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IV. CONCLUSIONS

We have presented the results of an extensive
LEED study from the various surfaces of Al using
the band-structure-matching approach. We have
seen explicitly the importance of multiple scat-
tering in interpreting the LEED spectra. It was
demonstrated that this method can be successfully
used to explain more than qualitatively the nature
of the observed spectra. Its advantages are a
clear physical meaning and manageable volume of
computer calculations. The effects of inelastic
scattering may be included phenomenologically in
much the same way as in the treatments of McRae,
Kambe, and Marcus and Jepsen (see references
given in Ref. l). Its main disadvantage lies in the

fact that in its present form it assumes that the
penetration depth of an incident electron is large
enough to see the three-dimensional band structure.
But our pseudo-wave-functions are still a good set
of functions with which to carry out the expansion.
In addition, it is less suitable for the study of sur-
face layers than, e. g. , other methods based on the
layer-by-layer calculations. -
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Photoemission from several simple models describing the electronic structure of a solid in
the presence of a surface is studied. Both nearly free-electron and tight-binding situations
are treated, and the yield from the surface states of the latter can be calculated. For a rea-
sonable choice of escape depth, the surface-state yield is roughly of the same magnitude as
that from bu]kstates, Withthe abundance of different effects, the accent here is placed on under-
standing the physics involved in the photoemission process rather than on a detailed comparison
with experiment. However, several approximate evaluation schemes are also presented and

discussed.

I. INTRODUCTION

Photoemission from solids has long been a source
of interesting physics, ' but only recently has its
potential as a probe of thei. r electronic structure
been pursued. 2 ' Experimental resolution has now

improved to the point where rather detailed calcu-
lations are necessary for proper analysis of the
data. In the last year, two formalisms have ap-
peared which permit a general treatment of the
problem. 6' One of them, the quadratic-response
formalism, is presented along with its independent-
particle reduction in Sec. II. The other, a scat-

tering-theory formalism due to Mahan ~ is shown
to be equivalent.

our major purpose in this paper is to examine in
detail some computationally simple models of elec-
tronic structure in solids and surfaces in order to
develop an appreciation for the relevant physics in-
volved in understanding photoemission. In some
respects, the models may be too unrealistic for
comparison with experiments, but they perform
the valuable service of permitting us to identify
many basic and important characteristics. We be-
gin in Sec. III with the Sommerfeld model whose
photoemissive properties were first properly an-
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alyzed by Mitchell. We proceed to the Kronig-
Penney model9 which allows (albeit in a simple
fashion) the incorporation of band-structure ef-
fects. More importantly, perhaps, it allows us
to illustrate two techniques which may be useful
in more complex situations, viz. , (i) a perturba-
tion method, and (ii) the incorporation of inelastic
scattering effects through complex momenta. From
these ostensibly nearly free-electron models, we
next examine a tight-binding model in Sec. IV. In
addition to the well-known bulk states this model
admits the possibility of surface electronic states,
and we show that these also contribute to the photo-
emission yield. Indeed, by varying the specifica-
tion of the surface we are able to exhibit several
interesting matrix element effects which contrast
quite sharply with the predictions of calculations
based on the familiar "constant-matrix-element"
approximations. Although care must be taken to
distinguish between artifacts of the model and real
physical effects the general consequences of sur-
face states seem quite clear. Finally, in Sec. V
we summarize our results and discuss the require-
ments of more realistic calculations.

II. QUADRATIC-RESPONSE FORMALISM

We begin with a brief recapitulation of the qua-
dratic-response theory of photoemission. ' "
Consider a solid (or liquid) located in the half-
space x& 0. We regard the unperturbed electron
states of the system as those determined by the
Hamiltonian Ho which contains the kinetic energy
of the electrons and their interaction with the ions,
the surface, and themselves. For simplicity we
invoke an adiabatic approximation in order to con-
sider the ions as static.

In the presence of the electromagnetic field we
have a coupling term

H) = —(1/c}J dr A(r, t) J (r) e"' (q =0'}, (1)

where A(r, t} is the vector potential of the radiation
and J(r) is the current-density operator for the
electrons, i.e. ,

J„(r)= Q Ip„'5(r-x'}+5(r-x')p,'] .
$

By choice of gauge the scalar potential is zero.
Notice also that we have not included the contribu-
tions from the diamagnetic current,

2

J'„(r, t) = — Q 5(r-x')A„(r, t),
$

since these contribute (as will any term propor-
tional to A~ in H, by the way) in orders higher than
A . '" Now, by a straightforward extension of the
standard linear-response theory' we find for the
quadratic response of J(R), where R is a macro-

scopic distance outside the material, "
2 t

(J (R, t))= —„d~, d~, Q I dx,
Ac )x ~ v~ CO w oo

&&(( J„(x„r,) 8 (R, f) Z„(x, ~ ))) . (4)

Time dependences of the current-density opera-
tors in (4) are determined by Ho and the symbols

(( ) ) denote a many-body ensemble average.
There is no linear response and no other terms
of order A giving an observable result. A pre-
liminary discussion of some of the many-body ef-
fects implicit in Eq. (4) has already been given. a

Qur primary concern here is with the independent-
particle approximation. Accordingly, we shall, at
the outset, neglect the Coulomb interaction between
electrons except insofar as it is manifested in
(i) a self-consistent screening of the electron-ion
potentials, and (ii) an effective depth, imposing a
selection on those photoexcited electrons which
may actually escape the material.

We specialize to a time dependence cos(&ut) in A.
(This is not necessary but it does correspond to the
experimental situation in which the radiation is
taken to be monochromatic. ) With this choice we
may easily extract the term for the observed
steady photoemission, which, in the independent-
particle approximation, is"'

(J,(R))=, dx, I dx, X,'A„(x, ) 4.(x, ) Q x(E )4c

x&m ig„(x,) iu)
1

x(u~ j„(R)~v)

(5)

Here, now, the j's refer to single-particle current-
density operators [see Eq. (2)], and for chemical
potential p, , n(E) =(1+e~(~ ") ' is a state-occupa-
tion factor. Equation (5) therefore describes those
electrons that are liberated without any reduction
in their energy. The electrons are described by
a single-particle Hamiltonian

where V(r) includes the surface potential. To pro-
ceed further we clearly need an understanding of
the characteristics of the eigenstates of h, and at
this point it is convenient after outlining some gen-
eral results to introduce the physical models.

All the models we treat below have transverse
translational symmetry (described by a~ and a„
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say, with az x=as x= 0), which immediately allows
us to write the eigenfunctions as

)l)(r) +(r) eiK&v eiffde

g(r+a, ) =g(r+a, ) =g(r) .
Furthermore, well outside the material'

g(r)- (oe'~" + pe '~") e'r&'e'"" as x-, (9)

where

is the energy of the photoelectron and f is the normal
component of "exterior" wave vector. By an arbi-
trary choice we have taken the zero of energy at the
vacuum level. The two results in Eqs. (7) and (9)
will allow us to cast Eq. (5) into a more familiar
form. Let us concentrate on the factor

'
df()))

&( [-2' r(E +h(u-E„)]

g@f( m

r m(hf

—e —f)(E„+8&)—E) .1 df 2v

y' gJ

We have assumed here that the coefficient (or
weight} of the outgoing wave is unity, and that the
states are normalized to a 5 function on the out-
going momentum. (These requirements will be
satisfied in Secs. 111 and IV. ) Our formal manipu-
lation in Eq. (12) allows us to rewrite Eq. (5) as

F = . , &u~j„(R) ~v)E +he-E„-i5' " E +5(I-E„+i5
If we average the current density (and hence F) over
a transverse m'acroscopic region of area L,L, (cor-
responding to the process involved in physically
detecting the current), we deduce the requirement
of transverse momentum conservation between the
states 1 u) and ) v). Next, we note an identity, which

may be proved by integration with respect to f'"',
namely,

8 0&v)R, "„

.„=—2vi &)(E +h&u E„)-E +Su -E„+s5

where the 8 function requires the normal momentum
to be positive. This restriction allows only outgoing

waves to contribute to the photocurrent. In addi-
tion, from Eq. (11) and its complex conjugate, we

may readily deduce that the states t u) and ) e) have

the same energy. Since in the simple models we

treat below there are only two linearly independent
states for each choice of transverse momentum and

energy (greater than zero) and moreover one of
these can always be chosen to contain no outgoing
waves outside the material, we conclude that the
states )u) and t v) may be taken as identical. In

this case it follows that if we were to sum the av-
eraged factor F over states )u) and I e) we would

find

x) &miIH iu)i 5(E +5+-E„),(18)

The notation I u) emphasizes the special nature of

the final state to which transitions are allowed in
photoemission. It is evident from the "golden
rule" form of Eq. (13}that the photocurrent may
also be represented as a transition rate. However,
the precise nature of the final state required in the
sum only follows from a careful analysis of the
response formalism.

%e now turn to the alternative view of photo-
emission as a scattering process" (incoming photons,

outgoing photoelectrons) and show that the result-
ing formalism leads to results identical to those
above. ~ In. the scattering approach the nature of
the final state is determined by examining the as-
ymptotic form of a Green's function. ' To illus-
trate the equivalence of the two approaches (quad-

ratic response and scattering theory) in the prob-
lem at hand, let us explicitly write the sum over
I u) in Eq. (13) as

df ( dff„dff,
2g 2g 27

Q

Now (i) use the normal momentum integral to elim-
inate the energy 5 function:

Jfff 5(E~+ hid) —Eii) =m/8 f „

and (ii) change variables in the transverse momen-

turn integrations to the external angles of emission,
8 and y (which are measured from the surface
normal):
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dK, dZ, 1 2mE

J 2,'J 2, (2)'J e' """
(da=sinSd8dy) . (17)

&gi~pi&= &$2~$2&=(»)'f&(f—f )

x&&(K„-K",) g(K, —K,'),

Incorporating these changes we find

&J„(5))= 2
—

3 dfl Q n(E )
g W m

2m' ~'"
»I &ee g &x& '( (1S)

Further, the state $~ contains no outgoing waves
outside the material and consequently makes no
contribution to photoemission (hence our identifica-
tion of l u) with g,}.

For an energy below the vacuum level, there is
only one state for each choice of transverse mo-
menta (K, and K,):

which is one of Mahan's~ basic results. A more
general statement of the equivalence is that the
vacuum "incoming waves" of scattering theory'5'
diagonalize (E),„when it is viewed as an operator.
(This observation permits a generalization of the
analysis given above. ")

III. MITCHELL AND KRONIG-PENNY MODELS where

e-g&& &ig&» ig g2ik

p+ it„ x&0

x& 0

-f/' x P fk„x fk&y )king

ik„+p

(26)

k =- (e'/2m) V'+ V(~), (1S)

where the only structure in V(x) is a step discon-
tinuity of height VD at the surface x =0. The eigen-
states above the vacuum level can be chosen as"

t&&»&= Ig&= (e"*+~ *e "*)e' '" e'»" x 0f +K„

f iKgg iK&&&& iKgg
~ ~ ~

f+K„
x&0

i/2
-ffx fK&y iK+e

f+K„K„ x&0

We have numerically evaluated expressions for
the photoemission in the context of several simple
models which are outlined in turn. To start, let
us treat Mitchell's simplest models: free electrons
in a semi-infinite box. For the Hamiltonian k we
have

k„&0, p&0, (2V)

0&E= (-P +k, +k,)=2 (k„+k„+k,) —Vo .

(23)

This state is normalized so that

«t&i P ) = (2ii) &&(k —k ) . (2s)

As for the momentum matrix elements in Eq. (13),
their evaluation is straightforward if we ignore any
spatial dependence of the vector potential. This
approximation is made for the sake of simplicity;
a realistic treatment of the vector potential unfor-
tunately appears to be both difficult and necessary,
at least insofar as "surface effects" may be im-
portant. ' ' We will return to this point in Sec. V.
The consequence of the approximation is that we
may now write

where

z-( e e-I» e f I* *) » I*„

x&0
(21)

eA.
H =— 2' c (30)

where we have introduced here the polarization
vector e of the vector potential. The matrix ele-
ments follow immediately from the identity'

and

K„&0, f&0,

8'-
0 & E, 2 = (f + K, +K2)

(22)
&

I

' g I-.& =
&

I

' &g»&I-.& (, , ),
where, for a step potential

vv=xv, q(~) .

(31)

(32)

=—(K'„+K', +K',) —V, . (23}

It is easily verified that these states are ortho-
normalized, "

It immediately follows that there is no photoemis-
sion if the light is at normal incidence to the step
barrier. Collecting these results into Eil. (13) we
find
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Here P is a dimensionless parameter which con-
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FIG. 1. EDC's for modified Kronig-Penney model
parametrized by effective depth I: solid curves. EDC
for Mitchell model: dashed curve. (See text for expla-
nation of parameters. )

Apart from a factor of 2 this is the result of
Mitchell. 8 (We agree with Adawi's comment on

the factor of 2. ) Only a slight extension of the
above result is necessary to obtain the result of
Makinson for an arbitrary surface barrier.
Mahan' has shown how EII. (33}may be further
reduced.

In order to introduce some elements of band
structure we next consider a Kronig-Penney model
terminated by a step barrier. ' The potential in
Eq. (19) is replaced in this model by

trois the strength of the periodic potential. The
parameters a and b describe the lattice spacing
and the surface termination, respectively. (Again,
light of normal incidence yields no photoeffect. )
By way of example we choose the parameters of
the model to represent, as near as possible, the
(110) planes of sodium: The model possesses the
same spacing in the x direction and has the same
Fermi energy, "first band gap, and photoelectric
threshold. Accordingly (assuming the temperature
to be near 0 'K) we take the lattice spacing a as
5.65 a. u. , the FerID1 energy as 3.24 eV, the band

gap as 0. 50 eV (P= 0.30), and the work function 3

as 2. 3 eV. Since the solutions of the Kronig-
Penney model are well known '3 we merely assert
that the eigenfunctions can be taken to have the
same form as those in Egs. (20), (21), and (26).
The computation of the matrix elements is com-
plicated somewhat by the need to introduce a damp-
ing factor (of the form e' "~ ') into the integration
over negative x. At this stage, the factor is purely
ad hoc and limits the contribution of the "volume"
effect, which arises when the excited electron ab-
sorbs momentum from the "lattice. " Its physical
origin is clear, however, being a combination of
the damping of the vector potential as it penetrates
the material and the damping (by the electron gas)
of the photoexcited electrons as they travel toward
the surface. e In metals the latter process is dom-
inant over the energy range of interest here. One

final point is that aside from the damping factor we

again ignore the spatial dependence of the vector
potential.

We now turn to a discussion of some of the nu-

IDer1cal results of the IQodlf led KroMg-Penney
model. In Fig. 1 we have plotted energy distribu-
tion curves (EDC's) for a photon energy of 4 eV

(1.7 eV above threshold). " The curves are param-
etrized by I., which is approximately the number
of planes below the surface from which electrons
are allowed to emerge. The growth of a "volume
effect" as I. increases is apparent. However,
since the "volume" and "surface" effect, to the ex-
tent that they can be separated, both occur within

the matrix element of Eq. (13), and since the photo-
current is determined by the absolute square of
this quantity, the two effects must interfere with

each other. In this regard it is pertinent to note
that Mahan has shown using alternative models,
that this interference may not always occur. On

physical grounds (mainly the normal expectation
of unavoidable surface roughness}, we feel that
some interference will always be present. In Fig.
1 interference is exhibited for I = 5 or 10 [the
EDC's of Mitchell's pure surface effect are roughly
proportionalv' toE ~ where Eis the energy above

the vacuum (the coordinate of the abscissa of Fig.
l)j. This last point is illustrated by the dashed
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FIG. 2. EDC's for modified Kronig-Penney model
parametrized by position of matching plane [b of Ec[. 1,34)].

normal. There is no dependence on the azimuthal
angle since our model Hamiltonian has cylindrical
symmetry about the surface normal. The energy
of the photoelectrons has been fixed at 1.4 eV. If
we were to integrate with respect to sin8d8 we
would obtain the points on the curves in Fig. 1
above E =1.4 eV. Mitchell's model [Eq. (33)I of
a pure surface effect predicts essentially a cos 0

dependence"" (as illustrated by the dashed line).
At low I. we can see how the volume effect both
adds to (6 & 25') and subtracts from (8 & 25') the
surface effect. Another feature of the curves is
that as the effective depth I. increases, the elec-
trons excited by the volume effect are emitted at
a fixed angle (= 25' bere). This effect has been
predicted, 3'~ but note that in the physical range of
I. values the distribution is still quite broad. %e
also find that its width depends on the energy of
observation.

As a check of our numerical work we have eval-
uated the photoemission of this model using pertur-
bation theory. The procedure is to first ignore the
presence of the lattice potential in the evaluation of
Eq. (13) except within the matrix elements where
the transformation of Eq. (31) is used. '" Thus
we use the wave functions of Eqs. (20) and (26) and
the fx ee-electron dispersion relation but allow
volume absorption through &V. The results we

Vo = 5. 54 eV & 0. 26 eV =
2I'

/tH.
(35)

curve in Fig. 1 which is the EDC predicted by Eq.
(33). Another way to demonstrate the importance
of the surface is to vary the position of the match-
ing plane, i.e. , vary the parameter b [Eq. (34)].
The curves of Fig. 1 were for b=a/2. In Fig. 2

we fix I. equal to 30 and vary b, obtaining as shown,
a strong variation. At first glance one might ex-
pect the ratio of surface to volume effects to be
I/L =3/o. However, this estimate ignores the rela-
tive oscillator strength of the two effects: For
our model

"0
EA

C

C 4

CL

L= 30

which observation, coupled with Eq. (31), explains
why the EQC s are so sensitive to the sUrface con
dition. Much largex values of I. are necessary in
order to ensure complete dominance of the volume
effect. Our choice of I. is not unreasonable if one
considers, for example, the experiments of
Piepenbringav; in fact, the later woxk of Smith
and Spiceras indicates that L, may be smaller still.

In Fig. 3 we plot some angular distribution
curves (ADG's) where again the interference is
apparent. The ordinate is proportional to the
photocurxent per solid angle of emission; the ab-
scissa measures the angle 8 away from the surface

=10

l0 20 50

L Mitchell

s

40 50 80 70 80e~
(degrees)

90

FIG. 3. ADC's for modified Kronig-Penney model
parametrized by effective depth I; solid curves. ADC
for Mitchell model: dashed curve.
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admits both bulk and surface states and we shall
use these solutions for the states below the vacuum
level. The explicit wave functions and dispersion
relations are the following

Case I: Bulk states.

a =4. 31 a. u.

and the Fermi energy is

(49)

and Vo so that the model resembles the basic fea-
tures of copper. 33 Thus

m Qo CO

( ) g Q kk ca& [ -fk„la E N„ko]
l=0 , n=-

z„v, =-, (-')"'(-')'=V. o.v .

Further

(60)

where

xq(r —5,, „„),

e/y + cosk„a i sink„a-
k„& 0.

e/y+ cosk„a+i sink~ (40)

Eo+ Vo=3. 4 eV

y=0. 25 eV,

and thus the bandwidth is 3.0 eV. Finally3

&V~V)=a', (41)

Here the lattice parameter is a, 5, „specifies
the lattice sites, and y is the localized orbital
normalized to

v0=11.5 ev, (68)

or, if we have a cesium-coated surface, 8.5 eV.
The energy-dependent damping length is determined
by34

so that
1/I. =0.025+n(E -Es) (64)

ps~ps')=(27/)' 6(k-K') . (42)

The parameter e & 0 is a measure of the potential
change at the surface while y& 0 is the usual over-
lap integral common in the tight-binding method: n(8. 6 eV) =~p' (66)

where the first term represents the light damping
and the second the damping due to electron-electron
scattering. The coefficient n is determined by re-
quiring3 ' '

E =Ep 2y(cosk„a + cosk~a + cosk a)

Case II: Surface states.

(48)

~ 00 po

$,(r) =P g e "~ ' e'k'"' (-)' e'~ &p(r —5, „)
)=0 m, n=-~

(44)

where

p, =inc/y, (46)

and e/y must be greater than unity in order for the
surface ("Tamm") state to exist. With y normal-
ized as in Eq. (41),

&~, ~q,') =(2s)' 6(k, -k,') 6(k, -k,') .

CO
4l

cs
C

O

Dk

C

D
O
D
li

lA

The state is split off from the top of the band

E =Ep+ 2y coshtu —2y,(cosk,a + cosk~) . (47)
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(electron volts)

For the final state in the photoexcitation we use the
free-electron wave function of Eq. (20) with the
matching plane situated a distance b beyond the
outermost layer of atoms. To simplify the compu-
tation of the matrix elements, we neglect the spa-
tial dependence of the vector potential (aside,
again, from using an exponential damping factor)
and write the orbital y as

OlI
D
ls

O

D
Ol k

C
4)

D

LD

Energy
(electron volts)

+(P) 3/2 -lax/al

e-leg�/al

e-luk/al 4 (48)

so that a partial Fourier transform may be taken in
closed form. We choose the parameters a, Eo, y,

FIG. 6. Surface and bulk densities of states for
Goodwin model. The zeros of energy are simply chosen
for convenience; the units for the two curves are differ-
ent,
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We note that in this model photoemission results
from light incident at ~ny angle but that excitations
from transverse and normal components do not in-
terfere; we shall present our results as at either
grazing incidence or normal incidence. The com-
putation of the matrix elements is straightforward
but lengthy. As for the integrations over available
states, the explicit form of the dispersion relations
allows us to project the energy surfaces onto vari-
ous planes and thereby avoid the statistical errors
of an integration over an energy 5 function. As
an illustration of the precision of the integration
scheme we present in Fig. 6 the densities of states
for both the bulk and surface states. The singular-
ity in the surface density of states is logarithmic
which is not unexpected. To summarize the model,
we have, admittedly, some artificial features but

by way of compensation there are available easily
controlled parameters whose physical significance
and consequences are clear. It follows that we may
hope to uncover most of the relevant physics with-
out performing too extensive a calculation.

Let us begin be examining in Fig. 7 the changes
in the EDC's as the photon energy is increased.
The barrier height Vo has been set at 11.5 eV
and we consider light at grazing incidence. The

eI
~ C
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Le

a 0

8 0

V0
0

CL

Surface
States

Bulk

States

I
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lOeV lleV l2eV

I

"5
Initial State Energy

{electron volts)

Surface
States

FIG. 8. EDC's for Goodwin model plotted as in Fig. 7.
The photon energy is 12 eV; the surface-barrier height
is lowered to simulate cesiation of the surface.
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FIG. 7. EDC's for Goodwin model parametrized by

photon energy. The curves for both surface and bulk

initial states are plotted in the same units and normal-
ized to unit photon flux at grazing incidence.

parameters b and e/y are a/2 and 1.5, respec-
tively. We have plotted the yield (in arbitrary
units) against the initial energy; the zero of energy
is at the Fermi level. Yields from the surface and

bulk states have been plotted separately for clarity.
Note how, with increasing photon energy, the sur-
face-state yield becomes a large fraction of the
total due to the enhanced scattering of the bulk-

state photoelectrons. The ratio of e/y that we

have chosen corresponds to an intrinsic depth of the
surface state of approximately 2. 5 layers [Eqs.
(44) and (45)]; hence all photoelectrons from these
states (with sufficient normal momentum after ex-
citation) may escape so long as the damping length

[L of Eq. (54)] remains greater than 2. 5. The sub-

stantially constant magnitude of the surface-state
yield arises from a balance between decreasing
oscillator strength and increasing phase space.
Eventually the former will dominate.

In Fig. 8 we simulate cesiation of the surface by
lowering the surface barrier to 8. 5 eV. ~'34 Both
curves are for a photon energy of 12 eV. Most
striking is the fact that the logarithmic singularity
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FIG. 9. EDC's for Goodwin model plotted as in Fig. 7.
The photon energy is 12 eV; the specification of the sur-
face potential is varied through the parameter

ajar.

in density of surface states is now apparent. Ex-
perimentally it would, of course, be difficult to
distinguish this structure from bulk-state struc-
ture, without varying surface conditions.

A further interesting feature of the surface-state
yield may be deduced from Fig. 9 where at fixed
photon energy we vary the intrinsic depth of the
surface state: For c/y = 1.1 this depth is approxi-
mately ten layers while for e/y = 4. 0 it is less than
one layer. We see that the less the surface state
penetrates, the more it contributes to the photo-
electric yield. At first sight this is surprising
but the reason for this behavior arises from the
normalization factor [1—(y/c) j' of Eg. (44) and
the interplay between the intrinsic depth of the
states and the damping length. Relatively short
damping lengths (5-10 layers here) obviously
require the detected photoelectrons to originate
from near the surface, but, as the intrinsic depth
increases, the normalization factor decreases the
magnitude of the surface-state wave function in the
surface region and hence actually decreases the
yield. We note in passing that the variation of
e/y also affects the bulk-state yield. This, too,
is a matrix element effect that arises from the
presence of the surface. From Eq. (40) we see
that increasing e/y makes 8, tend to unity, which
in turn places a node at the surface and consequent-
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/y= 4.0
l
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/y & I.I
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FIG. 10. EDC's for Goodwin model plotted as in Fig. 7
except for the neglect of the zero of energy in the sur-
face state EDC's and the presentation of only the central
portion of the bulk-state EDC's. The parameter b is a/2
for the solid curves and a/4 for the dashed curves.

ly reduces the yield. We shall return to this point
later.

We have not discussed the shift (with e/y) in
energy of the surface-state yieldbecause the en-
ergy position of the surface states is not realis-
tically treated in this model. 3 Nor is it clear
whether surface states of the sort we are using
here even exist in metals. However, the existence
of surface states of a different nature has been
recently predicted for copper and nickel. ""
Unfortunately a proper calculation of photoemis-
sion from such states is presently too involved
since it must require +he wave functions and dipole
matrix elements throughout the entire zone in re-
ciprocal space rather than just eigenvalues at sym-
metry points. Nonetheless it is reasonable to ex-
pect that Goodwin's model allows us to represent
(with few parameters) the essential features of the
surface-state wave function, even though the eigen-
value and physical origin of the state may not be
correct.

It is in this spirit that we now examine the effect
of varying the position of the matching plane. In
Fig. 10 we have ignored the zero of energy in plot-
ting the surface EDC's and have included only the
central portion of the EDC's from bulk states. We
vary the value of 5 betweena/4ands~a/2and the ratio
e/y between 1.1, 1.5, and 4. 0; all curves are for
the same incident photon energy of 12 eV. The
most obvious and quite striking feature is that
surface- and bulk-state yields are opposite in their
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V. DISCUSSION

The results that we have presented above indicate
the difficulty of a realistic calculation, even in the
independent-particle approximation, of the photo-
emission from real metals. Apart from the con-
siderable problem of optical absorption, there is
the complication of the presence of a surface which
introduces standing waves and transmission factors
which may strongly modify matrix elements. Since
the proper description of the surface region is of
significant numerical consequence, several aspects
of the present calculations must be improved be-
fore attempting detailed comparison with experi-
ment. The single-particle potential in the surface
region must be more carefully described, includ-
ing specifically an image potential barrier and

appropriate allowance for surface roughness. In
addition the behavior of the radiation field in the
surface region requires precise description since
it scales the yield for surface effects and contrib-
utes to the polarization dependence of the photo-
emission. 4'

On the other hand, we remark that the sensitiv-
ity of the calculation contains the promise of much

valuable information. Various models of metal
surfaces could possibly be distinguished and sur-
face perturbations could be studied. This last
point is, however, limited in our formalism to the
retention of transverse periodicity. ' We can
write from Eq. (4) an expression for the photo-
current in the more general case —essentially it
involves a trace over three-single-particle current
operators —but as yet we do not know how to pro-
ceed from there. With this limitation in mind, we
would urge experimentalists to obtain photoemis-
sion data from single-crystal faces in order to
facilitate analysis. There would still be the dis-
ordering influence of phonon scattering and surface
roughness with which to contend but these effects
could hopefully be minimized with sufficient care.
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A study of Doppler-shifted acoustic cyclotron resonance in magnesium is reported. The
results are compared with the quantitative predictions of band-structure calculations based
on the nonlocal orthogonalized-plane-wave pseudopotential model Hamiltonian for magnesium
reported by Kimball, Stark, and Mueller. The dominant family of resonances yield an experi-
mental value for the rate of change of the cross-sectional area of the Fermi surface with the
component of the electron wave vector along the magnetic field of 0.80+0.02 a.u. compared
with a theoretical prediction of 0.793 a.u. The experimental cyclotron Inass of 0.78 +0.05
free-electron masses compares with a prediction of 0.78+0.02 free-electron masses. The
expectation value of the electron drift velocity along the magnetic field determined from
experiment is 3.65 x10 cm/sec, while theory predicts 3.73 x 10~ cm/sec. The relative
amplitudes of the successive resonances in the attenuation are in the ratio 1:0.64:0.41
compared with a predicted ratio of 1:0.645:0.344. At 4. 2'K the electron mean free path
for small-angle scatter determined from the resonance line shape was 1.4 mm compared
with a sample thickness of 1.9 mm. At the lowest temperatures used with the experiment, the
mean free path becomes equivalent to the sample thickness.

I. INTRODUCTION

The attenuation of a sound wave in a pure metal
at low temperatures is dominated by the interaction
of the wave with the conduction electrons. The first
conclusive experimental evidence for the importance
of the role played by the conduction electrons was
the observation of a sharp reduction in the attenua-
tion upon crossing the transition from the normal
state into the superconducting state. ' Shortly
after the initial observations it was found that the

attenuation could be effected in a nonmonotonic way

by the application of a magnetic field of varying
strength and orientation.

Various aspects of the physical manifestations
of the interaction of sound waves with electrons
orbiting in the presence of an applied magnetic
field H have been discussed in some detail by sev-
eral authors. ' The phenomenon of "geometric
resonance" has been extensively utilized to deter-
mine dimensions of Fermi surfaces. In that ex-
periment, H is applied perpendicular to the sound


