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A simple model for the o.'-y phase transition in Ce is presented. It is based on the change
of occupation number of the f levels, which are assumed to be atomiclike in character, i. e. ,

highly correlated and with a very narrow bandwidth. The change in occupation number is.
as a function of temperature, caused by the short-range part of the electron-electron inter-
action. The theory allows for the existence of a critical point. With the assumption of a
linear relationship between f-level occupation numbers and lattice constant, pressure-lattice-
constant isotherms are calculated. Curves for the paramagnetic susceptibility as a function
of pressure and temperature are also presented.

I. INTRODUCTION

The properties of rare-earth metals can usually
be explained by an s fexchange -interaction between
a, free trivalent ion and the conduction electrons.
One exception is cerium which presents a, more
complex behavior. Its pha, se diagram' is shown in
Fig. 1. One can note several solid phases: one
bcc phase (I)), one double hexagonal phase (P), two
fcc phases (o and y), and one other closed-packed
structure (o') which is either cubic" or hexagonal. '
In this paper, we are only concerned with the a and

y phases. The experimental information with re-
gard to these two phases can be summarized as
follows': (a) Both n and y phases are cubic closed
packed (fcc); (b) the y phase is magnetic while
the o phase is not; (c) the atomic radius of the y
pha, se is very similar to the radii of its neighbors
lantanum and praseodymium; the ra,dius of the
phase is, however, smaller'; (d) from Hall-effect
measurements, it has been estimated' that the
valency of the y and z phases are 3.06 and 3. 67,
respectively; (e) at room temperature the lattice
constant changes discontinuously at about 7 kbar
from 5. 16 A for the y phase to 4. 85 A for the ~
phase; and (f) the first-order phase-transition line
between the ~ and y pha. ses ends up '" ' in a. criti-
cal point C corresponding to p~=17. 5-20 kbar and
T~=-550-630'K; this critical point is in all respects
similar to a liquid-gas critical point and, by prop-
erly choosing a path in the p-T diagram it is pos-
sible to g'o continuously from a large-spacing mag-
netic y phase to a. more dense nonmagnetic a pha, se,

Several theories have been proposed to explain
such a fascinating behavior of Ce metal. The sim-
plest arguments, ba, sed on chemical considera-
tions, '4'5 suggest the promotion of one electron
from an f orbital in the y phase to an s-d hybridized
conduction-band orbita, l in the ~ pha. se. In this way,
the n phase consists of Ce ' ion cores and four con-
duction electrons per atom; the Ce ' core, isoelec-
tronic with the Xe atom, is nonmagnetic (2=0).

On the other hand, the y phase is formed by a set
of Ce3' ion cores and three conduction electrons per
atom; the Ce ' ion has a mell-defined magnetic mo-
ment' corresponding to J= 2 and a, g factor g=0.811.
These properties are in agreement with the experi-
mental facts.

The detailed mechanisms for the promotion of
the relevant electron and the consequent phase tran-
sition are however not completely clear. Blandin
and co-workers ' have proposed a, model based on
the hybridization of the f shell and the conduction
band, together with a strong spin-orbit interaction.
Their model explains the existence of a. critical
point and is based on localized f-like energy levels
whose energies (with respect to the Fermi level) are
strong functions of temperature and pressure. The
nature of and the reason for those strong depen-
dences are, however, not given explicitly in the
paper. Inaddition the existence of a first-order
phase transition depends crucially on the orbital
degeneracy of the f states.

All these models and speculations (and the model
here presented as well) are based on the simulta-
neous existence of localized or almost localized f
states, and itinerant conduction electron states,
derived from hybridized s and d bands. This con-
cept, although not a, common one among solid-state
(band) theorists, is not a new one. When calculating
band structures for rare earths and actinides by the
augmented-plane-wave method, ""most authors"
do not include the 1=3 (f-states) contributions; if
included, they usually spoil the beautiful agreement
between theoretical and experimental data on the
Fermi surface of these materials. The l =3 solu-

/

tions are, however, there and their energies are
quite similar to conduction-band energies, most
times overlapping the conduction band. Justifica-
tion for the omission can be based on the fact that
the l = 3 states have a. very narrow bandwidth and
should therefore be highly correlated states, i. e. ,
states which will approximate the localized picture
envisioned by Motta~ in the insulating limit of the
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FIG. 1. Phase diagram of Ce. The values in A rep-
resent the lattice constants at the transition point at
room temperature, C is the critical point (after beefs.
&-3).

metal-insulator transition systems.
The model we present here also involves both

localized f states and itinerant conduction-band
states; the mechanism for the z-y phase transition
is, however, due to the short-range part of the
electron-electron interaction, more specifically the
electron-electron matrix element between f states
and conduction-band states. It is quite similar to
a model proposed earlier for metal-insulator tran-
sitions. "3 The details of the model are presented
in Sec. II and its physical implications discussed in

Sec. III.

II, MODEL

Vfe assume two different types of electron states:
(a) an extended band, obtained from hybridized s-
and d-like Bloch sta.tes. Since these sta.tes are 12
per atom in number, a,nd from theory' and experi-
ment ' the fcc rare earths have a density of states
of about 20 states/Ryatom, we have assumed, for
the sake of simplicity, a conduction band with a
constant density of states equa, l to that value and

a total bandwidth W= 0. 6 Ry = &. 16 eV. If in addition
we assume that in the n phase at T = 0 there are
four electrons per atom in the conduction band, and

energies are measured from the Fermi energy

Nn, = f, ' D(e)n-, (e)de,

Xn, -=f, "D(e)n„(e)de,

(2. 4)

(2. 5)

n nb (2. 5)

In these equations, Nn, is the number of occupied

f levels, D(e) is the density-of-state function, ~4

which in our model is

D(e) =12K/W, (2. 7)

and (2. 6) is simply the constraint which keeps the

number of electrons in the crystal constant.
The excitation energy 8 of a given many-electron

state consists of two terms

g=g +g (2. 8)

where 8, is the single-quasiparticle contribution and

8, is the quasiparticle-quasiparticle interaction

f-states

(b) There is a set of localized f-like states, with

an energy E (measured again from ez =0), such that
F & 0. These states, being highly localized and
correlated states, admit only one electron per
atom. The energy necessary to place a second
electron in the same localized f state is at least
one order of magnitude larger than E, and for our
purposes it can be considered to be infinite.

A schematic diagram of the density of states of
this model is shown in Fig. 2. If we take as a, ref-
erence the state depicted in Fig. 2, the quasiparticle
excitations of the system are of three classes: (a)
electron excitations in the conduction band, with en-
ergies 0$e & W, =5. 44 eV; (b) hole excitations in the
conduction band, with energies 0=& = 8'„=2.72 eV;
and (c) localized electrons in the f shell, with ener-
gy c=E.

If our crysta, l contains N atoms, and n, (e), n„(e),
and n, are the occupation probability of conduction
electrons, conduction holes, and localized electrons,
respectively, we can write the following relations:

E~ =0,
then the conduction bands extend from

(2. 1)
-2.7 8 (eV)

to

—S'~ = —2. 72 eV

W,
' = 5. 44 eV.

(2. 2)

(2. 3)

, FIG. 2. Density of states for localized electrons and

itinerant holes and electrons, as used in the present
work.
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term.
The term 8, can be easily written as

N—ks [n, ln n, + (1 —n, ) in(1 —n, )]

+Nkvd n, ln(2 8+ 1), (2. ia)

8, = -NGn, (n, -n. )

or, using (2. 6),

gp
———NGn

(2. 10)

(2. 11)

Another way of looking at the interaction G is the
following: If we denote by E the energy of one iso-
lated electron moving in a lattice whose potential
is set up by a collection of Ce ' ions and a neutral-
izing charge, the same electron, with the same
quantum numbers, would have an energy & + G when

moving in the same lattice but with a potential de-
termined by a collection of Ce3' ions and the cor-
responding neutralizing charge,

The equilibrium values of the occupation functions
N, (&), n„(e), and n, are obtained by writing down
the free energy 7 of the system

(2. 12)

at a given temperature T as a function of n„n„, and

n„and minimizing the whole expression with re-
spect to them. In (2. 12) the entropy function is giv-
en by

8= —kz f 'D(e)(n, (c) inn, (e)

+ [ 1 —n, (e)] ln [ 1 —n, (e)]}de

—ks f, "D(~)fn„(~)Inn„(e)

+ [1-n,(e)] In[1-n, (~}]].da

h, = f, e D(c)n, (e)de+ f "ED(a)n, (e)de+NEn, .

(2. 9)

In order to write 8, we make now the following as-
sumptions about the interactions:

(i) All interactions are short range, i. e. , only
nonzero for electrons which are in the same crys-
tal cell.

(ii) Interaction between two electrons in f levels
in the shme atom is considered to be infinitely

large; exact account is taken of this interaction by
not allowing more than one electron per atom in
localized states.

(iii) The interaction between electrons in the f
shell and either electrons or boles in the conduction
band is assumed to be, except for the sign (positive
for electrons, negative for holes), constant and

independent of &. We denote the value of that inter-
action (between an electron in the f shell and a hole
in a Wannier orbital) by —G.

(iv} Interactions between any two quasiparticles
in the conduction band are neglected.

With this assumption S~ can be written as

is the spin degeneracy of Ce '.
When (2. 13), (2. 8}, (2. 9), and (2. 11}are re-

placed in (2. 12), and (2. 12) is minimized with re-
spect to n„n„, and n„kee pi ng the constraint (2.4)-
(2. 6) into account (Lagrange multipliers are used
here, as usual), the following results are obtained:

n, (e ) = ia ' exp[(e —E + 2Gn, )/k~ T] + 1j ', (2. 14)

n„(e ) = fa exp[(E + E —2Gn, )/ks T] + 1] ', (2. 15)

where

and

where

a= n, /(2 J+ —1) (1 —n, )

12Qz T Ay+ e @~ Ap+ 1n= ~ ln
$V Ao+e @o A, +1, '

A~ = I/A, =- a exp[(E —2 Gn, )/ks T],

Qo= W„/ksT,

(2. 16)

(2. i7)

(2. 18)

(2. i9)

q, -=W, /k, T . (2. 20)

Equation (2. 17) is an implicit equation for the equi-
librium value of n, as a function of the temperature;
it depends on the parameters of the system: 8'„
8'„, E, G, and J. For a given temperature T,
(2. 17) may yield one or three solutions. In the lat-
ter case one solution corresponds to a maximum of
5 and the other two, to two local minima. In such a
case it is necessary to calculate 5 numerically in
order to determine which one of these two values
corresponds to the absolute minimum of $.

Three examples are shown in Figs. 3-5. In all
three W, =5.44 eV, 5'„=2.72 eV, G=0.44 eV, and
J = —,'. In Fig. 3 8=0. 16 eV and n, varies discon-
tinuously as a function of T; the discontinuity takes
place at T= 382'K. In Fig. 4 (critical behavior)
E = 0. 1894 eV and n, varies continuously but has an
infinite slope at T, =579 K. In Fig. 5 E=0.21 eV
and both n, and its temperature derivative are con-
tinuous.

Before applying the present model to Ce metal,
several possible ways of improving it come to mind:

(a} A more realistic density-of-state function
D(e) can be used.

(b} An hybridization term, mixing f and conduc-

where k~ is the Boltzmann factor and the four terms
in (2. 13) correspond to the itinerant-electron en-
tropy, the itinerant-hole entropy, the 1ocalized-
electron entropy, and the ionic-spin entropy, res-
pectively. In the last term in (2. 13),

2J+1=6
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shown in Fig. 4. We also know from experiment
(Fig. 1), that the critical temperature Tc is around
580'K, which we take to be

I
I
I
I
I
I
I
I
I
I
I
I
I
I

I

I
I
I
I
I

~ W

(3.2)c=5V

Critical behavior imposes a one-to-one correspon-
dence between E and G, and (3. 2) then determines
their values uniquely. In our case, these values
are

(3.3)Ec =0. 1894 eV,

(3.4)G =0.44 eV .0.1 ~

These are the values corresponding to the curve of
Fig. 4.

As the pressure P is varied from its critical val-
ue Pc in the experimental region, most physical
parameters (volume and lattice constants in each
phase, energy levels, charge densities, and inter-
action constants) change by a few percent. For
instance, as shown in Fig. 1, the lattice parameter
in the n phase changes, at room temperature, 2

from 4. 85 A at 10.5 kbar to 4. 73 A at 49. 5 kbar, a
change of 2. 5/o. The outstanding exception is the
parameter E; E is an energy difference between the
energies of an f level and a hybridized s-d conduc-
tion band. The energies of each of these with re-
spect to the vacuum level change by a few percent,
but the difference energy, i. e. , the value of E,

0.02 ~

FIG, 3. Plot of n, as a function of 1000/2' for G= 0. 44

eV, E= 0. 16 eV. This curve has a first-order transition
at X =382 'K, corresponding to Ce at a pressure p =11.3
kbar.

0.1 ~

III. DISCUSSIONS AND CONCLUSIONS

The model discussed in Sec. II can now be applied
to our problem, namely, the n-p phase transition
in Ce metal. If we take the values of J for Ce' and
Ce4' as known, and the density-of-state function is
taken to be 20 states/Ry atom and constant, as
shown in Fig. 2, the only parameters to be deter-
mined, as a function of pressure p, are E and G.

Let us consider first the critical pressure Pc,
which we take to be

0.02 ~

0 1 2 3

10/T ( K)
FIG. 4. Plot of n~ as a function of 1000/T for G = 0. 44

eV, E= 0. 1894 eV. This curve shows critical behavior,
corresponding to Ce at a critical pressure pc ——19.5 kbar
with a critical temperature Tc = 579 K.

(3.1)P'c = 19.5 kbar

from experiment (see Fig. 1). At that pressure,
we know that the transition is of the critical type

tion-band states, can be included; in this way the
infinitely narrow f level becomes, as in Refs. 4-6,
a resonant level and the occupation of those states,
even at T= 0, is never zero. (This would explain

why the number of conduction electrons per atom
in the ~ phase is, according to the Hall effect, 3.63
instead of 4. )

(c) Interactions between itinerant quasiparticles
should be taken into account.

(d) The effects of the long-range part of the quasi-
particle interaction should be studied.

(e) The interaction should be included in higher

order of perturbation theory instead of in the mean-
field approximation, as is done in this calculation.
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F16. 5. Plot of g, as a function of 1000/T for G =0, 44
eV, E= 0.21 eV. This curve corresponds to Ce at a
pressure highex' than pz, approximately p =25. 8 kbar.

might change by much more, even by an order of
magnitude.

It is therefore an excellent first approximation to
assume that, as a function of p, the W~, 8'„, and 6
remain unchanged, while 8 varies appreciably with
p»

If in this fashion E is reduced to O. l6 eV, the
graph of Fig. 3 results: There is„ in this case, a
first-order phase transition at 382 K, which ac-
cording to the experimental curve of Fig. 1 corre-
sponds to a pressure p = 11.3 kbar.

Therefore by varying 8 and comparing the transi-
tion temperatures To with the experimental values
the following approximate relation can be estab-
lished:

0. 118+0.003V5p(kbar), p & 16; 6 kbar
Z(eV) =

0. 126+ 0. 00326p (kbar), p & 16.6 kbar .
(3. 5)

If the experimental relationship between t:ransition
temperatures To and transition pressures po is used,

S.l

Cl (A)

FIG. 6. Isotherms in the pressure-lattice constant
diagram. Values of the lattice constant in the p phase
folly the critical curve too closely, so that different iso-
therms cannot be gx aphically distinguished from one an-
othex and fxom the critical curve.

II(P, T)=4-II,(P, r), (3. 8)

%e may, in addition, assume a linear relatlonsh1p

'lo )«

(cm'/mole)

40-
»

Formulas (3.5)-(3.V) are only valid for 8 = Ec,
p =pc. We can safely assume, however, that the
81'1'01' 1II extl'apolatlng (3. 5) bey'olid pc is. Ilot a lal'ge
one. Therefore a value of E =0. 21 eV, which yields
tile slllootll clll've fol' ll as a fllllctloll of 1000/7
shown in Fig. 5, should correspond to an approxi-
mate pressure p =- 25. 8 kbar.

The model can yield much more information.
For instance, if we know n, at a given pressure and
temperature, the number of conduction n electrons
per Ce ion is given by

T ('K) = 116+23. V3P (kbar), (3.5)

the value of To for a known value of E is given by

Z', ("K)=
—630+63358 (8V), 0. 12 & 8'= 0. 18

-801+V286Z (eV), O. 18&x'-0. 1894.

(3.V)

10/T ('K)

FIG. 7. Par axDagnetic susceptibility g for Ce metal
as a function of 1000/T for various pressures.
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between the lattice constant ao and the occupation
of the f levels n, . From room-temperature data
(TO=300'K, K=0. 14V eV) and experimental values2
we find

so Q.) = 4. 343+ 0. 333n, , (3. 9)

which now gives the values of the lattice constant
for any pressure and temperature. Isotherms in
the P-ao dia, gram are shown in Fig. 6.

%e can also calculate the paramagnetic suscepti-
bility of the system I.f we neglect the conduction
electron contribution, only the Ces' ions contribute
to g, and at a given pressure and temperature there
are only Nn, (p, T) of them, where N is the number
of Ce atoms in the crystal. Therefore, ~5

y=[NgZ(v+1) p.,'/3u, ) [n, (P, T)/T], {3.10)

where p, ~ is the Bohr magneton, J=-,', and g=0, 811,
values corresponding to Ce'. A plot of g as a func-

tion of 1000/T for various values of P is shown in
Fig. 7. %e see that in all cases, at high tempera-
tures X satisfies the Curie law behavior T '. For
pressures P &pz, y has a discontinuous change at
the transition temperature To. For p &pc no such
change appears, but X still exhibits a very anoma-
lous behavior, with an initial increase, a maximum
value at a fairly high temperature (& Tc = 5VQ 'K),
and an asymptotic T ' decrease which most of the
times cannot be achieved before the melting tem-
perature. As far as we are aware, no experimental
values of y(T) at high pressures are reported in the
literature, and it will be interesting to see, when
and if the data became available, whether the pre-
dictions of this model are confirmed experimentally. 36
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