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Compton-scattered x-ray spectra were measured for three orientations of a beryllium single
crystal. The reduced proiiles were analyzed in terms of the electron momentum distribution.
Observed anisotropies can be explained qualitatively in terms of the geometry of the Fermi
surface and are in qualitative agreement with earlier positron and x-ray data. The present
results show high-momentum components among the valence electrons which are not revealed
in the positron experiment nor accounted for by available calculations. In the process of re-
ducing the data to obtain the momentum distribution of the valence electrons, detailed con-
sideration was given to the effects of binding uponthe Compton scattering by the core electrons.

I. INTRODUCTION

The energy distribution of inelastically scattered
(Compton) x rays is of interest, in part because of
its close relationship to the momentum-spa. ce elec-
tron wave functions in the scatterer. A measure-
ment of the scattered x-ray energy spectrum pro-
vides a direct insight into the electron momentum
distribution and (with single crystals) its anisot-
ropies.

Earlier Compton work' and a positron annihilation
study on beryllium had indicated the existence of
a number of anomalies, that is, of characteristics
in the momentum profiles which were not predicted
by the then available theoretical representations.
These were variously attributed to such circum-

stances as (a) grossly altered ls electron wave
functions (compared to the free-atom state), (b)
unexpectedly large high-momentum components
among the conduction electrons, (c) inaccuracy of
the scattering models, (d) uncertainties in the posi-
tron wave functions, (e) many-body effects, (f) ex-
perimental inaccuracies, and (g) inaccuracy in the
data-reduction procedures. We have undertaken a
repetition of the Compton measurements, striving
for ar~ a.ccuracy which would allow a narrowing of
the uncert, ainties.

II. EXPERIMENTAL TECHNIQUE

Measurements were made for three crystallo-
graphic directions on a single cube-shaped beryl-
lium crystal; the x-ray scattering vector, k=kf
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—k„was held parallel (nominally) to the (0001),
(1120), and (1100) directions, respectively. The
experimental arrangement is sketched in Fig. 1.

Mo Ko. radiation was used (& ™0. 71 A), at a scat-
tering angle of 120'. The total divergence in the
incident beam, defined by a Boiler slit, was +2. 5'.
At 120' the nominal Compton shift (for free elec-
trons at rest) is 0. 0364 A, corresponding to an en-
ergy "hange of 850 eV, or 31.~ hartrees. A diffrac-
tion spectrometer was used for the energy analysis,
with a LiF crystal of low mosaicity and fine Soller
slits of comparable resolution. The (600} LiF re-
flection order was used for the (0001) and (1120)
profiles; the (800) order, and correspondingly
coarser slits, were used for the (1100) profile.
The resolution of the spectrometer, measured in
terms of the full width at half-height of the MoKa&
peak, was - 0. 00018 A (- 1.3 hartrees) or - 4% of
the nominal Compton shift.

Bragg reflections of wavelengths from the contin-
uous bremsstrahlung background (emitted by the
x-ray tube) were avoided by offsetting the crystal
(- 3') from the ideal reflecting orientations. Weak
fluorescent lines due to impurities in the specimen
crystal and to shielding were detected, identified
(pb, Ni, Cu), and subtracted from the recorded
profiles.

The profiles were recorded in a 1024-channel
multiscaler in which the channel advance had been
synchronized to the forward motion of the spectrom-
eter. The spectrometer was controlled by a de-
vice which provided an automatic slow-forward
rapid-return sequence, the appropriate sweep-ini-
tiate trigger pulses for the multiscaler, and the
electronic gating of the detected radiation pulses.
Thus, a set of data was the accumulation of a large
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FIG. 1. Schematic diagram of experimental configura-
tion.

number of individual passes (each of about 20-min
duration) and quite insensitive to source variations.
In addition, a number of sets of data were obtained
and summed for each crystal orientation. Align-
ment checks were interposed and gear rotations
were used to guard against minor local distortions
in the profile due to gear-tooth inaccuracy.

The detector was a scintillation crystal (Nal-Tl}
photomultiplier pair used with standard amplifica-
tion and pulse-height discrimination electronics.
The single-channel analyzer was set to obtain a
minimal background, consistent with the necessity
for a uniform sensitivity throughout the entire ener-
gy range of the experimental profile.

III. DATA REDUCTION

Ideally, we would consider the energy distribution
after scattering, of initially monochromatic radia-
tion. The primary data would then contain only the
Compton profile of that radiation and the sharp un-
shifted peak of quasi-elastically scattered x rays
(attributable, with crystalline specimens, to "ther-
mal diffuse scattering"). However, besides the
MoKo„ the incident beam contains the aforemen-
tioned bremsstrahlung and also other molybdenum
radiation. Such radiations contribute to the mea-
sured pattern to the extent that they scatter from
the specimen, are diffracted by the analyzing crys-
tal (in any order}, and passed by the pulse-height
analyzer. Bragg reflections from the bremsstrah-
lung are readily avoided (with single-crystal speci-
mens}, and impurity peaks subtracted; however,
extraneous contributions do arise from the MoKoq
and from diffusely (elastic and inelastic} scattered
bremsstrahlung. Subtraction of the slowly varying
background contributed by the latter is complicated
by the fact that a number of reflection orders are
involved. The analyzing crystal ref lectivity varies
across the angular range used; the variation is
slight but not insignificant and depends on the order
of reflection. In order to minimize uncertainties,
the reflection order (or wavelength) composition of
the intensity was measured at several points under
and in the vicinity of the Compton line, using cali-
brated Au, Va, and Al absorbers in the path of the
beam. With the LiF crystal being used in the (600)
order and the pulse-height analyzer set to accept
uniformly all wavelengths from 0. 7 to 0. 8 A, the
following characteristics were measured:

(i) The non-(600) contribution appears to be linear
under the Compton line and is responsible for about
3 of the background and virtually all of its slope.

(ii) The (200) bremsstrahlung background is
eliminated by the pulse-height discrimination.

(iii) The (1000) and higher-order reflections are
too inefficiently diffracted to contribute appreciably.

(iv) The (400) component decreases with wave-
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length and the (600) increases slightly, both con-
sistent with the hypothesis that the variation is
primarily due to the pulse-height discrimination.

After subtraction of the non-(600) background, the
following reductions were applied:

(i) correction for the wavelength dependence of
absorption in the sample and of the LiF crystal re-
flectivity (both quite small —a few percent);

(ii) subtraction of (600) background, i. e. , of the
nearly constant intensity below the peaks of modified
and unmodified radiation;

(iii) separation of the MoKo. a component. The
Rachinger' method was used with an experimentally
determined a2/a, ratio of 0. 525 (+ 0. 015).

The data reduction involved no free parameters
except for one normalization constant, and no pre-
sumptions regarding the shape or symmetry of the
Comption prof ile.

IV. THEORY

do do cu& V

dQdu dQ Th (u (2v)

x &O~n,-~0)dp, (2)

where (0 ~n~~ 0) is the probability of finding an elec-
tron with momentum p and [V/(2v) ] f dp represents
the sum over momentum eigenstates. This approx-
imation is exact for free electrons and valid in the
limit of a slowly varying potential. We will there-
fore apply Eq. (2) to the scattering from valence
(conduction) electrons, but will give further consid-
eration to scattering from core electrons.

Since the experimental data do not give us do/
dA des on an absolute scale, it is necessary to
normalize the experimental curve so that dv/dQ
assumes its theoretical value. To obtain the va-
lence contribution to dg/dQ we integrate Eq. (2)
with respect to ~ and obtain

The Compton scattering of x rays with energy
84& g

—0 04mc by electrons in a solid gives rise to
electron recoil energies which are typically
~ 4(h'~, /c) /2n or 0.003mc . Thus for solids com-
posed of light atoms, both the initial and final states
of the electronic system may be described nonrela-
tivistically. The coupling of the electronic system
to the electromagnetic field is then described by
p ~ A and A interaction terms, where p is the elec-
tron momentum and A is the vector potential of the
radiation. The p ~ A term appears to be negligi-
ble. Consideration of the A. term alone to first
order gives, for an N-electron system, the differ-
ential scattering cross section

dp 0 ng0

(d2 1
x —— - - (3)1 —(k+ p) ~ (dk/d(u „2i2, y. g

From the definitions of k and ~ we have

2

k =4k, sin 6 1 ——+ -22= 2 '2 47 (d

4~2i sin'e (4)

If we now retain terms of order &u/~, in comparison
to unity but neglect terms of higher order in u/u„
and make use of the inversion symmetry of
(0 Inf, IO) to eliminate linear terms in p, we obtain

N

dAd(d dQ Th (d
g dA „~) dQ Tg 2(d g

(5)

x 6(f —60 —(d) ~

where (do/dQ) Th = (e /n c ) (e, ea)a is the Thompson
scattering cross section of the electron, and ~ =(d,
—co& and k =k, —kz are, respectively, the energy
and momentum transferred by the photon to the
system whose initial and final states are 10) and

Iq), respectively. 6(e, —&o —&u) states the energy-
conservation condition. (We have used atomic units
with 5= en = 1. )

The cross section given by Eq. (1) is basically
the one previously used' ' in the discussion of the
Compton profile, except that the factor ~2/&u, is
often dropped; it is approximately equal to 0. 95 at
the center of the Compton peak in our case.

A. Impulse Approximation

An approximation to Eq. (1) has been derived, '
which is referred to as the "impulse approxima-
tion":

where n„~is the number of valence electrons and
—,'ko is the energy transfer for Compton scattering
of an x ray of frequency (d& through an angle 28

(120 in this instance) by a free electron initially
at rest. Apart from terms of order (~/&u, },the
result of Eq. (5} agrees with the Klein-Nishina for-
mula' for the Compton cross section of a free elec-
tron at rest. Although the total cross section of
Eq. (5) follows from the impulse approximation for
an arbitrary ground-state distribution (O~n; ~0), it
will contain an unphysical contribution correspond-
ing to negative energy transfer from the region
-;k + p k & 0, if (0

~
n;

~

0) is nonz ero in this region.
In our case k =8 a. u. , while the free-electron
Fermi momentum for Be is 1.027 a. u. , so that we
would expect this unphysical contribution to the total
Compton scattering by the valence electrons to be
negligible.

B. Core Contribution

To calculate the contribution of a core electron
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to do/dA we observe from Eq. (1) that we need the
matrix element of e"' between the final state lq)

and the initial state 10) . Since the initial-state wave
function is concentrated close to the nucleus, the
result may be sensitive to the behavior of the final-
state wave function in that region. We should there-
fore obtain do/dfI from a calculation of do/dfld&u in
which appropriate final-state wave functions are
used. Alternatively, we may temporarily bypass
the final-state problem; we can formally integrate
Eq. (1}with respect to (d and obtain

x (q
/
e a ()

/
0)

where, since the direction of k2 is fixed, the (d de-
pendence of k is given by

k =k, —(k, /(d, ) ((di —(d}.

If we now neglect first-order terms in ~/&u, and
assume that the initial state 10) plus the possible
final state I q) form a complete set, we obtain the
Wailer-Hartree result for the total cross section

0e~"' 0 2 — — 1 f2

(8)

where f is the x-ray form factor for the core state.
In the limit of weak binding (f—0), the core contri-
bution to do/dQ should approach the free-electron
result of Eq. (5). Thus an approximate way to re-
cover the first-order terms in (d/&u, is

2
x Yf (8(t))e'"'~4((r)d'r

where e =e, +(d and dn/de is the number of states
per unit energy with quantum numbers l and m. To
determine dn/de and the normalization of g, (r; e),
the final states were confined to a sphere of arbi-
trarily large radius and the WEB approximation
was used to continue the numerical function g, (r; e)
out to a suitably large value of r Sinc. e (})((r) is
generally taken to be an eigenfunction of angular
momentum, the integral in Eq. (11) is easily re-
duced to one or more radial integrations by using
the partial-wave expansion of e"'~. In our case
the core electron is initially in an s state, so that
Eq. (11) becomes

dO dg (d~ Z 4v(2I+1)—dn
dAdm dA Th (d, d& J

x j,(kr) (1),(r) r dr (12)

tron in a recoil state whose wave function also sat-
isfies Schrodinger's equation for the same potential
V;(r}. We can then write the recoil-state wave
function as 4,(r ) =g, (r; e) Y, (8, (f)), where the func-
tion g, (r; e) is determined by numerical integration
outward from r = 0 of the radial Schrodinger equation

, ~ V(r) ~, —r)rg, (r;r)=0 . (10)1 d f(I+1)
2 dr2 2r2

From Eq. (1) the differential cross section for
Compton scattering from a core electron initially
in the state (});(r) is given by

da' do & 2 dn—Z — g, (r; ~)
dAdcd dA) Th ~q, ~ d&

dQ „,~ dQ

where co' is a suitable average value for the energy
transfer, such as the value at the center of the
Compton profile.

To begin a theoretical interpretation of normalized
data, we will assume that the core contribution to
the Cornpton scattering is essentially the sane in
the solid state as it is in the isolated atom. This
assumption is supported by the results of some
modifications of the atomic calculation of the core
contribution described below.

In the usual Hartree-Fock or other self-consis-
tent-field atomic calculations, each one-electron
orbital (},(r ) may be regarded as a solution of
Schrodinger's equation for a particle in a spherical
potential V;(r). V, (r) is approximately (or exactly
in the case of the Hartree approximation) the Cou-
lomb potential produced by the nucleus and the
charge densities of other occupied orbitals. We
assume initially that a Compton event which removes
an electron from an orbital g((r) will leave the elec-

As an over-all check on the numerical computation
outlined above, we have applied Eq. (12) to the
hydrogenic Is state of Be'", obtaining agreement
with an exact analytic calculation' to within a few
parts in 10 .

As a first calculation of the Compton scattering
from the Is electrons in the Be atom we used the
atomic potential of Herman and Skillman for both
the initial and final states. This result is shown
as curve (d) in Fig. 2. That calculation was fol-
lowed by a series of calculations in which we inves-
tigated the sensitivity of the result to certain char-
acteristics of the potential and attempted to simulate
some of the effects to be expected from the crystal-
line environment, but always using the same poten-
tial for the final state as for the initial state. One
modification consisted of eliminating the —1/r tail
of the Herman-Skillman potential outside the atomic
radius. Another consisted of using the potential
from a previous energy-band calculation' which
included the spherically averaged effect of neighbor-
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FIG. 2. Experimental Compton profile (average of three directions) and core calculations: (a) experimental curve;
(b) Clementi Be 1s and impulse approximation; (c) Clementi Be 1s and plane-wave final state; (d) Herman-Skillman po-
tential for initial and final states; {e) same as (d) with 1s Coulomb potential added to final-state potential.

ing atoms. The effect of shifting the potential with
respect to the zero potential at infinity was inves-
tigated, as well as the effect of introducing a large
dip in V(r) at values of r in the vicinity of the near-
est-neighbor distance in the crystal. None of these
various potentials caused changes in the calculated
Compton profile for the 1s electrons of as much as
1% for values of the energy transfer more than 5

hartrees above threshold. Larger differences mere
found only close to threshold (5% at 2 hartrees
above), mhere the energies of the recoil states are
small. This relative insensitivity of the Compton
profile to those changes described above is a reflec-
tion of the fact that there was actually very little
alteration of the potential, other than a constant
shift, in the small region where the 1s wave function
is large.

The area of the Compton profile for a Be 1s elec-
tron, using the Herman-Skillman potential, was
found by an approximate numerical integration to be
0. 86(do/d Q)» as compared with 0. 86V(do/d A)»
from Eq. (9).

In view of the small size of the first Bohr radius
(=0. 25 a. u. ), it does seem reasonable to assume
that a localized 1s state in the crystal is the solution
of Schrodinger's equation for a spherical potential
much like the atomic potential. We also assume
that the 1s profile does not depend on whether the

form of the recoil wave function outside the atom
is that of a continuum state of an isolated atom or
a superposition of Bloch functions appropriate for
a crystal. In view of the insensitivity of the cal-
culated 1s profile to the changes in potential de-
scribed above, this assumption appears reasonable
It is also supported by the fact that the assumption
of plane waves and of free-particle spherical waves
for the recoil state leads to identically the same
result.

However, the assumption that the same potential
should be used for the recoil state as for the 1s
state is clearly open to question. In calculating the
potential seen by the recoiling electron one might
use orbitals for the remaining electrons which are
"relaxed" to the absence of a 1s electron. We can
estimate this effect in the isolated atom by noting
that the Coulomb potential at the nucleus produced
by the two 2s electrons is (2s I 2/r i 2s) or 2Z„,/n,
where Z,« is the effective nuclear charge seen by
the 2s electrons and n, the principal quantum num-
ber, is 2. The change in Z,«due to removing one
1s electron is —1, so that the change in the Coulomb
potential at r= 0 due to relaxation of the 2s orbitals
is 0. 5 hartrees. For the remaining 1s electron,
the change in Z,«would be about 0. 3, "so that the
Coulomb potential at r = 0 due to this electron would
change by about 0. 3 hartrees. Thus in the core
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region, the potential for the initial 1s state is on
the average 0. 6 or 0. 7 hartrees deeper than the po-
tential for the recoil state. Taking this change in
potential to be a constant overthe core region, which
is a reasonable approximation for the part coming
from the 2s shell, we can deduce the change of the
Compton profile from our previous calculations.
We have seen that a shift of the potential for both
the 1s and recoil states in the core region results
in essentially no change in the Compton profile.
Thus the upward shift of the final potential is equiva-
lent to a downward shift of the initial potential and
of the ls energy. Thus from Eq. (11), which gives
the Compton profile as a function of E = E;++, we
see that the Compton profile is shifted toward larger
~ by 0. 6-0. 7 hartrees. The lowering of the total
energy of the remaining electrons due to relaxation
would cut that shift approximately in half, but in
the crystal, the Be core is surrounded by a higher
concentration of valence electrons so that a larger
relaxation effect may be expected. An extreme re-
laxation limit can be reached by making the rather
implausible assumption that the hole in the 1s shell
is filled by surrounding electrons so that the poten-
tial for the recoil state is the Coulomb potential of
a neutral Be atom. The result of a similar calcula-
tion in which the recoil-state potential differs from
the initial-state Herman-8killman potential by the
addition of the Coulomb potential produced by a 1s
electron is shown as curve (e) in Fig. 2. An alter-
native interpretation of such a calculation would be
that the Compton process produces a Bloch 1s hole,
rather than a localized one, and that the exchange
potential for the recoil Bloch state would be much
weaker than the exchange potential for the 1s state.
The addition of the Coulomb potential of a 1s elec-
tron to the potential in the core region has approxi-
mately the effect of removing the exchange hole
from the potential in that region.

V. EXPERIMENTAL RESULTS AND DISCUSSION

which shows the greatest anisotropy, is plotted in
Fig. 3. The difference shown is the average of the

IQ, ~

\
"I

r~
~ ~

I
I

I
I

I

Present data—- - —0ther x -ray data (ref. I )----- Positron data (ref. 2)------ Pseudopotential
I l t' n (ref. l2)

anisotropy. Symmetry considerations in the cen-
tral region indicate the possibility of errors of sim-
ilar magnitude within a single profile, also. It
should be noted, however, that neither of these
comparisons in themselves preclude the possibility
of a small but consistent distortion of the symmetry
of the tail portion of all three profiles.

The differences among the three direction profiles
in the central region are directly related to the an-
isotropy in the valence momentum distribution. We
can examine that effect without consideration of the
core if we assume the latter electrons to be iso-
tropic. In the impulse approximation, Eq. (2), the
integral for a given ~ is taken over the plane in
momentum space defined by the conservation rela-
tionship

p k=co- —,'k . (14)

It is convenient to refer to the momentum component
along the scattering vector as the independent vari-
able z defined by

z =p ~ k/k =&a/k ——,'k (15)

and to note that the variation of

(og(o, k = (2k, sin8) ' (1 —u&/ho, )

across the valence peak is slight. In that approxi-
mation, therefore, the valence do/dAd&u is pre-
dicted to be roughly an even function of z, J(z).

The difference

The experimental profiles, processed as described
in Sec. III, were normalized according to Eqs. (5)
and (9):

dA „,dA „„dA„'dA

A cursory comparison of the results for the three
directions shows that, while significant differences
exist in the central regions, the tails are nearly
identical. The latter regions (beyond - 2 a. u. )
correspond to high initial electron momenta and are
primarily core contribution. For that portion the
deviations among the three directions are less than
1% of the maximum intensity and we attribute them
to experimental and data-reduction uncertainties,
rather than to core (or high-momentum valence)

CP
C'a

O0 Q

Ca
M
la

CL

I I I I I I I I I I I I I

0 0,5 I,Q I~ 5
Electron momentum component along scat tering vector, z (atomic mits)

FIG. 3. Anisotropy between (0001) and (1120)
directions.
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+z sides and the error bar indicates the maximum

discrepancy in the symmetry about z = 0.
In Fig. 3 we also show the same difference func-

tion derived from previous x-ray measurements, '

from positron annihilation measurements, and from
a pseudopotential calculation. ' Qualitative agree-
ment exists among all the results. The two x-ray
measurements, although not in good mutual agree-
ment, both indicate a smaller anisotropy than the

positron result and the pseudopotential calculation.
With respect to the positron data the difference
might be due to the fact that x rays and positrons do
not have the same spatial probability densities. It
is generally assumed that the x-ray intensity is uni-
form within the material, an assumption which is
probably equivalent to ignoring any dynamic scatter-
ing effects. It is expected, and verified by the rel-
atively small core contributions in the positron
results, that the positron probability density is non-
uniform and significantly larger in the space between
the cores. That bias would tend to give an overes-
timation of the anisotropy in positron data. On the
other hand, the pseudopotential calculation predicts
as large or larger anisotropies. It would be inter-
esting to see if anisotropies of that magnitude per-
sist with the inclusion of additional potential coef-
ficients in that calculation, or in other calculations
which take more direct account of the crystal poten-
tial. A qualitative interpretation of the anisotropy
may be made on a simple geometric basis as well,
which also serves to relate these data to the specific
structure of crystalline beryllium. For that purpose
we use a quasi-free-electron approach in which we
assume that the distribution of momenta is the same
as the distribution of occupied k states, using as
the limiting surface not the free-electron Fermi
sphere but the actual Fermi surface. ' In that
approximation the integral of Eq. (14) is proportion-
al to the cross-sectional area of the occupied volume
in k space. In the present case this volume con-
sists primarily of the first and second zones, plus
small electron pockets in the third zone (the
"cigars") and minus compensating holes in the sec-
ond zone (the "coronet"). A section of the occupied
volume containing the points I' and Z [ Fig. 4(c)]
has a smaller area than a section through the basal
plane [Fig. 4(b)]. Hence 5(z) is positive near
z = 0. As z increases, Jygpp remains almost constant
until z = —,'I'K= 0. 4S a. u. This is due to the nearly
cylindrical shape of the polyhedron in the (1120)
direction. Beyond that point Jyg jo decreases quite
rapidly. J000» on the contrary, decreases at a
constant rate from z = 0 to z = 0.9. This accounts
for the minimum in 5(z) at z:-0.45 and the maximum
at z=0. 75. In the vicinity of the Fermi momentum

Jpppy vanishes rapidly as the intersecting plane
crosses the top face of the zone, whereas J»po ben-
efits from the contribution of the "cigars. " Hence

FIG. 4. Fermi surface of beryllium. (a) Occupied
volume in reciprocal space: The polyhedron represents
the first two Brillouin zones. The dark regions are part
of the coronet and cigars. (b) Cut through the basal plane.
(c) Cut perpendicular to (1120) direction. The dashed
circles represent the free-electron Fermi sphere.

the second minimum in 5(z) near z = 1.0. We see,
therefore, that in beryllium, where the Fermi
surface is exceptionally small, the Brillouin-zone
structure essentially determines the observed an-

isotropies. In particular, the large anisotropy at
z =0 is a direct consequence of the flattening of the
occupied polyhedron along the basal plane, which
in turn is related to the bonding anisotropy which is
responsible for the anomalous c/a ratio in the crys-
tal structure.

In order to consider the full shape of the valence
profile it is necessary to separate the core contri-
bution. Because of the complete overlap of the
two, the separation can only be done on theoretical
grounds, such as were developed in Sec. IV. In
Fig. 2, curve (a) is the arithmetic average of the
experimental profiles for the three different direc-
tions. Curve (c) is derived directly from Eq. (1)
using Clementi's' Hartree-Fock Be 1s initial-state
wave function and a plane-wave final state. This
particular calculation, which exhibits large devia-
tion from the experiment, illustrates the sensitivity
of the scattering analysis to the recoil-state speci-
fication. The impulse approximation for the core
electrons is shown as curve (b). In comparison to
the former model it proves to contain a more con-
sistent set of assumptions. The profiles (d) and

(e) are the numerical calculations described in Sec.
IV, without and with the arbitrary relaxation in-
cluded, respectively.

In comparing the theoretical core profiles to the
data, an important criterion is that subtraction of
the theoretical core should leave a roughly symmet-
rical remainder. Curve (e) is the only one which
satisfies that requirement within the previous esti-
mation of experimental error. This result is sur-
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(a) —Experimental & ll20 & valence prof ile

(b) —.- Same approaimotejy corrected for

zation

alculation (ref l2)
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FIG. 5. Experimental (1120) valence profile and

pseudopotential calculation.

prising since the assumption of complete relaxation
does not seem plausible. One would expect the
actual curve to lie somewhere between curves (d)
and (e). However, since the amount of asymmetry
in the tails of the Compton line is an aspect of the
experimental result which might be affected by a
systematic bias in the data reduction, we would not
wish to overstress that particular comparison. '

For consideration of the valence profile, however,
the impulse and both numerical results are suffi-
ciently close to one another that it is immaterial
which is subtracted, as long as the remainder is
symmetrized by averaging the +z sides. In any
case, the resulting valence distribution exhibits
long tails which extend well beyond the free-electron
Fermi momentum.

At this time no theoretical calculation accounts
for the observed x-ray shape. The free-electron
model (not shown) is simply an inverted parabola
which falls to zero at z =1.03 a. u. The pseudopo-
tential result'~ is shown as curve (c) in Fig. 5. It con-
tains relatively little in the way of high-momentum
components. The positron data are in good agree-
ment with this calculation after the broad slowly

varying part of the experimental profile is sub-
tracted. ' The precise effect of that subtraction on

a comparison with the x-ray results is not entirely
clear. Nonetheless, assuming both experiments to
be correct, we would again expect that deviations
might be due to spatial probability density differ-
ences, with the resulting implication that valence
electrons have higher momenta in the core region.
Since the pseudopotential calculation is not expected
to simulate adequately the behavior of the valence
wave function in the core region, perhaps its better
agreement with the positron than with the x-ray re-
sult is not surprising.

Part of the effect of the crystal potential can be
estimated by imposing the requirement that the
valence-electron wave functions be orthogonal to

6.0

4,0
O

M

Free electron porobolo

Interocting electron gos
tref. )6)

Cy
ta D

20

I.O

l l I l

02 0.4 OI6 Q.e lD l.2 (4 l-6 L8 ?0
Electron momentum component oiong scotteriey vector,
z (atomic unit s)

FIG. 6. Comparison between noninteracting ( )
and interacting ( '

) electron-gas Compton profiles.

the 1s functions. An approximate derivation, based
on the use of one plane wave for the smooth pseudo-
wave-function, yields that the orthogonalization ef-
fect is just 8% of the theoretical core profile. Sub-
traction of that component and renormalization to
the full area gives profile (b) in Fig. 5. Within ex-
perimental significance, the orthogonalization ac-
counts for the tail beyond - 2. 2 a. u. , but a dis-
crepancy remains in the intermediate region.

A likely source of a tail in the momentum distri-
bution just outside the Fermi surface is electron-
electron correlations. While no calculation of this
effect in Be metal is available, a calculation for an
interacting electron gas of comparable density has
been performed in the random-phase approxima-
tion. ' Figure 6 shows the Compton profile derived
from this calculation in comparison with the free-
electron parabola. By comparing Figs. 5 and 6 we
see that the correlation tail as calculated for the
electron gas is far smaller than the remaining tail
in our Compton profile.

Vl. SUMMARY

Qualitative agreement with previous Compton and
positron experiments has been found regarding an-
isotropy in the valence-electron momentum distri-
bution of beryllium. The anisotropy can be ex-
plained by simple geometrical considerations, but
appears to be smaller in magnitude than is indicated
by pseudopotential calculation.

The valence-electron distribution also exhibits
significant density at high momenta, well beyond
the free-electron Fermi momentum. In view of the
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electron-gas results it seems unlikely that this ef-
fect is produced by electron-electron correlations.
Comparison with the positron data suggests that
high-momentum components in the electronic wave
functions are spatially associated with regions of
large core potential. Neither a simple core orthog-
onalization derivation nor a pseudopotential calcula-
tion accounts adequately for the true profile shape.
A more detailed calculation appears to be warranted.

The Compton data have been compared with esti-
mates of the core contribution derived on the basis
of (a) the "impulse" approximation, using Cle-
menti's' ls wave function, and (b) a free-atom-like
numerical calculation, using the Herman-Skillman
potential for both the initial and final states. It
agrees best, however, with a calculation in which

an altered and probably over-relaxed potential is
used for the recoil state. Experimental resolution
of the details of core electron scattering may re-
quire additional data, specifically aimed at measur-
ing the asymmetry in the profile tails.
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The Hall effect of the palladium-hydrogen system has been investigated as a function of the
hydrogen content at a temperature of 25'C. The Hall coefficient rapidly decreases at atomic
ratios H/Pd &0. 83. The effective number of electrons per palladium atom for atomic ratio
H/Pd&0. 83 was calculated. A high-pressure method of saturation was used.

Recently, with the new capability of obtaining
gaseous hydrogen under very high hydrostatic pres-
sures up to 25 kbar and 28 kbar, the relationship
between the relative electric resistance R/R, and
the atomic ratio H/Pd in the Pd-H system for H/Pd
&0.8 has been found. In this investigation the
authors took into account the known linear relation

between the atomic ratio H/Pd and the logarithm
of the hydrogen pressure, valid for the pure P phase,
replacing pressure by the hydrogen fugacity. The
results of some recent experiments have proved
that, in the range of the atomic ratios H/Pd up to
0.97, calculations made on this basis and applied
in Ref. 3 were certainly correct. The results ob-




