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A further analysis of previously published measurements of the dc electrical and thermal
transport coefficients of a tungsten crystal is presented. The coefficients were measured as
functions of a strong magnetic field at several temperatures in the range of liquid He .
Problems in separating the lattice thermal conductivity from the electronic thermal conduc-
tivity by a simultaneous study of the magnetoresistivities are discussed. The limiting con-
ductivity obtained from such a study of the tungsten data is found to be in reasonable agree-
ment with calculations based on the assumption of strongly coupled phonons scattered by
nearly free electrons. From the same data, the Lorenz number is deduced as a function of
temperature and found to be in exceBent agreement with an electron-electron scattering for-
mula given by Ziman. The transverse (Hall and Bighi-Leduc) conduetivities are used to de-
duce a transverse Lorenz number which displays an unexpected temperature dependence that
is not explained. An apparent phonon drag effect, very similar to that found by Long et al.
in the transverse (Nernst-Ettingshausen) thermoelectric coefficient of antimony, is found in
the tungsten data for the same coefficient, and is quantitatively explained by a simple model.
An electronic specific-heat coefficient is also deduced from the Nernst-Ettingshausen data,
and is found to have a value intermediate to the results of augmented-plane-wave (APW) and

relativistic augmented-. plane-wave (BAPW) Fermi surface calculations.

I. INTRODUCTION

A recent paper' presented the results of an ex-
perimental determination of six dc electrical and

thermal transport coefficients in a, tungsten crystal
at liquid-helium temperatures in a, strong magnetic
field. , In that paper, the behavior of each kinetic
coefficient was discussed independently of the other

/

kinetic coefficients. In this paper, relationships
between several of the coefficients are examined.
It is only by studying these relationships that the
data take on very much relevance. In Secs. II and

III, the simultaneous behavior of the electrical and

thermal magnetocond~~ctivity tensors is studied, the
object in Sec. II being to obtain the lattice conductiv-

ity, and in Sec. III, the Lorenz numbers of the lon-
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gitudinal and transverse coefficients. Throughout
the paper, the kinetic thermal magnetoconductivity

X~ and the adiabatic conductivity X are used synon-
ymously, their difference having been found neg-
ligible. ' In Sec. IV, the anomalous temperature de-
pendence of the Nernst-Ettingshausen thermoelec-
tric coefficient is discussed in terms of a phonon

drag model proposed by Grenier, "and the zero-
temperature extrapolation of the effect is used to
determine an electronic density of states.

II. LATTICE CONDUCTION

The thermal conductivity X of a metal is the sum
X +X, of lattice and electronic terms. The lattice
thermal conductivity X of most conductors is quan-
titatively negligible compared to the electronic
thermal conductivity X, . 4 If a reliable and reason-
ably precise measurement of X can be made, it
may, however, be fundamentally important. In
metals at low temperatures, the phonon current will
usually be limited by an intrinsic mechanism; the
scattering of phonons by conduction electrons. In
that case, X, measures approximately the same
features of the electron-phonon interaction as those
measured by that part (p, in the Matthiessen ap-
proximation) of the electrical resistivity due to
electron-phonon scattering. '~ In those metals for
which the Bloch contribution to p, is negligible at
low temperatures, X is the only direct transport
measure of the normal-process coupling. This will
be seen to be the case for tungsten.

A measurement of X depends upon finding some
method which will drastically reduce X, without sub-
stantial change of X . The standard method used to
determine X of a metal in its nonsuperconducting
state is that of alloying, usually by the addition of
solute atoms of different valence, but approximately
equal mass. This method obviously introduces un-
certainties in one's knowledge of X, of the Pure
n"ystal, though the error may be small. The only
method specifically applicable to a pure-crystalline
normal-state conductor is the magnetic field meth-
od. '

A. Magnetic Field Method

The magnetic field method used in this work is
based upon the relation'

where X and the Lorenz number L, must not depend
upon the applied magnetic field H, and the thermal
and electrical magnetoconductivities X„and ai,
must each decrease monotonically with the same
dependence upon H. Equation (1) is illustrated by
the tungsten data' (Fig. 1). If a material is a good
normal conductor, very strong magnetoresistance
effects are required in order to reduce the term
TLio» to a value comparable to that of X . For this
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FIG. 1. Simultaneous (in field) high field behavior of
the electrical magnetoconductivity 0&& and the thermal
magnetoconductivity Xii. The Xii intercept at o.

&&
= 0 is

interpreted as the lattice conductivity. Each straight
line corresponds to a single temperature and a range of
magnetic field strengths. Only selected points in a con-
tinuous field sweep are shown. Lorenz numbers are de-
termined from the slopes of the lines. Currents and
fields were along orthogonal (100) directions.

reason, one should not hope to determine X, at liq-
uid-helium temperatures by the magnetic field
method unless the conductor is an electronically
compensated single crystal of very small residual
resistivity, with the direction of the applied magnet-
ic field chosen to eliminate saturation effects due to
open orbit, s.

The magnetic field method was applied to a crys-
tal of tungsten at the temperatures of liquid hydro-
gen (15-20 K) by de Haas and de Nobel, ' and in
subsequent work by de Nobel io, ii More recently,
the lattice conductivity of tungsten at T & 90 K has
also been studied by Williams and Fulkerson using
alloying methods, ' and at T& 80 K by van Witzen-
burg and Laubitz' using a magnetic field method.

Reviews of the work of de Nobel and other early
workers have been given by Klemens' and%ilson. '
Their prognosis for the magnetic field method is not
optimistic. The de Nobel experiment and the Sond-
heimer-Wilson theory show that 1., is not, in gen-
eral, independent of II.

The de Nobel'6 L, was clearly field dependent at
the highest fields, while the straight lines (Fig. 1)
found in this work indicate field independence, de-
spite the fact that, owing to higher crystal purity,
the effective fields used in this work were much
higher than those used by de Nobel. At the highest
laboratory field (36 kOe) applied by de Nobel, the
ratio p»(H)/p(0) of the magneotresistivity to the
zero-field resistivity reached a maximum value of
=1600 at the lowest temperature, =14 K. At the
highest laboratory field (22 kOe) applied in the pre-
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sent work, the ratio p»(H)/p(0) reached a value in
excess of 76000 at a temperature of 1.3 K. It
seems, therefore, that L, is field independent for
the tungsten crystal at liquid-helium temperatures.

If the above conclusion is correct, the difference
in this result and that of de Nobel is presumably due
to the dominance of different and more simple scat-
tering mechanisms at T & 4. 1 K than in the range
14 & T & 20 K available to de Nobel. Klemens' has
given the condition yo& y, for field independence of
L„where yo is the thermal resistivity at zero field
and temperature and y, is the part of the thermal
resistivity due to intrinsic processes in an ideal
crystal. (In the Matthiessen approximation X,

'
=yo+y, . ) Later in this paper it will be seen that
the condition yo& y, is satisfied by the data of the
present work. In de Nobel's work, at liquid-hydro-
gen temperatures, such was not the case. Further-
more, the criterion yo& y& was written in the context
of a y& due to electron-lattice scattering, whereas
it will be seen that y; in the present case was due
to.electron-electron scattering. At hydrogen tem-
peratures, a significant remnant of the electron-
phonon scattering should be present. '~

An experiment is presently being planned which
will test the field independence of L, in the same
crystal at fields = 60 kOe. The tentative conclusion
supported by the analysis to follow, however, is
that L, of tungsten at liquid-helium temperatures
does satisfy the field-independence condition, and

this experiment has, therefore measured the lat-
tice thermal conductivity.

B. Possible Contributions to the Resistivity 'A&

The values of X determined through Eq. (I) and

Fig. 1 are shown plotted logarithmically against
temperature in Fig. 2. The solid line of Fig. 2 is
that of the function X = 3.7&&10'T in units of erg
sec ' cm 'K ', which is the best fit to the data when

a T relation is assumed. A quadratic dependence
upon T is expected for two probable scattering
mechanisms: the scattering of lattice waves by
electrons and by dislocations. High precision can-
not be claimed. The coefficient 3. 7 should only be
considered reliable to + 30%, assuming a quadratic
T dependence is correct. The uncertainty in X» in-
creases with decreasing temperature.

One could conceivably fit the X, values to a cubic
T dependence, the dependence expected when the
phonon current is limited by boundary scattering.
It is, therefore, prudent to estimate the expected
magnitude of a X limited by boundary scattering.
This is done by means of the kinetic relation X

= —,'C U, A, where C is taken to be the Debye ap-
proximation to the lattice specific heat, U, the ve-
locity of sound, and A the mean width'of the crys-
tal. The result is a X~' at 3 K of = 10-s erg-lcm
sec K as compared to an experimental value & 3

&&10 in the same units. It is safe to eliminate
boundary scattering from further consideration.

The possibility that isotope scattering could ap-
preciably limit the lattice conductivity should also
be considered as a contribution to the gross tem-
perature dependence, though the expected tempera-
ture dependence of T ' is clearly not dominant. The
most rapid estimate is again obtained from the ki-
netic relation, with the phonon mean free path taken
as 0.054(2v) fa(A)2/(5A)~) (O~/7), where a is the
lattice constant, Q~ the Debye temperature, and
(5A)~ is the variance of the atomic masses about the
mean value A. ' Such a calculation yields approxi-
mately the same conductivity as that calculated for
boundary scattering. It is thus concluded that the
contribution of isotope scattering to X ' was neg-
ligible.

Finally, the scattering of lattice waves by dislo-
cation lines must be considered. If the lattice con-
ductivity were limited by dislocations, it should be
approximated by the relation'9 X = (23k~/h2U, Xb2)T~,
where k and h are the Boltzmann and Planck con-
stants, % is the average number of dislocation lines
per unit area, and. b is the magnitude of the Burgers
vector. Taking b as one lattice constant and equat-
ing the preceding relation to the measured X~, it
is found that a dislocation density of g, = 10' lines
cm would be required to limit X to the observed
value. This is at the extreme upper limit for heav-
ily deformed metal crystals. 20 A smaller, more

70-
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FIG. 2. Lattice conductivity X~ logarithmically plotted

against temperature T. The quadratic temperature de-
pendence is characteristic of electron-phonon scattering
at low temperatures.
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where N is the density of atoms of mass M, m* is
the cyclotron effective mass of the electronic car-
riers, $3(O~/T) is a Debye function, and C is the
electron-phonon coupling constant of the order of
the Fermi energy. It is customary to evaluate C
in terms of some other transport property deter-
mined by the same . interaction. Makinson and
Ziman have expressed C in terms of X,„, the elec-
tronic component of the high-temperature thermal
conductivity. Although it does not make a large
error, this is not a good practice for tungsten, be-
cause the high-temperature thermal conductivity of
tungsten is augmented by contributions from the
lattice and the mechanism of ambipolar diffusion, '

which produce an uncertain compensation to the U-

process resistivity and other inadequacies of a
high-temperature measure of C, as discussed by
Klemens. Klemens5'2~' has made an improved
calculation of the electron-phonon scattering con-
tribution to the partial resistivity X, , and argues
that the low-temperature limit of his result is a
more appropriate measure of C for Eq. (2) at low

temperatures. Although the Klemens argument is
probably correct, it is only applicable when elec-
tron-phonon scattering makes a measurable contri-
bution to X,', and such, it will be seen, is not the
case for tungsten at liquid-helium temperatures.

Volkenshteyn et al. ~ have found that the tempera-
ture dependence of the electrical resistivity of
tungsten is described by a Debye-Gruneisen-Bloch
function with OH= 365 K for temperatures from
T & 20 K to room temperature, the maximum tem-
perature of their measurements. An estimate of
C in terms of the room-temperature electrical re-
sistivity would seem, therefore, to be the least
objectionable experimental approach to finding C.
The Bloch formula m3y be written

realistic choice of b would increase ~. It seems
unreasonable, therefore, to expect that disloca-
tions contribute in any appreciable way to X~ . The
origin of X ' would thus seem to be entirely due to
scattering by electrons.

C. Scattering by Electrons

The multiple, but singly connected, sheets of the
Fermi surface of tungsten are highly distorted from
the ideal spherical case. ' The scattering of pho-
nons by electrons should therefore be described
by a model in which both longitudinal and transverse
lattice waves interact directly- with the electrons. 23

An expression for the conductivity of phonons in a
Debye spectrum with all polarizations equally cou-
pled to a parabolic band of electrons was derived
by Makinson. ~' ' The Makinson formula may be
written

5

e2j@~n2O (3)

TABLE I. Combinations of the p~, X~, and C. Col-
umns 1-3 show three reported values of the electrical
resistivity p of tungsten at T = 300 K, the coupling con-
stant C calculated from Eq. (3) for that p;, and the value
of the lattice conductivity X~ calculated from Eq. (2) using
the value of C derived from p~. Column 4 shows the
measured value of X~, the C calculated from Eq. (2) using
the measured X~, and the p~ calculated from Eq. (3) using
the value of C derived from X~.

p(@Gem) 5.4 5. 5 5. 65
C(eV) 2. 76 2. 79 2. 82 4. 16
X (103 erg c sec K ) 8. 4T 8. 2T 8. QT 3.7T

the symbols of which have been previously defined,
except n, the density of electronic carriers.

In applying Eqs. (2) and (3) to the data, the value
n =14.9~10 ' cm ' was used, as determined from
the total Fermi-surface volume 21,22 The resistivity
of tungsten at some specific room temperature, say
300 K, is not available with great precision, most
workers having avoided that problem by studying a
resistivity ratio. Handbook values range from
5.65 so to 5.4 '

p Acm and a value p(300) = 5.5 pQcm
was found during the present study. The value of
m* which seems appropriate to Eqs. (2) and (3) is
a weighted average m* based upon an assignment of
each measured cyclotron mass22 for a specific mag-
netic field orientation to a certain fraction of n, this
fraction having been determined from a six-band
model 2 which gave reasonable agreement with the
measured galvanomagnetic effects. '32 On that
model m* = p, n, m f/n = l. 67mo. Using Q~ = 365 K,
and the remaining quantities as readily determined
from the handbooks, ' ' ' several combinations
(Table I) of p&, X, and C were determined, as-
suming T«QH in Eq. (2) and T = 300 K in Eq. (3).

The earlier contention that the lattice conductivity
of the tungsten crystal was measured by the mag-
netic field method and that the conductivity is lim-
ited by the scattering of lattice waves by electrons
is strongly supported by the results of Table I.
Considering the stated precision in the measure-
ment of X„and the theoretical deficiencies of Eqs.
(2) and (3) for application to a complex Fermi sur-
face and nontrivial phonon spectrum, the fBctor-of-
2 agreement shown in Table I can be regarded as
very good. The 3% uncertainty in p(300) is of little
consequence.

An extrapolation of the experimental result X,
= 3.7&&10 4T (W cm ' K ') to higher temperatures on
the basis of Eq. (2) yields X = 5&& 10 583(Q/T) T3. At
T=100 K this result predicts X =2 Wcm ' K '. Re-
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cent experiments ' 3 at T = 100 K found values of
X» in the range 0. 4& X» & 0. 9 in the same units.
Electron-phonon scattering thus appears to contrib-
ute some 20-45/o to the resistivity X,

' at T = 100 K.
The most interesting feature of these results is

that the X predicted by p(300) is too large. A sup-
posed advantage in having chosen p(300) instead of
X,„for an evaluation of C is that the direction of the
error should be certain. Unless the U-process con-
tribution to p(300) is removed, Eq. (3) should over-
estimate C and, hence, underestimate X .

The discrepancy can be removed by the unlikely'3
assumption that only the longitudinal lattice waves
are directly coupled to the electrons, the transverse
waves being indirectly coupled through the 3-phonon
N process. " The lattice conductivity would then be
reduced by a factor of —,

' relative to the electrical re-
sistivity, ' and p(300) = 5. 5 pQcm would predict a
temperature coefficient of 2. '7 for X» compared to
the experimental value 3.7+1.1.

A more appealing explanation is a possible varia-
tion of C as the temperature decreases due to the
greater importance of small q phonons at low tem-
peratures. The coupling constant should vary in-
versely as q. ~3

The choices of m* and 0~bear some further elab-
oration in relation to the previous discussion. Only
C is affected by the ratio m* /M. The comparison
of p& and X» is independent of m*. For OH, however,
it should be noted that, although the aggregate
Fermi surface of tungsten contains a number of
electrons per atom n/N= —,', the individual sheets
have n, /N& —,'. With exclusively intrasheet scatter-
ing, as is implicit in Eq. (3), the O~„effective in the
transport effects shouM be some average O~* of ef-
fective QH*,. values, where Q~*, = (4n, /N)' Q~s when

n, /N&-,', as shown by Sondheimer. o4 When the same
naive average as was used to compute m* is used,
it is found that O~* = -', OH~, where OH~ should be —QHD

of the specific heat. Above T = 50 K, OHD is essen-
tially constant with a value = 315 K. The value of
„should be &OD if longitudinal phonons are more
strongly coupled to electrons than are transverse
phonons, with a maximum value QHR

—- [3/(1+ 2Uor/

U~)]' Q~D=1. 4Q~o, where Ur and U~ are the sound
velocities for transverse and longituchnal waves as
calculated from the elastic constants. The maxi-
mum Q~ to substitute in Eq. (3) would, therefore, be
Q~*=3(1.4)(315)=294 K. This would be in marked
disagreement with other experiments'~'37 and would
increase the discrepancies in the present case.

The problems in a correct evaluation and inter-
pretation of X of tungsten are apparently greater
than shown by the comparative agreement in Table
I, but the low temperature X, would seem to be
superior to p; as a test of an ab initio calculation
of C by virtue of the fact that a, choice of O~ is not
required.

III. LORENZ NUMBERS

The generalizations of the Wiedemann-Frzna-Lo
renz law to the electrical and thermal magnetocon-
ductivity tensors 0 and X, for a magnetic fieM nor-
mal to the current direction in an isotropic con-
ductor are given by

X~g —L) To'~)+X

X»= L2 To», (5)

where Xqz and o'» are the Righi--Leduc and Hall con-
ductivities. In general, the longitudinal Lorenz
number L& and the transverse number L~ are func-
tions of II and T. The determination of X» by the
magnetic field method was based upon Eq. (1), a
special form of Eq. (4) for the case where II is
large, and L& isafunctionof T only. Inthephenom-
enological interpretation of the Sondheimer-Wilson
theory, it is easily shown that L, and L~ should
be independent of H in the limits of very small or
very large JI. Let v,' be the phenomenological fre-
quency of the processes that limit the electrical
conductivity, and let 7"„' be the phenomenological
frequency of the processes that limit the electronic
contribution to the thermal conductivity. In the
weak field limit, we have

lim Li = Lso = (r& /r, ) Lo &

8 0

»m I,,= I.„=(~,/r. )'Lo,
H~O

(8)

and in the strong-field' for, as calrified by Her-
ring, oo zero scattering) limit,

lim L,= L,„=(r,/7'&,)I—o, (8)

lim L3 =- L3„=LO,
oo

(9)

where Lo is the Sommerfeld number v k /3eo=2. 45
&&10 V K . In general, the v''s are T dependent
and unequal. In the zero-T limit of a real crys-
tal they are independent of T and equal. When T &OH

they are T dependent, but may be equal.

A. Lorigitudinal Number I.
&

. The straight lines of Fig. 1 and the successful in-
terpretation of the O, j =0 intercept as X support the
validity of Eq. (4) in the form of Eq. (1) and a de-
scription of L, in terms of Eq. (8). The T depen-
dence of L, determined from the slopes L,T of Fig.
1 is shown in Fig. 3. As predicted by Eq. (8), the
values of L&=L&„-Lo asymptotically as T-O, with-
in experimental error.

A good fit to the results is obta, ined by the function

(L,„/Lo —1) = 3. 4&&10 oTo (Fig. 4). A useful analysis
is provided by assuming the additivity of reciprocal
relaxation times:
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If y; is a consequence of electron-electron scat-
tering, a simple expression given by Ziman '
might be expected to approximate y, in Eq. (13).
In terms of the notation of Eqs. (2) and (3), the
Ziman expression and Eq. (13) combine to give

~Lo =2.445 xlO

I

2

w (K)

FIG. 3. Loren2' numbers I f
= p. ff Ag)/To. ff and I 2

~f2/To f2 Electron- electron scattering is responsible
for the T dependence of Lf, but L& was expected to be
independent of temperature with the free-electron value
Lo approached asymptotically by both Lf and L2. The
T dependence of L2 may be a drag effect.

-1 -],
7ty 700 + Vtyg

If, as in the development of Table I, m~ is chosen
to be the average cyclotron mass m*= 1.67 mo,
and using the measured' ' values n= 14.9&&10~'

cm ' and pp= 1.8x10 ' Qcm, Eq. (14) predicts
(L,„/Lp —1)=14x10 T . Exact agreement with Eq.
(12) is obtained when m*= 1.1mo.

In view of the many assumptions leading to Eq.
(14) and its evaluation, the quantitative agreement
with experiment is remarkable, and perhaps for-
tuitous. The result would seem to establish elec-
tron-electron scattering as the source of the ideal
thermal resistance in tungsten at helium temper-
atures, and the high-field Lorenz number as a
powerful method for the study of the ideal resis-
tance.

In the earlier paper' that presented the experi-
mental transport coefficients which are the basis

-1 1 -1
~x —7&0+ 7u ~

(Lt /Lo 1)= vo/~, &-—3.4x10 s—Ts. (12)

The result suggests electron-electron scattering.
Consider the Matthiessen approximations p = pa+ p,
and y= y o+ y, at zero magnetic field. By Eqs. (4)
and (6) with p, and A., negligible, pp —LtpT(yp+ y&).

But, po=LoTyo and by Eqs. (6) and (8) Lo/Ltp
= I.,„/Lo. Therefore, we have

The frequencies of temperature-dependent pro-
cesses are denoted 7,', and ~,'„while the frequencies
of those processes which persist to zero temper-
ature are denoted v, 01 and 7~0. The additivity of
scattering rates is not necessarily equivalent to the
Matthiessen approximation. If, as in the present
case, the values of L, and L~ are obtained from
total (all parts of the electron distribution) con-
ductivities, then the scattering rates related to L,
and I s by Eqs. (6)—(9) are rates averaged over the
total Fermi surface. Use of the average rates ob-
tained from Eqs. (6)-(9) in Eqs. (10) and (11) thus
reduces the latter equations to statements of Mat-
thiessen's rule.

The tendency L,„-L,as T-0 (Fig. 3) implies
i 0= 'Ego= 70 and the approximate temperature in-
dependence of the resistivity p implies 7'0«v&&.
These conditions with Eqs. (8), (10), and (11) ~

yield the result

2.4— —I4

—I.2

E 2 2

I
Ql
I

0
2.0

N

—I.O

—.8
Lp

I.85

IO

T' (K'}
I5

FIG. 4. Function (Lf/Lo- 1) of the longitudinal Lorenz
number Lf at high field is found to be quadratic in tem-
perature T. The result is a consequence of electron-
electron scattering in the thermal resistivity. The den-
sity-of-states parameter g; Z; effective in the kinetic
Nernst-Ettingshausen coefficient is believed to be tem-
perature dependent as a consequence of phonon drag,
with the quadratic behavior of P;Z; below 2. 6 K indic-
ative of normal-process scattering. The T=O extrapo-
lation of g~ Z~ is the quasifree electron density of states
The function Q 2/Lo —&) of the transverse Lorenz num-
ber I 2 has a low-temperature behavior similar to that of
g; Z». This may be a consequence of the same drag
mechanism, as both effects are independent of T in the
standard theory.
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for this paper, there was a discussion of the small
temperature dependence of the electrical magneto-
resistivity, which expressed some doubt as to
the dominance of electron-electron scattering in
the ideal electrical resistivity of tungsten deter-
mined by others. ' There now seems to be no
significant basis for that doubt.

S. Transverse Number I.2

The transverse Lorenz number La is defined by
Eq. (5) and is determined from the slopes I.3T of
the plots shown in Fig. 5. In a sufficiently strong
field, L2 is expected to be independent of both H
and T [Eq. (9)]. The straight lines (Fig. 5) show
that Lz„ is independent of field over the range of
the data, but that La„ is not independent of temper-
ature. In Fig. 3, L&„ is shown to have a T depen-
dence similar to, but stronger than that displayed
by I.,„.Very few studies of Lz„have been made,
and there do not appear to be any other reported
observations of a 7-dependent I-2„ in the literature.
However suspect one may view the result, it should
establish the danger in attempting to make a direct
substitution of the Righi-Leduc effect for the Hall
effect.

The strong-field transverse transport coefficients
have been shown' ' 3 to be independent of scattering,
and the result Iz„=I.O, Eq. (9), is more general
than the Sondheimer. -Wilson theory. The proofs
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FIG. 5. Simultaneous (in field) high-field behavior of
the Hall conductivity 0~2 and the Righi-Leduc conductivity

Each straight line corresponds to a single temper-
ature and a range of magnetic field strengths, as indi-
cated. Only selected points in a continuous field sweep
are shown. All lines should intersect at zero conduc-
tivity, as a consequence of the fact that the magnetic
field cannot produce a significant direct effect upon the
lattice. The scatter of the uncorrected intercepts is a
good indicator of the precision in a plot of this type.

that Iz„=I.O do not appear to account for drag ef-
fects between the electron and phonon distributions.
When the I.z„data are plotted in the form (I.a/I. o
—l) (Fig. 4), it bears a close resemblance at the
lowest temperatures to the effective density of
states computed from the kinetic Nernst-Ettings-
hausen effect (Fig. 4). As will be discussed in
Sec. IV, the temperature dependence of the Nernst-
Ettingshausen density of states is successfully ex-
plained by a phonon drag model. This prompted an
attempt to describe the temperature dependence of
(I2/I 0

—l) as a phonon drag effect; however,
lengthy efforts to calculate the effect have failed
to produce a nonzero result based upon reasonable
premises. In order to get the desired result, it
seems necessary that hot carriers be preferen-
tially dragged by the lattice current. The Nernst-
Ettingshausen enhancement is consistent with pref-
erential drag of cold carriers, which seems more
plausible.

Proofs that I-z„= I-o seem to be mainly in the
context of point defect and lattice scattering. Having
established the importance of electron-electron
scattering in Sec. II, it seems possible that the
enhancement of I-z„could be an electron-electron
interaction effect.

The possibility remains that the experimental
result is false. The experiment must be repeated
in the near future. It seems very unlikely, how-

ever, that any improvement in precision couM be
great eriough to remove the temperature dependence
altogether. All of the plots (Fig. 5) are quite
linear and tend to intersect with little scatter at
o»=&,q=0, as predicted by Eq. (5). The error
would therefore have to be a smoothly systema-
tic positive error in the thermometer' calibrations,
increasing from nearly zero at the lowest temper-
ature to a factor greater than 2 at the highest tem-
perature. One should expect the precision of the
thermometers to be less at higher temperatures,
but the errors should be random and of the order
of a few percent. Magnetoresistance-effect errors
from sample and thermometers were removed by
standard field-reversal. averaging. The effect ap-
peal s genuine.

IV. KINETIC NERNST-ETTINGSHAUSEN COEFFICIENT

In the strong-field limit of the Sondheimer-
Nilson theory, " the kinetic Nernst-Ettingshausen
coefficient & ia ls given by

where Z, is the density of states in energy of the
5th independent band of carriers. The g;Z,. should
be related to the electronic specific-heat coef-
ficient 'Y (not to be confused with the same symbol
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used previously to denote thermal resistivity) by
the expression g,Z, = Sy/v h2. values of y calcu-
lated in this fashion were reported previously'
and were observed to be anomalously temperature
dependent, but within the rather wide range ' of
previously reported numbers.

If one treats the Sondheimer-Wilson Z, as a
phenomenological parameter, the temperature de-
pendence of E',z is partially explained by a simple
model of normal-process phonon drag 6 which was
successfully adapted to the calculation of a very
similar effect in antimony. "In this normal drag
model, the electronic specific heat C, is augmented
by a dragged fraction P of the lattice specific heat
C~ which causes the transport effect to measure
y„,= y„„,+ yd, ~ = C,T ' + PC~ 7 '. In the Debye
approximation, we have

P12w Nh T
dl'Rg 5 p OH

7 (16)

and y„« is equal, or nearly equal, to the result
of a measurement of an equilibrium property. The
relative contributions of many-body effects to
transport and specific-heat measurements of y„„~
is unknown. With OH = 365 K and N = 6. 35& 10
cm 3, Eq. (]6)predicts y~~= 0. 095x10 pT (cal
mole ~ K ), or a drag contribution to $,Z,. of
0. 067x10' PT (erg 'cm ~). When the g,Z, values
computed from the measured e',z and Eq. (15) are
plotted against T, the expected linear behavior is
observed at temperatures below 2. 6 K (Fig. 4).
The linear portion is described by the function
0. 055x103 T (erg ' cm '). The drag model and
data are thus in agreement for P= 0. 8. The most
simple model predicts P= ', r, where r(0 -& r & 1) is
an efficiency parameter which measures the frac-
tion of the free energy of the phonon system trans-
ferred to the electron system. If the gradient of
the free energy (phonon gas pressure) is isotropic'
(which it surely is not in tungsten), then P = r/n
for a lattice specific heat which varies as T".
Therefore, r = 2. 4, when n = 8 and P = 0. 8. The
most simple model, which has 0& r&1, does not
predict a sufficiently large P.

The zero-temperature intercept of the g,Z,
function is 1.83&& 10' erg ' cm ', which corresponds
to a specific-heat coefficient y«« = 2. 6&& 10 cal
mole ' K . Reported ' values of y„«as deter-
mined from equilibrium properties range from 1.8
to 10 of the units 10 cal mole ' K; the correct
specific-heat value of y„z, however, is not likely
to be much larger than 2 units. Nonrelativistic
augmented-plane-wave (APW) calculations ' ~ of
the Fermi surface of tungsten predict y„„,= 3 units,
while reduced exchange APW 4 and relativistic
APW ' calculations predict ypqpf 1.7 units. The
APW results, however, do not account for many-body
enhancements which are apparently present to

some degree in any type of y„«measurement. The
value y«« —-2. 6 units reported here thus looks
rather good, but it would be unwise to place much
weight on the exact value of the result, for it is a
consequence of only three data points. The measure-
ments must be extended to lower temperatures,
because the yd, ~ result should be regarded as
equally suspect.

Above 2. 6 K the g,Z, curve, Fig. 4 departs
from its linear dependence upon T and appears to
approach a constant value. Traces of the same
behavior were observed for antimony. This de-
parture from Eq. (16), which is based upon a
model~ of normal-process drag, may be due to the
onset of umklapp-process drag, If the change in
T dependence with increasing T is a consequence
of an increasing probability for umklapp processes,
and if the phenomenological interpretation' of Eq.
(15) does not fail as inelastic processes become
more dominant, one might expect to see $,Z, or

, pass through a maximum at slightly higher
temperatures and eventually become smaller than

y, q f A negative contribution to yd, ~ in the Nernst-
Ettingshausen effect would correspond to the pos-
itive drag contribution to the normally negative
thermoelectric power of the alkali metals, "pro-
vided such positive contributions are drag effects. "

V. SUMMARY AND CONCLUSION

Many questions remain as to the validity of the
magnetic field method as a measure of the lattice
conductivity of a metal, but the method appears to
be correct in tungsten at liquid-helium temper-
atures; although, it is apparently incorrect for
tungsten at liquid-hydrogen temperatures' where
a different scattering mechanism prevails. The
lattice conductivity was found to be limited by elec-
tron-phonon normal-process scattering, but an
electron-phonon coupling constant 50% larger than
that expected from the room-temperature electrical
resistivity was required to obtain a quantitative fit
to the most plausible theory. ' The difference was
probably due to the nonspherical aspects of the
tungsten Fermi surface.

Although the dominant scatterers of phonons were
electrons, the dominant intrinsic scatterers of
electrons were electrons. The ideal electrical re-
sistivity is, therefore, not available as a measure
of the electron-phonon coupling in tungsten at very
low temperatures, thus enhancing the value of a
lattice conductivity measurement.

The value of the Sondheimer-Wilson theory' as
a phenomenological tool was illustrated by its ap-
plication to the zero-fieldandhigh-field magneto-
conductivity Lorenz numbers I,, This resulted in
a very successful explanation of the temperature
dependence of the high field number in-terms of an
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expression developed by Ziman ' for the purpose
of describing an electron-electron scattering con-
tribution to the redo fie-ld ideal thermal resistivity.
No success was found, however, in attempting to
explain the large, and completely unexpected, tem-
perature dependence of the transverse effects
Lorenz number L,.

The apparently successful resolution of the Nernst-
Ettingshausen effect into density of states and pho-
non drag contributions underlines ' the value of the
Nernst-Ettingshausen effect as a simultaneous, and

no-less-precise, measure of two quantities which
are traditionally measured by separate studies of
the specific heat and the thermoelectric power.
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