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A method previously introduced for direct excitons is extended to investigate indirect ex-
citons in semiconductors with degenerate bands. Even though this method can be applied in
the case of a general position in k space of the conduction-band minima, the present investi-

gation is limited to the most common directions (1,0, 0) and (1,1,1). A splitting of the exci-
ton levels, which is shown to be due to the anisotropy of the conduction-band minima and
which is predicted by group-theoretical analysis, is quantitatively given by a simple analytical
expression. The symmetry of the phonons which assist indirect optical transitions is also
given. Results for the 1s and 2s exciton states in A18b, GaP, Si, and Ge are presented. The
method is very accurate and agrees well with available experimental data for the first three
substances. For Ge its accuracy is not so good, because of the strong anisotropy in the con-
duction-band minima, but it is expected to be witbin 10%.

I. INTRODUCTION

All Semiconductors with the diamond and zinc-
blende structure have a degenerate valence-band
maximum at %=0. The absolute minimum of the
coriduction band is generally at the same point of
the first Brillouin zone. In some cases, however,
such a minimum is at %0 0 and its location depends
on the particular substance under consideration.
For Ge, ' the minimum is at the point L, —= m/a(1, 1, 1, ),
and for Si, it is along the axis n. = (k, 0, 0). Zinc-
blende III-V compounds, such as AlP, ' AlSb,
A1As, and GaP, have an indirect gap, too. For
these substances, theoretical band structures as
well as experiments suggest that the conduction-
band minimum is at the point X -=2m/a(1, 0, 0).

These differences in the band structure lead to
different optical properties. For direct-gap mate-
rials, the fundamental optical edge exhibits struc-
ture due to direct exciton formation. If the con-
duction-band minimum is at k40, additional struc-
ture due to indirect excitons appears at lower ener-
gies.

The ground-state energies of direct and indirect
excitons in Si and Ge have been previously investi-
gated by McLean and Loudon~ using a variational
technique. %e have recently presented a, simple
method~ to investigate exciton spectra in crystals
with degenerate bands and arbitrary symmetry.
This method has been applied in a previous paper
to investigate direct excitons in semiconductors
with the diamond and zinc-blende structure.

In the present paper we show that this method can
be applied to investigate indirect excitons, too.
Analytical expressions for the binding energies of
the ground state and the first excited state are ob-
tained.

In Sec. II, using group theory, we classify the

exciton states and determine the phonons which as-
sist indirect optical transitions. In Sec. III, we

apply our method to the energy spectra of indirect
excitons. Even though the method could be applied
in the case of a general position of the conduction-
band minima, we shall restrict ourselves to the
most common directions (1, 0, 0) and (1, 1, 1). In
Sec. IV, we give numerical results for those crys-
tals for which band parameters are known. The re-
sults are then compared with available experi-
mental data. In Sec. V, we summarize the main
results of the present investigation.

II. GROUP-THEORETICAL ANALYSIS

Before considering the symmetry of the electron-
hole system, we briefly summarize some well-
known results for the one-electron states in the dia-
mond and zinc-blende structure.

For diamond crystals, the point group is O„and
the symmetry of the degenerate valence band at k
=0 is I",'. The symmetry of the conduction-band
minimum is L, in Ge and 6, in Si, when spin is
neglected. For III-V compounds, the point group
is T„,the valence-band maximum has I."8 symmetry,
and the conduction-band minimum has X1 symme-
try 10

The exciton Hamiltonian is"

H,„=H,(p, ) —H„(p„)—e'/e r, —r„
where & is the static dielectric constant, the sub-
scripts e and h refer to the electron and the hole,
respectively, H, is the kinetic energy of the electron
near the conduction-band minimum, and H„is the
well-known'~ 6&& 6 matrix which describes the hole
kinetic energy near k=0. From Hamiltonian (1) it
is clear that the symmetry group for the exciton is
the intersection of the symmetry group for the elec-
tron and that for the hole. For indirect excitons,
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the symmetry group of the electron is a subgroup
of that of the hole, so that the required intersection
is just the electron symmetry group itself.

The exciton wave function can be written as'

g(r. , r, ) =&~; X"'(r.-r, ) 0,"'(r, ) P, (r.), (2)

where Q, and P„arethe Bloch functions for the
electron and the hole, X' ' is the envelope function
which describes the relative electron-hole motion,
and i runs over the degenerate valence-band states.
The symmetry of the exciton wave function ( is de-
termined by the direct product of the representa-
tions for the envelope, hole, and electron functions.
Since our analysis is limited to ls and 2s exciton
states, the envelope representation can be dropped
from the direct product. The resulting symmetry
of the exciton wave function is

r, sx, =(x,0x, ) sx, =x, ox,

time reversal, we see that, apart from accidental
degeneracy, the exciton states always split into a
doublet of twofold-degenerate levels.

Optical transitions, from the crystal ground state
to the above exciton states, must be assisted by
phonons in order to conserve the total momentum.
Such phonons have a well-defined symmetry which
can be determined from the direct product of the
irreducible representations of the exciton and the
phonon. Following the procedure used for one-
electron indirect interband transitions" and includ-
ing the electron spin, we obtain the result that pho-
nons with any symmetry can assist optical transi-
tions to both exciton states for III-V compounds and
Si. For Ge, only TO (L~) and LA (Lz) phonons are
allowed.

III. METHOD OF SOLUTION

for the III-V compounds,

I 8 Shq = (660+67) Shy = h6g+ nv

for Si, and

ra SL, = (L4 0+ L; 0+ L~) S I., = L4 0+ L; 0+ L8

(4)

The total motion of the electron-hole system is
described by Hamiltonian (1). Following Dressel-
haus, "we separate the relative electron-hole mo-
tion which is described by the following Hamiltonian:

H,„=H, (p) —H„(p)—e2/er,

for Ge.
The compatibility relations have been used in going

from the symmetry group of the hole to that of the
exciton. Furthermore, we have considered only
the exciton states originating from the upper four-
fold-degenerate valence band. Since the represen-
tations L4 and L,, used for Ge, are degenerate for

where r and p are the relative electron-hole coor-
dinate and momentum, and the operators H, and H„
are the same ones that appear in (1).

For the zinc-blende case we neglect linear terms
in p, which have been found to be extremely small.
U'nder this assumption, the explicit expression of
H„is"

—P„—Q

L+

0 —M'

(i/v 2 )L' —i~2Q

(iv 3/&2)L" -iv 2q (- i/W2)L

—P —Q

( —iv 3/v 2)I. —iv 2M

(-i/&2)L

(its/W2)I:

i&2M '

iv 2M

(-iv 3/N)L

iVYq

(i/&2)L'

—Pq —6

pg+ py+ pg
2P oa

(s -like), (sa)

2pgg
(d-like), (sb)

where ~ is the spin-orbit splitting of the valence
band and

1/&on =Wg/mo = —(2/h')&,

1/p, ,„=y~/mo = —(1/ha) B,

(9a)

(gb)

The valence-band masses poI„p», and g» are
related to the Luttinger parameters' y&, yz, and

y, and to the Dresselhaus-Kip-Kittel parameters"
A, B, and C as follows:

(d-like),

2 2

M = v 3 "
— ' —i '- (d-like).

2&2I

(Sc)

(sd)

1/g, „=2V 3 y,/m, = (2/h') (C'+ 3B')'~', (9c)

~o being the free- electron mass.
The explicit expression for the operator H, de-

pends on the position of the conduction-band mini-
ma. Since these minima generally occur on high-
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symmetry directions for which the electron has
cylindrical symmetry, we can write

~1+P2 ~3
2&l gJ 2SZ gii

(io)

where m„and m„,are the transverse and longitu-
dinal electron masses, respectively. The operator
(10) is written with respect to the electron ellipsoi-
dal axes 1, 2, and 3 which are, in general, differ-
ent from the crystal cubic axes x, y, and z used for
the hole. Since the operators H, and H„in (6) must
be written in the same coordinate system, and since
the expression of H, is much simpler, we shall ex-
press the electron kinetic energy in the hole coor-
dinate system.

We shall restrict ourselves to the cases in which
the conduction-band minima lie on the most common

1/p, „=—,
' (2/m„+ 1/m„,),

1/p, „=—', (1/m„—1/m„,) .
Using the operators (7) and (11), the exciton
Hamiltonian. (6) can be explicitly written as

(12a)

(12b)

directions (0, 0, 1) and (1, 1, 1), and we consider the
two cases separately.

A. (0,0,1) Direction

In this case the electron ellipsoidal axes are the
cubic axes of the crystal and expression (10) can be
written

~x+Pv+P& Px+Py 2Pg

2pp~ 2 p1e

where

H,„=

(- f/P2)L'

fv 2M'

P+ Q

M' —L' I'+ Q,

zv2Q (zVS/P2)L

(- zVS/v 2)L' &/2Q (i/v 2)L

(z/~2I,

—is2Q

(- iv'8/v 2)I.'

P+Q, -d

—iV2M

(zV8/~ZI,

—fVKQ

(- f/&2)L'

P+Q —b

where Q, L, and M are defined by (&b) —(8d), and

2 2 2 @2
P= " ' ' ——(s-like),

2p, p
Ef' (14a)

(d-like), (14b)

with

=P'+ p'-2P'
2p

(d- like), (14c)

1/P, p= 1/Dos+1/Pps ~

1/p, &+=1/p&, t 1/p, » .

(15a)

Hamiltonian (13)is similar to thatwhich describes
direct excitons' and therefore we closely follow the
procedure that we previously used in that case. Un-
der the operations of the rotation group, the opera-
tors which appear in (13) have different symmetry
properties which are indicated along with their defi-
nition. Accordingly, we write (13) as follows:

E„(Xs,4s) = —Rp[1+ sc' Sg(0)+ sC'sag(&) ],
Egg (X7 +)= Rp [1+ s4 Sg(0)+ s@sSg(4) ]

(1&a)

(1&b)

Es (Xs, +s)= —4Ro[1+ s@ Ss(0)+ s@sSs(4)], (1&c)

turbed Hamiltonian H, .
Exact eigenfunctions and eigenvalues of H, are

easily found because the s-like operator P repre-
sents an hydrogen atom with reduced mass p, p and
dielectric constant c. Restricting ourselves to the
exciton states originating from the upper fourfold-
degenerate valence band, we find that the unperturbed
spectrum consists of four degenerate hydrogenic
series with the effective rydberg

Rp= p.pe'/28 e'.
We now include H~ as a perturbation and consider

only 1s and 2s exciton states. Owing to the fourfold
degeneracy of the above states, degenerate pertur-
bation theory must be used. Tt turns out that the
secular determinant is diagonal and, after straight-
forward calculations, we obtain for the perturbed
energies

H,„=Hs+H„, (16)
I

Esq (Xv, &y) = —4Rp [1+ s@~Ss(0)+ sC'sSs(&) ], (18d)
where H, and H~ are 6&&6 matrices which contain
only s-like and d-like operators, respectively. In

(16) we consider Hs as a perturbation on the unper-
where the coupling parameters C, and @~ are given
by
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(19a) 32(&0 16 &03 4 lho

Wlb 6 Ale'l 6
. l 2h

Pp
(19b) 32 (go &~' 4

(i —1)(P„+iP,)P, —(i + 1)(P„-iP„)p,
2pg~

(20)

where y, o, and p, &, are still defined by (12a) and
(12b). Using expressions (7) and (20), we obtain
the expression for the exciton Hamiltonian which is
similar to (13) and will not be' given here. Follow-
ing closely the procedure used for the (0, 0, 1) di-
rection, we can still write the exciton Hamiltonian
as in (16) with identical H, and similar H~. The
main difference is that„ in treating H„with degen-
erate perturbation theory, the resulting secular
determinant is not diagonal and, for the ls state,
is given by

A & C 0
B'& 0 C
C'0 A
0 C' -8' A

(21)

where

4 is the spin-orbit splitting in units of the effective
rydberg Ro, and the functions S,(x) and Sh(x) have
been defined and computed in Ref. 8. In the square
brackets of expressions (18a)-(18d), the different
contributions to the binding energies are given ex-
plicitly. The first term is the unperturbed binding
energy, the second represents the interaction with
excited states of the main series, , and the last term
is the contribution from the split-off valence states.

As shown in formulas (18), the perturbation re-
moves the fourfold degeneracy of both the 1s and 2s
exciton states and each state is split into a doublet
of twofold-degenerate levels whose symmetry at X
and ~ is shown on the left-hand side. This splitting,
which was predicted by group theory in Sec. II, is
evident from Hamiltonian (13). In fact, the diago-
naltermsin(13) show that heavy and light holes are
bound to the electron in a different way. This is a
direct consequence of the electron mass anisotropy.
In effect, in the case of isotropic electron mass, as
is the case for direct excitons, heavy and light holes
behave identically and no splitting is obtained.

9. (1,1,1) Direction

In this case the electron ellipsoid axes 1, 2, and
3 must be rotated to coincide with the cubic axes of
the crystal. After such a rotation, expression (10)
becomes

2 2 2
Px'+Py+Pg PxPy

2pp, p.

(22b)

(22c)

and all masses have the same definition as for the
(0, 0, 1) direction. The determinant (21) can be di-
agonalized exactly and we obtain for the perturbed
1s energies

Eih(La+ Ls) = —IIO [I+ s@,Si(0) + h 4'hSi(~) ], (23a)

P, p
"

4 Pp P, p 4 3 Pp (24)

and Ch is still given by expression (19b). In ex-
actly the same way, we obtain for the perturbed
2s energies

Ea, (L4+Lh) = ——,'Ho[1+ s O',Sh(0}+ h @hSh(4)] ) (26a}

E„(L;)=- —,'H, [i+-', C S,(0)+-,'e,s,(~)]. (26b}

In this case, too, the numerical calculation gives
the splitting predicted by group theory and which is
due to the same reason as for the (0, 0, 1) case.

IV. RESULTS AND DISCUSSION

Ne now apply the results of Sec. III to investigate
the indirect exciton spectra in diamond and zine-
blende crystals for which band parameters are
available. They are the III-V compounds AlSb and
GaP and the group-IV elements Si and Ge.

In Table I we give the parameters used for the
calculation and in Table II the results of our inves-
tigation together with the available experimental
data.

In the case of direct excitons, we obtained the
result that the perturbation treatment is valid when™
ever, the coupling parameter 4 is sufficiently small
(4 & 1). In the present case this condition must be
verified by the various 4's which describe the dif-
ferent couplings. This condition is generally ver-
ified for all substances shown in Table II, excluding
the L4 and L', exciton states in Ge. Therefore our
results are expected to be generally accurate, with
the exception of Ge, where, however, a good esti-
mate of the binding energy can be obtained since
the 4 values are only slightly greater than 1.

To show the validity of our perturbation treat-

Ei,(LS) = —Bo [1+ sc' Sg(0)+ sC'hS&(&) ], (23b)

where
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TABLE I. Parameters used in the calculation: static dielectric constant &p, longitudinal and transverse electron
effective masses mgii and m~&, Dresselhaus-Kip-Kittel (Ref. 16) valence-band parameters &, 8, and C, and spin-
orbit splitting 4,. The energy unit is meV and mp is the free-electron mass.

Crystal

AlSb

GaP

Si

p

9.9

15.36j

m„,/mp

51

7h

0.9163

588m

m,Jm,

0.214"

0.191

0.1905"

0.08152

—5.38
—4.8~
—5.26'

5 61c
—4.7
-3.83'

—4. 25
—5.2
—4.23

—13,38
12 Q 1

—134 23

1 09c
—4.0
—2.75

0.11'
—2. 6~
—1.72

—0.7
1~ 7

—0.77~

6n
—8.0
—8.54'

Q2

20. 9
5.0

32.8'

13.6
9.0

17.6

20.0
23.1'

165.27
96.0

159.3

750

90'

290d

'W. T. Turner and W. E. Reese, Phys. Rev. 127, 126
(1962).

bR. J. Stirn and W. M. Becker, Ref. 4.
'From Ref. 17.
dtrom Ref. 18.
R. Braunstein and E. O. Kane, J. Phys. Chem. Solids

23, 1423 {1962).
From Ref. 19.

~A. S. Barker, Jr. , Phys. Rev. 165, 917 (1968).
"A. Onton, Phys. Rev. 186, 786 (1969).

'S. A. Abagyan and V. K. Subashiev, Fix. Tverd.
Yela 6, 3168 (1964) [Soviet Phys. Solid State ~6 2529 (1965)],

~R. A. Faulkner, Phys. Rev. 184, 713 (1969).
"J. C. Hensel, H. Hasegawa, and M. Nakayama, Phys.

Rev. 138, A225 (1965).
From Ref. 20.
B. %. Levinger and D. R. Frankl, J. Phys. Chem.

Solids 20, 281 (1961).
"From Ref. 21.

ment and, at the same time, to show the importance
of the corrections to the unperturbed energy levels,
in Table II we give the different contributions to the
binding energy Et, (ls) of the 1s exciton doublet. Ro
is the unperturbed binding energy; E„represents
the correction which is due to the electron anisot-
ropy and to the interaction among the various states
of the upper fourfold valence band; and E„is the
contribution from the split-off valence band and is
always smaller than E~ because of larger energy
denominators in its perturbation series. The E~
contribution is small enough to support the validity
of the perturbation treatment, and it is sufficiently
large to be experimentally appreciated.

From the binding energy E~(2s) of the 2s exciton
doublet, which is also given in Table II, itis evident
that the Rydberg law is not valid. In particular,
the binding energy E,(2s) is always greater than that
predicted by this law. As a consequence the exci-
ton binding energy as obtained from the experi-
mental data by simply multiplying the 1s-2s peak
separation by 3 is incorrect.

The indirect exciton spectrum in Si and Ge has
been previously investigated by McLean and Lou-
don using a variational technique. To establish
the accuracy of our method, we have investigated
the same exciton spectra using the same param-
eters. For the binding energies of the 1s doublet
in Si we obtain 13.3 and 12.8 meV assuming an in-

finite spin-orbit splitting. The corresponding re-
sults obtained by McLean and Loudon are 13.0 and

12.4 meV. For the same states in Ge, we obtain
3. 16 and 2. 84 meV, which have to be compared with

the McLean-Loudon results 3.47 and 2. 88 meV.
From this comparison we see that for Si and for the

L,'level in Ge the two methods have the same ac-
curacy. In all these cases the value of the coupling
parameters 4, is less than 1. For the L4+ L', level
in Ge, where C, = 1.6, our method is less accurate
and gives only a good estimate of the binding en-
ergy.

The best experimentally studied indirect exciton
spectra are those in Si and Ge. Since the first ob-
servation by Macfarlane et al'. and by Zwerdling
et al. ,

' these indirect spectra have been widely
investigated. ' In Ge it was possible to observe the
splitting of the 1s exciton state. This splitting has
not yet been observed in Si, where 1s and 2s ex-.
citon states have been resolved.

For Si, Shaklee and Nahory ' give a 1s-2s energy
separation of 10.7 meV for TA phonon-assisted
transitions and a separation of 11.0 meV for LO
and TO transitions. Our investigation predicts a
1s-2s energy separation of 10.57 and 10.73 meV
when h~ and 46 exciton states are considered, re-
spectively. Since for this substance the spin-orbit
splitting is comparable to the exciton binding energy
(& =3.5), one expects large corrections from the
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A1Sb

GaP

x,(z,)

x,(z,)

x,(s, )

x,Q,,)

0. 115
0, 123
0. 116

0. 115
0. 123
0. 116

0. 108
0. 119
0. 133

0. 108
0. 119
0. 133

15.92
17.06
16.15

15.92
17.06
16. 15

ll. 88
13.17
14.69

11.88
13.17
14.69

0. 370
0. 918
0. 853

0. 524
1.563
l. 251

0. 277
0. 516
0. 555

0. 261
0. 974
0. 932

0. 353
l. 133
0. 955

0. 353
l. 133
0. 955

0. 158
0. 609
0. 573

0. 158
0.609
0.573

1.06
2. 81
2. 47

1.50
4. 79
3. 63

0. 59
1.22
l. 46

0. 55
2. 30
2. 46

0. 08
0. 29
0. 22

0. 08
0.29
0.22

0. 10
0.44
0. 50

0. 10
0.44
0. 50

17.06
20. 16
18. 84

17.50
22. 14
20. 00

12. 57
14. 83
16.65

12. 53
15.91
17.65

10R

4. 41
5. 42
5. 04

4. 58
6. 19
5. 50

3.22
3. 86
4.35

3.21
4. 29
4. 74

17
18
19

17
18
19

17
18
19

17
18
19

Si

0. 123
0. 110
0. 124

0, 123
0. 110
0. 124

0. 046
0. 049
0. 046

12.90
ll. 55
12. 93

12. 90
11.55
12. 93

2 ~ 65
2. 81
2. 67

0. 425
0. 398
0. 450

0. 543
0. 628
0. 580

0. 884
0. 772
0. 877

0. 367
0.419
0. 380

0. 367
0. 419
0. 380

1.129
0. 991
1.121

0. 99
0. 83
1.05

1.26
l. 30
1.35

0. 42
0.39
0. 42

0.37
0.36
0.40

0.37
0. 36
0. 40

0. 02
0. 02
0. 02

14.26
12. 74
14.38

14. 53
13.21
14.68

3. 09
3.22
3.11

3.69
14.7" 3.29

3, 73

3. 80
14 7' 3.48

3. 85

0. 83
2. 1 0 86

0. 83

20
18
19

20
18
19

21
18
19

L4+L5
0. 046
0. 049
0. 046

2. 65
2. 81
2. 67

l. 628
1.497
l. 623

1.129
0. 991
l. 121

0. 78
0. 76
0. 78

0. 02
0. 02
0. 02

3.45
3.59
3.47

0.97 21
2 9 1..00 18

0. 97 19

~ From Ref. 27. "From Ref. 25. ~prom Ref. 26.
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compounds is not possible since the present knowl-

edge of these substances is insufficient. For A1As
and AlP, evidence of indirect exciton structure has
been found in experimental results; in these cases,
however, we cannot carry out any calculation be-
cause the necessary parameters are not yet avail-
able. Our theoretical predictions for AlSb cannot
be tested because, to our knowledge, experimental
results are not available. For GaP, the experi-
mental binding energy 7 10.0 meV is in fair agree-
ment with our results.

In the present treatment we have omitted the ex-
change coupling between the electron and the hole,
which would give rise to an additional splitting of
the exciton states. The effects of this coupling have
been explicitly considered by Abe S~and, for the
case of indirect excitons, shown to be very small
in agreement with the available experimental data,
which do not show any effect due to the exchange
inter action.

V. CONCLUSIONS

The method previously used to investigate direct

exciton spectra in the case of degenerate bands has
been shown to be generally valid for indirect exci-
tons, too.

We have also shown that these spectra cannot be
approximated by a simple dberg law, as is usual-
ly done in the interpretation of the experimental
data. The corrections to the Rydberg law have been
calculated for the 1s and Bs states taking into account
the contribution of the split-off valence band. These
corrections are more important than those obtained
in the case of direct excitons, and should be experi-
mentally appreciated. .

The splitting of the exciton levels, which is pre-
dicted by group theory, has been numerically eval-
uated and shown to be due to the electron anisotro-
py

The accuracy of the present method is as good as
that of the variational method, for the ground state.
In addition, our method can be easily applied to
excited states and gives simple analytical expres-
sions for the energy levels.

The agreement with experiment is satisfactory
for those substances which have been experimental-
ly studied.
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