
PHYSICAL REVIEW B VOLUME 3, NUMBER 8 15 A PRIL 1971
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Harrison's a priori theory is used to construct a first-principles nonlocal pseudopotential for
magnesium, a metal with the hexagonal close-packed (hcp) structure and two atoms per unit cell.
A response function for the exchange interaction among conduction electrons, which uses the
Kohn-Sham approximation for the long-wavelength limit, is employed in the calculation of the

energy-wave-number characteristic F(q). The phonon spectra were calculated for the [0001],
[0110], and [1120)directions. The theoretical dispersion relations show excellent agreement,
for all directions, w'hen compared with data obtained from neutron diffraction experiments.
Various other approximations for the inclusion of conduction-electron exchange and correlation
are discussed, and the choice of a particular response function is shown to be not significant in

these first-principles calculations for hcp metals. Comparison is made with other recent treat-
ments of exchange and correlation effects in different formulations of pseudopotential theory for
magnesium. The total binding energy and elastic shear constants are also calculated and show

good agreement with experiment.

I. INTRODUCTION

In recent years pseudopotential methods have
become very popular as means for calculating
phonon spectra, elastic constants, band structures,
and other atomic and electronic properties of sim-
ple metals (i.e. , metals other than noble and tran-
sition metals). Vntil rather recently, the tech.-
niques most used involved parametrized model po-
tentials which utilize experimental data directly to
adjust the potentials. Furthermore, after the
model has been adjusted and made to reproduce the
experimental data with sufficient accuracy, it can
then be used to calculate additional properties.
This approach to the calculation of metallic prop-
erties is exemplified by the work of Schneider and

Stoll, ' who have successfully applied model po-
tentials to a large number of metals. They have
calculated phonon dispersion relations, transport
properties, work functions, Fermi surfaces, and
other properties of the simple metals. A widely
used technique for the construction of model poten-
tials, which combines features of pseudopotential
theory and the quantum-defect method, was first
suggested by Heine and Abarenkov~ (HA). In this
method, the deep well located at each ion is trans-
formed into a shallow potential, which is usually
computed as a function of the angular momentum
quantum number. The potential is then adjusted
until the logarithmic derivative of the wave function
inside some radius matches the logarithmic deriv-
ative of the Coulomb wave function outside. This

procedure has been optimized by Shaw' and used

by him and others to calculate metallic properties
for a number of the simple metals. We shall refer
to this as the optimized Heine-Abarenkov (AHA)

method.
It is not too difficult a task to construct a param-

etrized or fitted model potential which reproduces
a single observable property. It is more difficult
to construct a model potential from which a number
of different properties can be calculated; it is evi-
dent that if the number of parameters is increased,
almost any conceivable data can be fitted with ar-
bitrary precision. The HA and OHA methods, how-

ever, are attempts at limiting the parametrized
character of model potential calculations, by in-
corporating experimental data into the model at a
more fundamental level. Because of the quasi-
first-principles nature of these methods, the re-
sulting predictions of properties cannot properly
be compared with equivalent results from fully
fitted models.

A number of authors have attempted to apply the
HA and OHA methods to the calculation of phonon
dispersion relations and most of these have met
with only moderate success. Pindor and Pynn
used a local form of the HA method to calculate
the phonon spectrum of magnesium, a divalent
metal with the hexagonal close-packed (hcp) struc-
ture, with rather poor results. A calculation using
the OHA method was carried out for magnesium by
Gilat, Rizzi, and Cubiotti with only slightly better
results. In an attempt to improve the calculation,
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Gilat et ~l. treated the electron mass as an adjust-
able parameter. They were able to obtain substan-
tially better agreement with experiment by taking
the effective electron mass to be 1.6m, . Another
recent calculation of the magnesium phonon spec-
trum with the OHA technique was published by
Shaw and Pynn' (SP). To include a correction for
the conduction-electron exchange in the calculation
of the energy-wave-number characteristic F(q),
they use both the Kohn-Sham and Slater approxi-
mations for the limit q-0 in the exchange response
function. The phonon dispersion relations that SP
obtain with the Kohn-Sham potential compare
equally as well with experiment as the results
Gilat et ~l. obtained using only the free-electron
mass. The results that SP obtained with the Slater
approximation are in somewhat better agreement
with experiment but they view this as fortuitous
since they contend that the Kohn-Sham limit is
physically more reasonable. The phonon frequen-
cies for magnesium were also calculated by
Prakash and Joshi, ' who used a single-orththog-
onalized-plane-wave electron-ion matrix element
and the Kohn-Sham exchange potential. Their re-
sults show rather uneven agreement when compared
to experiment. A different procedure was followed

by Brovman, Eagan, and Holas, "who used the
HA model potential and modified it by the introduc-
tion of noncentral forces with a four-parameter
fitting technique.

Most recently, Floyd and Kleinman' computed
the phonon spectrum of magnesium with a local
model pseudopotential containing two adjustable
parameters. These authors, using the Kleinman-
Langreth"'" dielectric function, are able to ob-
tain a very close fit with the experimental data by
selecting the parameters in their model pseudo-
potential. Furthermore, to investigate the effects
of different dielectric response functions on the
phonon dispersion relations, they (i) held all pa-
rameters fixed, and (ii) replacedin ,turn, the
Kleinman-Langreth by the Hubbard" and RPA
dielectric functions and recalculated the spectrum,
finding, not unexpectedly, poorer agreement with
the latter two response functions. These authors
have stated that they used a model pseudopotential
because "

~ ~ there is no way of knowing the 'cor-
rec

'

pseudopotential (or of calculating with suffi-
cient accuracy a first-principles potential). . . ."
Contrary to this assertion, a similar procedure
employing a first-principles pseudopotential is
more logically able to demonstrate any sensitivity
in the calculation of a phonon spectrum to the
choice of a dielectric response function.

The present work represents part of a system-
atic study applying a first-principles nonlocal
pseudopotential theory to the calculation of a range
of atomic and electronic properties of metals.

The theory was suggested by Harrison" and based
upon the original orthogonalized-plane-wave'
(OPW) pseudopotential formalism by Phillips and

Kleinman. " All model potentials, including the

HA, the OHA, and the fully parametrized methods,
require more experimental input than Harrison's
single-OPW formulation of the pseudopotential,
which we shall refer to as the Harrison first-
principles (HFP) method. In principle, the HFP
method requires only the lattice constants, atomic
number, and the fundamental constants as input to
the theory. One of the first attempts to use the
nonlocal HFP theory for divalent metals was car-
ried out by Roy and Venkataraman. ' Using the

E(q) published by Harrison, 30 they calculated
phonon dispersion relations for magnesium which
compared very poorly with experiment. Even
though they made some unfortunate errors in the
dynamical matrix, the results were not much im-
proved when the errors were corrected. The first
successful HFP calculation for the phonon disper-
sion relations of an hcp metal was reported by the
present authors for beryllium. ' The pseudopo-
tential used in the F(q) for this calculation was
constructed with an analytic wave function for Be"
from Green ef al. ~~ In a recent paper" (hereafter
referred to as I) we adopted a more general ap-
proach to the construction of F(q) with Hartree-
Fock-Slater (HFS) wave functions. This was
used to compute the phonon spectrum and elastic
constants for beryllium; again, as in the case with
the analytic wave function, good agreement was
obtained when compared with experimental results.
Preliminary calculations for magnesium ' indicated
that the theoretical phonon dispersion relations
would be in even better agreement with experiment
than the beryllium results and the subsequent work
reported here bears this out.

As a very detailed presentation of first-prin-
ciples pseudopotential theory is given by Harrison, 6

we shall merely outline the parts of the theory rel-
evant to the present calculations. This is dis-
cussed in Sec. II. The problem of conduction-elec-
tron exchange and correlation is treated in Secs.
II C and also III, where the detailed calculations
and a comparison of the results with other recent
work are discussed.

IJ. THEORY

Magnesium has the hcp crystal structure with

two atoms per unit cell. The lattice may be de-
scribed by a unit cell with edges

A '+ A '+ 1 A 1 jg) A
a~=t."e, , a2 ——ae„, a3 ———p& e„+p v~& e,

where e and c are the lattice constants and e„, e„
and e, are unit orthogonal vectors. One atom is
located at the origin while the other atom is at

(2, —,', 3 ), referred to the hexagonal axes, or at
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TABLE I. Physical parameters for magnesium
in atomic units.

Parameter

c
c/p
Atomic mass I
Atomic number A
Valence Z
Effective valence Z*
0„
00
kf
Plasma frequency, units

of 10 Hz

Value

6.06475
9.846 27
1.6235

22 158
12

2

2. 1542
313.6378
156.8189

0.722 80

1.906

a; ~ K~+ 2mB))

where a, are the primitive lattice vectors. The
lattice constants and other relevant parameters
are listed in Table I. Unless otherwise noted, all
numerical values are given in atomic units such
that 5= & e = 2m = 1 and energy is in rydbergs.

I

A., Pseudopotential

Since Harrison has given an excellent treatment
of the general pseudopotential theory used here,
there is little need to duplicate his work and we
shall restrict ourselves to a brief outline of the
results which are relevant to the present calcula-
tions. Because of the fundamental approximations
upon which it is based, the application of this
theory is limited to the simple metals. These
are (i) the use of a self-consistent field, (ii) the
small-core approximation, and (iii} the use of
perturbation theory to compute the conduction-
band states. Harrison has recently reformulated
this simple-metal pseudopotential and extended it
to the transition metals. 7 Since magnesium is a
simple divalent metal, however, we will not dis-
cuss this more general formulation.

In addition to the Coulomb interaction between
the conduction electrons and the ion cores, there
are also, as a consequence of the antisymmetriza-
tion requirements, exchange interactions between
electrons. It can be shown that the conduction-

3vS ae +pc eg

in the Cartesian system. The volume per unit cell
is

n„,=-,'c&3 a',
and the atomic volume 0, is defined to be the vol-
ume of a unit ceQ divided by the number of atoms
in that cell. We let d, identify the jth atom in the
unit cell and K be a reciprocal-lattice vector de-
fined such that its components K& satisfy the con-
dition

core exchange interaction gives rise to an effective
repulsive potential. These attractive and repulsive
terms tend to cancel and the small net effective po-
tential is called the pseudopotential. The HFP
theory depends upon a transformation of the one-
electron Schrodinger equation by an expansion of
the true wave functions in single OPW's. Whenthe
terms are rearranged, a transformed wave equa-
tion or pseudoequation is obtained in which the
small effective potential W(r) is explicitly dis-
played. In the calculation of this pseudopotential,
we assume that the core wave functions are the
same as those in the free ion but that the core
eigenvalues F. are not. A further assumption is
that the pseudopotential can be written as the sum
of spherically symmetric pseudopotentials centered
at the ion positions r,,

W(r) =Q, w(r- r,)

This allows the matrix elements of W(r) to be ex-
pressed as

& k +q I
w

I
k) = $(q} & k + q I

~
I
k)

where k identifies the electron state, q is a vector
in the reciprocal lattice, and S(q) =N 'g, e""is a
structure factor, with N the total number of ions.
We will also separate W(r) into the sum of W (r),
a part due to the ions, and W'(r), a screening part
due to the conduction electrons.

After the structure factors are factored out of
the pseudopotential matrix elements we have

&k+ ql~l» = &k+ql~'Ik&+ &k+ql ~'I» .
The matrix element for the unscreened component
ls

&k+ ql~'Ik) =".+&k+ql~" I»,
where &k+qiw" ik) is the repulsive term26 and vo

is the Fourier transform-of the crystal potential.
An explicit expression for the screening field,
which we shall denote by m,'=&k+qlw'lk), is

w', =v', [I.—e* (q}]/e+(q)+ v, [I —G(q)] /e+(q),

where

4 " &k+qlzv" Ik)

and e*(q) is a dielectric function modified to in-
clude conduction-electron exchange and correlation
effects. Selected values of v, are listed in Table
II. The function G(q) is the normalized conduction-
electron exchange and correlation interaction; an
approximation for this function, as well as for
e~(q), is given in Sec. IIC.

The energy of the state k is obtained by the usual
second-order perturbation theory from the pseudo-
equation. Then by summing the perturbation ex-
pansion over the spherical Fermi surface, the
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TABLE II. Selected values of v~+. The notation
nEm means g x10'n.

0. 01
0. 1
0. 2

0.4
0. 6

0. 8

1.0
1.2

1.4
1, 6
1.8
2. 0

V
R

9.8914 E3
9.8760 El
2.4573 El
6. 0265 EO

2. 5929 EO

1.3911 EO

8.3559 E-1
5.3438 E-1
3.5310 E-1
2. 3539 E-1
l. 5366 E-1
8.8132 E-2

2. 2
2. 4
2. 6
2. 8
3.0
3. 2

3.4
3. 6
3.8
4. 0
5. 0

10.0

—V
R
e

4. 7286 E-2
2. SS36 E-2
l. 8452 E-2
1.2209 E-2
8. 2930 E-2
5.7561 E-2
4. 0702 E-2
2. 9258 E-2
2. 1345 E-2
l. 5785 E-2
4. 1549 E-4
7. 5993 E-6

total electron energy per ion can be found. Since
the Coulomb interaction between any two electrons
is counted twice by this method, an energy equal
to this interaction must be substracted from the
total energy. The second-order term in the total
energy is then combined with this electron-elec-
tron interaction to form the band-structure energy

E„.=Z,'is(q) i'F(q) .

In atomic units, F(q) is given by
'

2&o " l&k+ql~lk&l 3 q +Q

(2v)3 jP —
t g+ )

2 I6p

The prescription for the calculation of the crystal
potential for magnesium is similar to that described
in I for beryllium, and we shall briefly outline only
those contributions to the potential thatare computed
differently. The interactions that contribute to this
potential are (i) potential due to the ion core, (ii)
conduction-band-core exchange, (iii) correlation be-
tween conduction and core electrons, (iv) potential
due to conduction electrons, and (v) screening po-
tential. The exchange and correlation among con-
duction electrons will be treated separately in Sec.
II C. In general, one should also consider additional
contributions to the potential such as the correlation
among the core electrons, the deviation from spher-

It should be noted that this function, the energy-
wave-number characteristic, is dependent upon the

atomic volume but is independent of the actual atom-
ic configuration. Some authors (cf. Shaw and

Pynn7) use a normalized F(q) defined as

F„(q)=—F(q) ( m2e' Z*' /q& )0',

where the limit of F(q) as q-0 is

F(q) -—2ve'Z+'/q'Qo

and Z* is the effective valence.

B. Crystal Potential

ical symmetry around the core, the spin-orbit cou-
pling, etc. In magnesium, however, it has been
shown that these contributions make only minor or
negligible changes in the crystal potential and we
shall, therefore, not include them. We write the
transform of the crystal potential as

0 (1) (2 ) (3) (4)

where the notation is described in the subsequent
discus sion.

Potential due to Ion Core

Following Harrison, we decompose the ion-core
contribution into two components, one of which is the
valence-charge potential given by

v,""'= —(4''/n, q') Z .
The other part, which consists of the remainder of
the nuclear charge and the potential due to the core
electrons, is given by

v,""= —(4''/q'&0) [& —Z —n(q)],

where Z is the valence and A. is the atomic number.
The transform of p(r), the core-electron density,
is given by n(q) and is defined such that n(0) equals
the number of core electrons, viz. ,

n(q)= fp(r)e '~'dr .

This electron density is tabulated in Table III,
column 2.

In the evaluation of the expression which includes
the core shift, the value of v,""at q =0 is required.
This term is given by

2

E ( R( &+21)s'!,(~)r's~,
0 nl

where P„,(r) is the radial part of the core wave
function and the integration is terminated at the
radius of the atomic sphere. The total ion-core
contribution is then

(1)
V

&1v) (1c)
Q. 0 Q

This contribution is tabulated in Table III, column

3, for selected values of q/kr.

2. Condu. ", tion- Band- Core Exchange

We used the Kohn-Sham' effective exchange po-
tential to calculate the conduction-band-core ex-
change contribution to the crystal potential. Kohn

and Sham essentially evaluated the energy-depen-
dent exchange potential at the Fermi surface, rather
than averaging over all occupied state in the Fermi
sphere as in the Slater approximation. This re-
sults in an effective potential that is two-thirds of
the Slater approximation,

v,'" = (4 v/&Oq) f v ~2'(r)r sin qr dr,
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TABLE III. Fourier components of the potential contributions used in the calculation of
the pseudopotential matrix elements.

n(q} —Vq
(1) g

(2) (3) (4&—'Uq

0. 00
0. 01
0. 05
0. 10
0. 20

0. 30
0.40
0 ~ 50
0. 60
0.70

0.80
0. 90
1.00
1.10
1.20

1.30
1.40
1.50
1.60
1.70

1.80
1, 90
2. 00
2. 10
2. 20

2. 30
2. 40
2. 50
2. 60
2. 80

3.00
3. 20
3.40
3.60
4. 00

4. 50
5. 00
6. 00
V. 00
8. 00

9. 00
10.00

10.0000
'9. 9999
9.9991
9. 9962
9. 9847

9. 9656
9.9390
9. 9050
9 ~ 8636
9.8150

9.7595
9.6971
9.6282
9. 5529
9.4715

9.3843
9.2915
9. 1935
9.0905
8. 9829

8.8710
8.7551
8. 6356
8. 5127
8. 3869

8. 2583
8. 1275
7. 9946
7.8600
V. 5869

7.3105
7. 0330
6.7563
6.4823
5. 9480

5. 3184
4. 7430
3.7758
3. 0473
2. 5203

2. 1477
1.8732

6135,3888
245. 5284
61.4702
15.4556

6. 9342
3.9515
2. 5708
1.8205
1.3679

1.0739
0. 8722
0.7276
0. 6204
0. 5387

0.4748
O. 4239
0. 3826
0. 3486
0. 3203

0. 2963
0. 2757
0. 2580
0. 2426
0. 2290

0. 2170
0. 2062
0. 1966
0. 1879
0. 1727

0. 1598
0. 1488
0. 1392
0. 1306
0. 1160

0. 1012
0. 0891
0. 0701
0. 0561
0. 0454

0. 0373
0. 0310

0, 2185
0. 2350
0. 2348
0. 2342
0. 2318

0. 2280
0. 2227
0. 2162
0. 2085
0. 1999

0. 1906
0. 1807
0. 1704
0. 1600
0. 1496

0.1393
0. 1293
0. 1197
0. 1106
0. 1020

0. 0940
0. 0865
0. 0796
O. 0732
0. 0673

0. 0619
0. 0570
0. 0524
0. 0482
0. 0408

0. 0345
0. 0292
0. 0247
0. 0209
0. 0153

0. 0106
O. 0073
0. 0038
0. 0021
0. 0014

0. 0009
0. 0007

0. 0032
0; 0032
0. 0032
0. 0032
0. 0032

0. 0031
0. 0031
0. 0031
0. 0030
0. 0030

0. 0029
0. 0029
0. 0028
0. 0027
0. 0026

0. 0025
0. 0025
0. 0024
0. 0023
0. 0022

0. 0021
0. 0020
0. 0019
0. 0018
0. 0017

0. 0016
0. 0015
0. 0014
0. 0013
0. 0011

0. 0009
0. 0008
0. 0006
0. 0005 .

0. 0003

0. 0001
0. 0000

~ ~

~ ~ ~

473. 0584
18.9206
4.7288
1.1808

0. 5238
0. 2939
0. 1874
0. 1296
0.0948

0. 0721
0. 0566
0. 0456
0.0374
0. 0311

0. 0263
0. 0224
0. 0193
0. 0168
0. 0147

0. 0130
0.0115
0. 0102
0. 0091
0. 0082

0. 0074
0. 0067
0. 0061
0. 0055
0. 0046

0. 0038
0. 0033
0. 0028
0. 0024
0. 0018

0. 0012
0. 0009
0. 0005
O. 0003
0. 0002

0. 0001
0. 0001

where

v"'(r) = —(e'/m)[3m'p(r) j"'
Values of this potential are listed in column 4 of
Table III. The contributions 3-5 are discussed
in I and the transforms v,' ' and v,' ' are listed in
Table III, columns 5 and 6, respectively.

C. Exchange and Correlation among

Conduction Electrons

These interactions can be included in the calcu-

lation by assuming their effect is to modify the
screening potential 5",. This results in the follow-
ing matrix element of the total screening potential
seen by an electron':

W,' = (47re~/q~ +X,)n,

where n, is the conduction-electron density and

X, is the exchange and correlation interaction.
%hen the pseucopotential is formulated with this
screening potential, the dielectric function that
obtains is
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~*(q) = 1+[1 —G(q)] [e(q) —1],
where G(q) is the exchange and correlation inter-
action normalized to the Coulomb interaction,

G(q) = —q'X,/4'' .
The Hartree dielectric function e(q) is given by '

e(q) =1 —(4''/q')lf(q),

where y(q), the free-electron susceptibility at the
zero-frequency limit, is

y(q) = -~ —+ ln
n 1 4k' —q 2k~+ q

q E~ 2 8k~@ 2k~-q

where n 1s t e total density of electrons per un1t
volume, and EJ; is the Fermi energy.

Since there is as yet no exact analysis for the
response of an electron gas at metallic densities
to a, perturbation with intermediate wavelength, a
usual method of obtaining an expression for the
interaction involves postulating a formula that in-
terpolates between the long- and short-wavelength
limits, where the response functions are known
more accurately. In the present calculations, we
have found the correlation contribution to be very
small, when compared to the exchange interaction,
and we have therefore neglected it. At very short
wavelengths, we use Hubbard's"'" result that the
exchange interaction among parallel spin electrons
effectively cancels half of the direct (i. e. , Coulomb)
interaction. This leads to

X,-—2me /q2,

as q becomes large. At long wavelengths, as q
goes to zero, X, should approach the exchange po-
tential for a uniform electron gas at the appropriate
density. For this limit we have used the Kohn-
Sham' effective exchange potential, which results
1n

2[q'/(q +k~+k, )]; Shaw and Pynn'. 2[ 1 —e ' '~~~],

where P = 2 for the Kohn-Sham approximation and

k, =4hz/v. The modified dielectric functions that
result when any of these interpolation formulas are
used in Fq. (1) do not differ greatly from one an-
other, as can be seen in Fig. 1. Our results thus

agree with those of Moriarty, I who concludes that
the conduction-electron exchange has only a mini-
mal effect on the energy-wave-number character-
istic. 'This point is considered further in Sec. III.
In Table IV, we have listed values of e*(q), ob-
tained when the interpolation formula. (2) is used
ln the response function' the Hartree dlelectl'1c
function is also included in Table IV for comparison
with e~(q).

D. Core Shift

In the HFP theory, one assumes that the wave

functions for the ion remain rigid in the metal but

that the core eigenvalues are shifted from their
values in the free ions. This shift in energy is
called the orthogonalization hole potential mop„.
For the core wave functions in the metal, we have

used the HFS wave functions ' for the free ions.
For this choice, the zeroth-order approximations
to the E, the core eigenvalues, are just the HFS
eigenvalues e„,. However, this is found to be too
crude an approximation and we have instead calcu-
lated g»„and its average value go*~„by the method
described in I.

In the calculation of the matrix elements neces-
sary to the construction of F(q), the core eigen-

where A~ is the Fermi wave vector. A formula
that will interpolate between these limits is '

G(q) =-,'[q'/(q'+2k'r)] (2)

There is some question as to whether Hubbard's
limit for large q is exact or even correct. Heine
and %eaire suggest that the ratio of the exchange
to the direct interaction may, more appropriately,
be between & and 1. However, as our previous re-
sults have indicated that the inclusion of the con-
duction-electron exchange makes only a small cor-
rection in the calculated properties"' ' tht, precise
numerical value of the ratio is of limited signifi-
cance here. Interpolation formulas used by other
authors differ only slightly from Eq. (2). In the
same notation as Ecl. (2), expressions used by
others are Hubbard": —,

' [q'/(q'+A, ~)]; Sham":

2.0

FIG, 1. Different dielectric functions modified to in-
clude conduction-electron exchange: Hartree (dash-dot),

Shavy and Pynn (Ref. 7) (dash-dot-dot), Sham (Ref. 35)

(small dash}, King and Cutler (solid).
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q/k~

0.01
0.1
0. 2

0 4
0. 6
0.8

1.0
1, 2

1.4
1.6
1.8
2. 0

e (q)

17 616.3
177.0072
44. 8914
ll. 8616
5.7436
3.6006
2. 6065
2. 0639
l. 7333
1.5141
1.3563
1.2202

17 615.8
176.5693
44. 4611
11.4594
5.3818
3.2853
2. 3387
1.8412
1.5518
1.3698

.1.2462
1.1468

q/k~ e(q) e*(q)

2. 2

2.4
2. 6
2. 8
3.0
3. 2
3, 4
3.6
3.8
4. 0
5. 0

10.0

1.1291
1.0857
1.0599
1.0433
l. 0322
1.0245
1.0190
1.0150
l. 0120
1.0097
1.0039
l. 0002

1.0834
1.0539
l. 0368
1.0261
1.0190
1.0143
l. 0109
1.0085
1.0067
1.0054
l.0021
1.0001

TABLE IV. The Hartree and modified dielectric
at selected values of q/k&.

ions immersed in a uniform compensating back-
ground of negative charge. A very clear derivation
of this contribution has been given by Cochran. 4o

Although the analysis is rather tedious, the results
can be stated succinctly if we define the following
terms:

(g) . .f (a+de —dg) (a+de —d))a
N t.f.f

I Z - B la

fc (~ ~a+d
la+d, .-2, l' v v la+t(q. —Z, l'

3'zg g2 ) g~$ a $) )2+~ e

erfc(qla+d, .-d, l} 2q e " ' ' &' '&'

values always appear together with the diagonal
elements of the crystal potential as

v. =(k~ v~k)-z. ,

where the subscript e refers to the quantum num-
bers n and t. The contributions to t/'~ due to vo"",
vo ', and vo" are easily obtained from the expres-
sions in Sec. IIB. For vo""' and v,' ' we use an ap-
proximation described by Harrison, '

(le) (4) (a )Zg 2/r

where ~o is the radius of the atomic sphere. Equa-
tion (3) is then explicitly given by

~nl Y~ e /'&o+vo +vo +vo —~.~
—vopw ~

9 g 2 / (lc) (2) (3)

These results are listed in Table V.

E. Lattice Dynamics

In the framework of the Born —von Kirman theory
of lattice dynamics, '7 the phonon frequencies are
given by the solution to

det[D„a(Q, jj ') —&uaM6&&. 6,a] = P,

.. i) 4a ~ (K+Q} (K+Q}a
iK+@i'

X )R @I2I4$2 ]g (g) g) )e e

(fofjj ) =Z (7 ( fi )7
a

P($)(g ~)g ) e4 (I+iIgr-Iy)

where erfc(x) is the complementary error function,
s is the number of atoms in a unit cell, 0o is the
atomic volume, and primes over sums mean the
denominators are never zero. The parameter g
is chosen to make both the sums in direct and re-
ciprocal space converge rapidly. %e have found

TABLE V. Components used the the calculation of
V„&. All values are in atomic units with energy in ryd-
bergs.

where D a(Q,jj ) represents a general element of
the dynamical matrix, M is the ionic mais, and

Q is the wave vector of the disturbance. Generally,
the dynamical matrix is composed of three parts:

C 8Do~=D ~+D~~+D g

The D, is the ion-ion repulsive contribution,
caused by the exchange overlap between ion cores.
Since the small cores in magnesium have little
overlap, we will assume that this term is very
small and neglect it in our calculations. The
Coulombic or Ewald contribution Dc~ is due to the
electrostatic interaction between the ions while
D,z, the electronic or band-structure contribution,
arises from the electron-ion-electron interaction.
The Coulombic term can be computed with methods
due to Ewald ' and Thompson" for a lattice of point

Component

(i )
Vo

Vo

(3)
Vo

a5pw

(f)Z*e'/ro

ro

20

Vio

V2o

Values

—0. 11751

—0. 21848

—0. 00318

-0.75417

2. 318 22

3.34531

—96.484 37

-8.047 96

—5. 63641

94. 581 15

6. 14447

3.733 19
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that q = (4/00)"~ usually gives good results. With
these definitions, the dynamical matrix can be
written

TABLE VI. Energy-wave number characteristic for
magnesium, including a correction for conduction-elec-
tron exchange, in units of rydbergs per electron. The
notation nEm means g xl0 .

z(q)/z

where Z& is the charge on the jth ion.
The band-structure or electronic contribution

can be derived by introducing a periodic disturb-
ance of wave vector Q into the expression for Eb,
and expanding the structure factors to secord order
in the amplitudes of the disturbance. %hen the
equilibrium band-structure energy is subtracted
we obtain

0. Ol

0. 03
0. 05
0. 07
0. 09

0. 10
0. 20
0.30
0.40
0. 50

0.60
0.70
0.80
0. 90
l. 00

—3.558 485 E3
—3.950 078 E2
—1.419 299 E2
—V. 220 479 El
—4. 351 184 El
—3.516 418 El
-8.478 756 EO
—3.546 280 EO
—1.830 377 EO
—1.046 917 EO

—6.318
—3.913
—2. 441
—l. 512
—9. 172

2. 10
2. 20
2. 30
2. 40
2. 50

2. 60
2. 70
2. 80
2. 90
3.00

3.10
3.20
3.30
3.40
3.50

—1.789 608 E-3
—1.821337 E-3
—1.778989 E-3
—1.680 576 E-3
—1.546 259 E-3
—1.393 109 E-3
—1.234 003 E-3
—l. 077 898 E-3
—9.305 490 E-4
—7.952 757 E-4
—6, 736548 E-4
—5, 660762 E-4
—4. 721647 E-4
—3. 910 866 E-4
—3.217602 E-4

where $(j) =g~, cos[K (d~ —d;.)]. When K=O, the
term involving F(K) is omitted. This derivation
is discussed in some detail by Harrison. '

F. Total Energy

For our purposes, it is convenient to separate
the total energy into two parts: (i} the free-elec-
tron energy which is a function of the volume but
not of the specific ionic coordinates, and (ii) the
configuration-dependent part which consists of the

l, 10
1.20
l. 30
l.40
l. 50

l. 60
1.70
l. 80
1.90
2. 00

—5. 361
-2.960
-1.499
-6.636
—2. 351

—6. 166
—3.542
—8. 053
—l. 435
—l. 772

126 E-2
577 E-2
816 E-2
166 E-3
341 E-3

986 E-4
574 E-4
140 E-4
423 E-3
887 E-3

3.60
3.80
4. 00
4. 50
5. 00

5. 50
6. 00
7. 00
8. 00

10.00

—2. 629 971 E-4
—1.723 841 E-4
—1.102 548 E-4
—3.289 481 E-5
—9.219 539 E-6

—3. 047 202 E-6
—l. 728 278 E-6
—1.162 260 E-6
—5. 968 751 E-7
—8. 519642 E-8

O.I0

0.08

electrostatic energy, the repulsive energy, and the
electronic energy.

The volume-dependent free-electron energy per
ion is obtained from the zeroth- and first-order
terms in the perturbation expansion of the electron
energy. Harrison has derived an explicit ex-
pression for this energy, which is given in atomic
units by

E„=Tssa~+Z+(v,'"'+n(')" }——,'vga„(Z* —Z)

0.4 0.04 The P is a projection operator which projects func-
tions onto the core states,

l.5
q/kF

2,5

0.02

and E„,is the conduction-electron exchange and
correlation energy. %e used the Gell-Mann and
Brueckner expression to approximate this energy:

E„,= —0.916/~, +0.0622lnr, —0. 096 Ry

I'gG. 2, Normalized energy-wave-number character-
1stic Used 1n this calculation (solid culve) compared to
I"&(q) from Shaw and Pynn (Ref. 7) (dashed curve).

where v, = (3/4m)"~ and n is the electron density.
The electrostatic energy is due to the Coulomb

interaction between ions. It can be calculated by
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the Born-Ewald-Fuchs"' '" method for a lattice
of point ions immersed in a uniform compensating
background of negative charge. For the hcp lattice,
the energy per ion obtained from this method is
given by

FIG. 3. Theoretical phonon dispersion relations for the
three crystallographic directions [0001], [0110], and
[1120] in magnesium. In the first two directions, the
curves were computed both with (solid curves) and with-
out (dashed curves) the contribution from conduction-
electron exchange. Those branches composed of a single
solid curve were not modified perceptibly by the inclu-
sion of conduction-electron exchange. Experimental
points in the [0001] and [0110]directions are taken from
Iyengar et al. (Ref. 45), while points in the [1120]direc-
tion are from Pynn and Squires (Ref. 46).

HFS program written by Herman and Skillman,
using an unmodified HFS potential. We used these
wave functions to calculate the pseudopotential
matrix elements' and F(q) with (i) the free'-electron
dielectric function and (ii} the modified dielectric
function containing the conduction-electron ex-
change in the approximation of Eq. (2). Figure 2

shows a plot of the normalized F(q), calculated
with e*(q), and compared with the F„(q) from Shaw
and Pynn. 7 It is seen that the two functions are in
close agreement except in the intermediate region.
Since the plot of the energy-wave-number charac-
teristic using the- free-electron dielectric function
differs only slightly from the F(q) plotted in Fig. 2,
we have omitted it from the diagram. Selected
values of F(q} are given in Table VI.

The Coulombic contributions to the dynamical
matrix were computed by summing over approxi-
mately 100 vectors in both real and reciprocal
space. Convergence was very rapid with the choice
of q = (4/Qo)" ~. Band-structure contributions were
computed by summing over more than 1500 recip-
rocal-lattice vectors, which, at the very worst,
gave convergence to three or four decimal places.

The theoretical phonon frequencies are shown in
Fig. 2 for the [0001], the [0110], and the [1120]
directions. Dashed lines refer to the results ob-
tained when conduction-electron exchange is not
included in the pseudopotential, while the solid lines
are the results that include this interaction. The
branches where only a solid line is shown were not
sufficiently modified when the Hartree dielectric
function was used to show up on the scale of the

TABI E VII. A comparison of the phonon frequencies
computed at various symmetry points by Shaw-Pynn
{Ref. 7) and King-Cutler. Both calculations include con-
duction-electron exchange with the Kohn-Sham long-
wavelength limit. The symmetry points are described by
Shaw and Pynn. All frequencies are in units of 10~2 Hz.

++' erfc(q la+ d, l)
la+ d)l

a

1where 8 = ~ K dz, q is a convergence parameter, and
the primes over the sums indicate that zero denom-
inators are not to be included.

As in Sec. II E, we shall neglect the ion-ion re-
pulsive contribution to the energy. The electronic
or band-structure contribution is calculated by
evaluating

Symmetry

r'
3

3.78

8.10

4. 07

7. 25

3.70

7. 30

7.63

V. 28

3.73

5. 66

6.87

6, 73

3.95

5. 67

6.88

6.58

3.70

Shaw-Pynn King-Cutler Experiment

4. 26

6. 52

4. 14

6. 02

4. 15

6. 12

III. RESULTS AND DISCUSSION A3 2. 78

5.73

3. 18

5. 35

2. 94

5. 20For the core states )nl), we used wave functions
for the Mg ion; these were computed with the ~References 45 and 46.
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FIG. 4. Theoretical
phonon spectrum in the
[0001] direction for mag-
nesium, from Shaw and

Pynn (Ref. 7). The solid
curves are calculated
with an approximation for
conduc tion-electron ex-
change and correlation,
using the Kohn-Sham
(Ref. 8) long-wavelength
limit, while the dashed
curves are without this
contribution.
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figure. As can be seen, the results are surpris-
ingly good, particularly when one considers the
first-principles nature of the calculations. For a
comparison with a recent OHA quasi-first-prin-
ciples calculation, we have listed in Table VII our
phonon frequencies, together with Shaw and Pynn's'
results, at symmetry points; in Fig. 4 we have also
reproduced SP's curves for the [0001]direction.
As can be seen from this figure, the calculation of
Sham and Pynn also shows good agreement. An im-
portant obvious difference is the greater effect that
the inclusion of the conduction-electron exchange
interaction has on the dispersion relations in the
SP calculation. This is a result that our calcula-
tions do not exhibit" (see Fig. 3). This effect may
possibly be a consequence of the OHA model poten-
tial formulation itself, rather than an intrinsic
physical phenomenon. The present dispersion
curves for magnesium, as well as previous results
for beryllium, ' indicate that the inclusion of
conduction-electron exchange does not greatly
modify the calculated phonon dispersion relations.

This implies that for the HFP method, the choice
of an interpolation formula for the conduction-elec-
tron exchange and correlation is not very critical
to the calculation of accurate phonon spectra. It
is natural to ask how one reconciles this with the
results from the many recent pseudopotential cal-
culations using different schemes for exchange
and correlation. It is recognized that there is as
yet no fundamental or unique solution to the ex-
change and correlation problem at metallic den-
sities. Therefore, one may speculate that for lat-
tice dynamics calculations, the results obtaihed
with the various pseudopotential formulations and

schemes for including exchange and correlation
interactions in the electron gas are strongly model
dependent. We do not know whether similar con-
clusions concerning exchange and correlation ef-
fects obtain when calculating electronic band struc-
tures using pseudopotential theory. Calculations
are currently in progress to investigate this prob-
lem.

Component

&bs

Total

Observed

Value

0.714 04

—0. 08676

—2. 485 39

—1.858 1

—1.78

TABLE VIII. Components of the total binding energy
for magnesium calculated in Ry per ion, All values are
computed at the observed c/a ratio.

Contribution

Electrostatic
Band structure
Total
Experimental
Percent difference 10 low
with experiment (%)

2. 8969
—1.6788

l. 2181
1.3552

c'

0. 3395
—0. 1323

0. 2072
0. 1877

10 high

44

0, 2010
—0. 0219

0. 1791
0. 1842

3 low

TABLE IX. Contributions to the elastic shear con-
stants of magnesium calculated with the HFP theory.
Experimental values are from Slutsky and Garland (Ref.
51), extrapolated to 0 'K, and all values are fn units of
10 2 dynes/cm2.
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We have also used this same F(q} to calculate the
total binding energy, defined as the energy of the
metal minus the energies of the isolated ions and
electrons. 28 The values of the free-electron energy,
the band-structure energy, and the electrostatic
energy, calculated at the observed c/a ratio, are
listed in Table VIII. The total binding energy cal-
culated in this way compares favorably with the
experimental value of 1.VS Ry/ion. We also tried
the Pines" formula to approximate E„,in the ex-
pression for the free-electron energy. This re-
sulted in a theoretical binding energy that was about
5%%uq more negative than when the Gell-Mann and
Brueckner' expression was used. When the elec-
trostatic energy was calculated as a function of the
c/a ratio in steps of c/a = 0.0005, we found that the
minimum did not occur at the ideal axial ratio, as
suggested by Harrison, 8 but rather at c/a = 1.6355,
in agreement with Cousins. "

We have reported elsewhere on a calculation of
the elastic shear constants of magnesium using this
same pseudopotential, ' so we will not elaborate on

any of the details here. For completeness, how-

ever, and to indicate both the utility and consistency
of results with this pseudopotential, the values for
these shear constants are quoted in Table IX.
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