), and D(90°) for A, and
five equations in four unknowns D(0°), D(35°16'),
D(70° 32’), and D(90°) for A. Knowing D(6) for
three values of 6 would allow determination of the
components of the effective-mass tensor at the BZ
point where the transition occurs. To do this, a
model for D(6) must be assumed; the one applied
in Sec. II B is a possibility.

(iii) If we have no prior knowledge of the selection
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rules, but we have found the principal axis of the
transition from the S=1 values, experiments per-
formed on the other trajectories in Table III still
produce at least three equations in the three ratios
D(0°)/D(90°), D(45°)/D(90°), and R?/Z%, in the case
of a A transition. The value of the ratio RZ/ZZ in-
dicates the symmetry of the wave functions associ-
ated with the initial and final states of the transi-
tion; in other words, the value of R%/Z2 tells us
specifically which A transition we are observing.

If the system of simultaneous equations can only be
satisfied by R2/Z2>1, then Z =0 and R is finite,
which means the transition is only allowed for el E,
If R?/Z?% has some finite value, we are provided with
an experimental check of calculated matrix elements
for transitions in which both polarizations are al-
lowed. Information of this kind can be used to ver-
ify the ordering of the various energy bands in cal-
culated band structures.

(iv) As pointed out in Sec. II, the LE trajectory
does not provide clear-cut information about the
symmetry of transition. However, it can be used
to measure S as a continuous function of £,” which
is not presently feasible in TE experiments. The
behavior of (dS/d¢)(£) provides an additional test
of the validity of the model in Sec. II B (see Figs.

3 and 4). For example, one of the results was dS/
d§=0 only for £= 0° and 90°(due to cubic symmetry).
If, in addition, an LE experiment yields (dS/d£)

X (54° 44’)=0, or additional values of & where S=1,
then the assumptions leading to Fig. 4 must be re-
examined.

In the event that S is a function of |¥|, we can
still indirectly utilize the TE unitentries to establish
the principal axis of the transition. For example,
if with F 1(100) S extrapolates to unity at I¥| =0,
we would be correct in assigning the transition to
the A direction in the BZ; furthermore, S(I¥|) is
a direct measure of the range of validity of the
weak-field approximation.

A variation of S with || would be analogous to
a stress deformation potential, in which interband
mixing by F contributes to the anisotropy of AR/R.
The polarization dichroism for each |F | would in-
dicate the presence of “Stark” splitting in the bands.
Normally, such splitting would be too small to be
observed in solids; although the splitting would in-
crease with |¥ |, the collision broadening of the
electro-optic structure would make observation of
the splitting difficult. An alternative approach
would be to infer “Stark splitting” from the differ-
ence of linewidth of the electroreflectance signal
for the two reference polarizations. %

Such effects would probably be more pronounced
in the TE trajectories, in which the perturbed ma-
trix element is sampled both parallel and perpendic-
ular to the perturbation direction. This does not
imply that the LE trajectory will not exhibit field-
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dependent signatures as well, since N and P can be
expressed in terms of R and Z (or X, Y, and Z if
the rotational symmetry is reduced by F). The in-
terpretation would be more cumbersome, and the
geometry favors the TE trajectories if such infor-
mation is sought.

As seen from Sec. II, the ratio N/P is extractable
from signatures where the field orientation is such
that all D;’s are equivalent. This is the case for
T (111) for A, ¥11{100) for A and any direction of
Ffor I'. These give information not only about the
levels in the degenerate set which contribute to the
transition, but also indicate to what extent such de-
generacies are lifted by the field.

Several recent papers provide experimental ver-
ification for some of the analytical results; we dis-
cuss them briefly here.

Polarization-dependent surface-barrier ER spec-
tra on (110) planes [corresponding to S(LE, 90°)]
have been reported for Si* and Ge.® In neither case
was the multibranch nature of the transitions ac-
counted for. Variation of ¢ in the latter case was
done primarily to unravel overlapping structures
believed to be present between 2.0 and 3.6 eV.

Recently we reported measurements on [110]
axis Ge cylinders, 7 corresponding to the complete
¢ dependence of S(LE). The data for the E;, E;
+4; doublet (2.1 and 2.3 eV) were in accord with
Fig. 4, indicating a value of ¢ <1 assuming a A
transition. The three components of the E, struc-
ture (4.4 eV) all exhibited different S(¢£) behavior;
we tentatively concluded the existence of more than
one transition having nearly equal energies but dif-
ferent symmetry character.

High-resistivity germanium suitable for trans-
verse electroreflectance was obtained by Y-ray
compensation; preliminary data demonstrated the
power of the TE analytical results.?® With field
strengths well below 10* V/cm, values of S for the
E,, Ey+4A, doublet were obtained which clearly es-
tablished the A symmetry of these transitions.
Forman, Aspnes, and Cardona?” prepared semi-
insulating Si by gold compensation; their TE spec-
tra of the 3.4-eV complex were polarization depen-
dent for all three principal orientations of ¥ (one
component of the structure had S=1 with F11[110]).
From Table III, it is clear that transitions of A, A,
and I' symmetry do not contribute to this structure,
so the location of the elusivel T'ps — T’y fundamental
direct gap remains unsolved.

Matrix element and degeneracy effects were dem-
onstrated by detailed TE measurements on the E,
direct gap of Ge.?* For any orientation of ¥, the
period of characteristic Airy oscillations was found
to be greater with el ¥ than € LF. A consistent in-
terpretation was obtained by invoking the incipient
(unresolved) removal of the light -heavy hole degen-
eracy as shown in Fig. 5; the total response be-
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came the sum of light and heavy hole contributions,
each represented by a different spectral function
D(F). The polarization-dependent weighting of these
contributions was obtained from group-theoretical
arguments outlined in Sec. IIC. Similar effects
were not observed at the spin-orbit split E,+ A,
transition in which no degeneracies are involved.
Handler and co-workers?® observed the effect of
band warping on the polarization-dependent matrix
element (7), again for the E, transition in Ge; by
measuring surface-barrier spectra (e always L F)
they observed anisotropies characteristic of the un-
perturbed crystal only.

We have recently completed an extensive sym-
metry analysis of the Ey, E§, and E, structures in
Ge.” Portions of the E{ spectrum were found to be
independent of polarization for any direction of —15,
which led to the first unambiguous determination of
the crucial I'y5 — I'y5 separation. The spin-orbit
splitting of the I';5; conduction band was accurately
obtained.

IV. LIMITATIONS

In closing, we point out some limitations of the
analysis and indicate some areas that need further
study.

In treating cubic materials, we have assumed that
the effect of ¥ is identical at diametrically opposite
points Ei and —ff,-; this might require modification
for more complex structures (the lack of inversion
symmetry in III-V’s has been neglected in similar
studies® #"). It has recently been shown® that the
electro-optic response in zinc-blende material con-
sists of two contributions: electroreflectance, as
described herein, which is even in f, and piezo-
electrically induced piezoreflectance, odd in ¥.
Only by experimentally separating the two can our
symmetry analysis be applied.

The trial solution (3) assumes that the transition
matrix elements are essentially constant over the
spectral width of the transition. Although this can-
not be rigorously justified, accounting for the effect
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of ¥ on the matrix elements (discussed in Sec. II B)
is the logical sequel to previous treatments. % % 12
Explicit calculation of matrix elements in the pres-
ence of requires assumptions about the field-per-
turbed eigenfunctions; such calculations have not
been performed to date.

In Sec. I, we considered the effect of an electric
field perturbation on degenerate states in a cubic
system, but omitted degeneracies resulting from
equienergetic transitions at BZ points of different
symmetries. The symmetry character of such a

- superposition will be more complex than considered

so far, but still can be treated directly by using (4).
For example, the polarization ratio signature (12)
or (13) for two equienergetic transitions A and B
having different symmetries would be

S=él- +B,
A, +B,’

where both A and B would have the form 3, f;D; of
(4). The interpretation of such a signature is com-
plicated by the fact that the response of the main
peak and satellite structure will be affected differ-
ently as we rotate the sample with respect to F and
é: depending upon the superposition of the two struc-
tures. Such a superposition may occur at 3.4 eV
in'® 2" Si and 4.4 eV in Ge.'" In the case of transi-
tions having twofold rotational symmetry or less,
calculation of S becomes vastly more complicated.
The orientation of ¥ and € with respect to K, must
be specified by both polar and azimuthal angles,
and the number of nonequivalent Ei becomes larger.
As a practical matter, theoretical estimates of the
principal components of the interband mass tensor
would be required; these could then be tested ex-
perimentally.
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The electronic transport properties of slightly reduced pure strontium titanate have been
studied at low temperatures between 2 and 300 °K. The temperature dependence of resistivity,
Hall coefficient, and Hall mobility showed different features from previous results for doped
and reduced crystals with higher carrier concentrations. Specifically, the mobility at liquid-
helium temperatures is small (5—700 cm?/V sec) and increases with carrier concentration.
Optical-absorption measurements showed the existence of several compensating acceptor
levels and that the dominant mechanism of electron scattering was by longitudinal optical
phonons at room temperature. Further, the data show that a specialized form of ionized-im-
purity scattering may play a role at low temperatures. A discussion of our experimental
results is presented and it is concluded that an explanation of these in terms of a model of

impurity-band conduction is appropriate.

I. INTRODUCTION

Electronic transport in semiconducting SrTiO,
has been studied by several authors. '~* In the low-
temperature studies, large electronic mobilities
were found ranging from 10° to 2x 10%*ecm?/V sec
for crystals with carrier concentrations between
10" and 5x10%° cm™. According to Tufte and
Chapman® and Frederikse et ol .? the Hall mobility
at liquid-helium temperature decreases with in-
creasing carrier concentration and from this these
authors concluded that the mobility at low tempera-
tures was limited by ionized impurity scattering
even though the magnitude of the theoretical and
experimental values of mobility did not agree too
well.

Tufte and Chapman?® used the Mansfield formula®
in the limit of large degeneracy to calculate mo-
bility by ionized-impurity scattering at low tem-

peratures and found that the calculated value was
about 60 times larger than the experimental value
for their Nb-doped sample. They attributed this
large discrepancy to a compensation effect due to
lattice defects. On the other hand, Frederikse
et al .} followed Gulyaev’s treatment® using the op-
tical value for the dielectric constant in the expres-
sions for the screening length and the effective Bohr
radius. In this case theory underestimates the ex-
perimental mobility by a factor of 2—3 for the Nb-
and La-doped samples, and overestimates by a fac-
tor of 2-4 for the hydrogen-reduced samples. Al-
so, concentration dependence of mobility by theo-
retical calculation was much slower than that of
experimental data. The validity of the use of the
optical dielectric constant needs further discussion.
Another unexplained feature of the low-tempera-
ture results is that the mobility is much larger in
the doped crystals than in the reduced samples.



