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A detailed computation has been made of the generalized su p
' ' '

ysce tibi1it function for paramag-
netic chromium to investiga e e e ec s ot th ff t f including realistic band-structure effects on both
the unenhanced susceptibility and on the exchange enhancement. An augmented-plane-wave
band-structure calculation for paramagnetic chromium has been performed to obtain energy
bands and wave functions for the first six bands on a mesh of 1024 points in the Brillouin zone.

t 128000 oints in the zoneAn ' t 1 t' cheme was used to increase the effective mesh o poin s '
in erpo a ion sc

'thout theand the unenhanced suscep i i i y nc it'b'1't fu tion was calculated from these, both with and wi ou

matrix elements. T e ma rix e em nTh t ' lements were seen to make a dramatic difference in the sus-
cepti iiy, an, in ac, r'b'1't d

' fact reduce the peak due to the "nesting" of the Fermi sur ace so a i is
f P'0&( ) The exchange enhancement was then investigated by appnot an actual maximumo (q). e

ents of the re-imately so ving e coup e se1
' th 1 d lf-consistent equations for the Fourier components o e re-

an a lied field including local-field corrections. This yields an exchange-en ance
~ ~ ~ ~

susceptibility function which has the tendency to first become infinite at the nes ing

tor, indicating that the local-field corrections may play an important role in determining the
wave vector for instability against formation of a spin-density wave. It is also shown that the
exchange-enhanced suscep i i i y us ot'b'1't th btained displays quasilocalized spin behavior of the
electron response to an applied oscillatory field.

I. INTRODUCTION

The occurrence oi a spin-density wave (SDW) in
chromium with a wave vector slightly incommensu-
rate with the lattice structure has been the subject
of intensive theoretical and experimental investi-
gation over the last few years. One may refer1-12

to the reviews by Herring' and Arrott' for details
and a full set of references to earlier work. The
instability against the formation of the SD% at a
certain wave vector may be represented by the
generalized susceptibility function X (j) in the pa-
ramagnetic phase going to infinity at that wave vec-
tor. This would, strictly speaking, result in a
second-order transition to the ordered state. For
pure chromium, the transition is believed to be
first order. ' This point is discussed more fully
in Sec. IV. The divergence is caused by exchange-
enhancement effects, and it is generally recognized
that the shape of the Fermi surface plays a key
role in choosing the SD% wave vector. This is due
to the "nested" feature of the hole octahedron at
II and electron jack at I', which are flat pieces
separated by a constant wave vector q which re-
sults in a peak in the unenhanced susceptibility
function at that wave vector. Figure 1 illustrates
this feature of the Fermi surface calculated by
Loucks for chromium. The calculations de-
scribed here are in agreement with the basic fea-
tures of the surface shown in Fig. 1 except that
small-hole pockets at N are also obtained.

Detailed calculations of y(q) have hitherto not
been made except for grossly oversimplified mod-
els of the energy-band structure of chromium, or

by neglecting completely the role of the matrix
elements in the expression for the unenhanced sus-
ceptibility. The problem of accurately calculating
the exchange enhancement is, however, a very dif-
ficult one, even within the spirit of the random-
phase approximation. For a realistic multiband
system containing Bloch electrons, one is gener-
ally forced to make both a simplification in the
form of the electron-electron interaction and to
make further approximations in solving the coupled
set of equations describing the self-consistent
linear response of the system to a weak applied
field. Generally, one assumes a 5-function-type
interaction and also simply divides the unenhanced
susceptibility function by a simple exchange-en-
hancement denominator. Recent attempts to ob-
tain a better solution for the purposes of discussing

FIG. 1. Intersections of the Fermi surface of chro-
mium with the faces of the 48th zone (after Loucks).
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spin waves and magnetic scattering of neutrons
from itinerant electron systems have been made by
Englert and Antonoff, ' Yamada and Shimizu, ' '

d Sokoloff 19-21 These authors proceed from
W'Rnnier representation of the electron wave func-
tions, and R Hamiltonian similar in form to that
introduced by Hubbard, and make the simplifica-
tion that some of the Bloch wave-number-dependent
phase factors can be neglected in their Coulombic
and exchange integrals. Thus they arrive at a re-
sult in which the exchange enhancement is taken
into account by the formal inversion of a matrix
involving Coulomb and exchange integrals between
Wannier functions in different bands. Further ap-
proximations are then made for these integrals in
order to carry out the matrix inversion, as dis-
cussed in the papers of Yamada and Shimizu. ' '

These authors have not specifically applied their
theory to the case of an itinerant antiferromagnet
such as chromium. Sokoloff ' ' has investigated
the case of chromium in detail, but has used the
very simplified free-electron-like band structure
of the Fedders and Martin' model. Evenson et al. 23

have calculated the unenhanced susceptibility func-
tion using the energy bands of Mattheiss" for tung-
sten and assuming that they are similar for chro-
mium. This function did show R peRk Rt Rppl oxl-
mately the SDW wave vector, but in the calculation
the generalized oscillator-strength matrix elements
were ignored .

Here we report a multiband calculation of the un-
enhanced susceptibility function of paramagnetic
chromium using the results of an augmented-plane-
wave (APW) energy-band calculation and including
the oscillator-strength matrix elements between
the Bloch states. Further, we discuss an approx-
imate solution to the exchange-enhancement prob-
lem which is similar, but not completely equivalent,
to that of Yamada Rnd Shimizu' '" and Sokoloff"
and apply it to the case of chromium with reference
to the instability against formation of the SD%.
We first outline the well-established steps in set-
ting up the expression for the exchange-enhanced
susceptibility using the self-consistent field ap-
proach, which has the advantage of being concep-
tually simple. The same results may be derived
by other methods such as the Green's-function
formalisms within the random-phase approximation.

Consider the system of Bloch electrons with
wave functions (», and energies E» „where the

subscript k denotes both the Bloch wave vector and

the band index and 0 denotes the spin index. These
may be taken to be the Hartree- Fock states. Now

consider a weak sinusoidally varying magnetic
field applied to the system, such that the perturba-
tion may be written as

~

gXg= Z,.g pss H e' '"

where s; is the spin of the electron i. Since we
are discussing the paramagnetic case, we may,
without loss of generality, take H, to be directed
along the z axis. The total perturbation will of
course include the self-consistent response of the
electrons through the electron-electron interaction,
which should include both Coulomb interactions
leading to correlation effects of the type discussed
by Hubbard and exchange interactions. The
change in the electron-electron interaction part of
the effective one-electron Hamiltonian due to the
self-consistent response has matrix elements be-
tween one-electron states of the form

& '4,"
I

"1'~.t I (»,.&
= &&»,"I

~ 1'SF
I

tI'», .&

+U&4» „ I
~su, .I(»,~&&»,» ~

where ~ VHq is the change in the one-electron
Hartree-Fock potential and the second term repre-
sents the linearized change in the Hubbard-type
correlation interaction. U represents the strength
of this interaction, ~g, represents the change in
the electron density of all d-like electrons with

spin opposite to that of the state f» g, and the pl es-
ence of the factor 5& & indicates that this interaction
is supposed to operate only on the d-like electrons.
~V» has a part which depends on the total change
in the electron density (Hartree part), as well as
a nonlocal exchange term which depends on the
change in the wave functions of states with the same
spin index o as the state g», The first-order
change in the wave function &g», is given by first-
order perturbation theory as

Thus, by making Eqs. (2) and (3) self-consistent,
we arrive at a set of coupled integral equations
for the Fourier transform of the z component of
the induced self-consistent magnetization density
&M (K). As is well known, ' the Hartree part of
& Var contributes nothing to hM (K), and we now

make the usual simplification, which is still some-
what crude, of replacing the electron-electron in-
teraction in the exchange part of &V» with a 5

function J'&(r —r'). Screening of the exchange due
to correlation effects as well as averaging effects
over the occupied electron states lends some justi-
fication for representing this as Rn effective short-
range interaction. Further, since it is notpossible
to separate the d-like states from the s- and P-like
states, owing to hybridization effects in transition
metals, we make the further approximation of re-
moving the 6-function restriction on the second
term of E|l. (2), i. e. , we assume correlation ef-
fects between Rll occupied states of the system.
Making these approximations, and noting that
AM (r) has only nonvanishing Fourier components
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for K= q+0 where G is a reciprocal-lattice vector,
one may show that the self-consistency equations
for EM(q+G) are

~M (q+G) =5~ X'" (q+G, q+6')

where

x[50 u, H, + II&.M (q+G')] (4)

(4b)

and Z' '(q+G, q+G') is defined by

X'"(q+ G, q+G') =- (2gea)'&

~(0& (q) (&gp )2 g +2 +&&'

2, 2 E2-F (7)

where the summation again runs over a certain set
of bands (to be specified below) for both states,
but k' is restricted to be the state with Bloch vec-
tor k' =k+q in the reduced zone. The approximate

x(q
~

e (-(+r(6 '&r ( )

x (q
~

ei(i+ s & 8~ y

where nI, , refers to the occupation number of the
state (k, o). In the paramagnetic case the v index
may be dropped from Eq. (5) and the expression
multiplied simply by a factor of 2 for spin degener-
acy. The function y' ' (q+G, q+G') is the suscep-
tibilityfunctionwhich describes the (q+G) Fourier
component of the response of the noninteracting
system of Bloch electrons to the (q+G') Fourier
component of an applied field. It will depend on
the energies and wave functions of the appropriate
Bloch states.

The formal solution of Eq. (4) may be written
in matrix form by representing the set of Fourier
components &M(q+6) as a vector hM, the set of
quantities g' ' (q+G, q+G') as a matrix &((0&, and
the quantity H, as a one-component vector H (only
6 =0 component present), in which case (2) yields

6 M = [I - IX(0&]-(X(0&H (6)

with 1 denoting the unit matrix. Even within the
rather crude approximation introduced above
for the electron-electron interaction matrix ele-
ments, one may see that a calculation of the actual
response of the system involves the nontrivial
problem of inversion of the matrix[I —IX'0'] which
has off-diagonal elements connected by the matrix
elements appearing in y'0&(q+ G, q+ 5') [Eq. (5)].
These off-diagonal elements will, in general, give
rise to what are known as local-field corrections '
which have hitherto been largely ignored. A com-
mon approximation is to neglect entirely the ef-
fects of the matrix elements in Eq. (5) and to
write g' ' as

X' '(q) represented by Eq. (7) is assumed to rep-
resentthe diagonal elements of X'", i. e. , X'"
(q, q) (the off-diagonal elements being assumed to
be zero) and is also periodic in reciprocal space,
whereas the actual X'0&(q, q) is not. Furthermore,
from the form of Eq. (5) it may be observed that
for 6= G'=0 and q-0 the interband matrix elements
vanish while the intraband matrix elements tend to
unity resulting in X' '(q, q) tending to ('2g p») N(, Er)
x (q- 0) where N(E~) is the density of states at the
Fermi level. Since the matrix elements are ig-
nored in Eq. (7), X

' '(q) will deviate considerably
from the correct value at q=0 unless there is only
one band at the Fermi level and the expression in
Eq. (7) involves only that band. However, in that
case, the neglect of the interband matrix elements
will lead to errors at finite q.

However, if one makes the above approximations,
one obtains from Eq. (6)

X (0&(
~(q)= ((», , H, (8)1-IX &q)

or equivalently
(0&( )

I—(0&( )

(9)

which is the commonly assumed form for the ex-
change-enhanced susceptibility X(q). It should be
noticed that Eqs. (7)—(9) are only strictly correct
for free electrons [if Eq. (5) is to be interpreted
according to the selection rule k' = k+q in the ex-
tended zone scheme]. However, for the reasons
mentioned above these expressions may be com-
pletely unrealistic for the Bloch states of a transi-
tion metal.

Accordirigly, we will first discuss an attempt at
a more realistic calculation of the diagonal ele-
ments y'0'(q, q) [henceforth referred to simply as
X'0'(q)]from Eq. (5) using the result of an actual
APW band calculation for para, magnetic chromium,
and later an approximation for obtaining the solu-
tion to Eq. (6) which involves not only such diagonal
elements but which also approximately takes into
account the effect of the off-diagonal elements
X'"(q+5, q+G').

II. PARAMAGNETIC BAND STRUCTURE OF CHROMIUM

The starting point for the calculation of X' '(q)
is the availability of realistic and accurate energy
bands and wave functions for alarge number of
points in the Brillouin zone. There have been several
studies of the electronic structure of chromium,
but the authors have mostly confined themselves to
an investigation of the Fermi surface only. Lomer '
was the first to propose a model of the Fermi sur-
face of chromium. This was not based on an ab
initio calculation but was deduced from the energy
bands of iron calculated by Wood by the APW method
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and also the tight-binding calculation of Asdente and
Friedel. A few years later, Loucks calculated
the muffin-tin potential for chromium which he then
used to determine the Fermi surface. His results
confirmed the model of the Fermi surface of chro-
mium proposed by Lomer. In Loucks's calculation,
the APW method was used and the wave function was
expanded in a basis set of 19 reciprocal-lattice
vectors. More recently, Asano and Yamashita
did a band calculation for chromium both in the
paramagnetic and the antiferromagnetic phase
using the Korringa-Kohn-Rostoker (KKR) method.
Their results also supported the conclusions of
Lomer. Besides the Fermi surface they also cal-
culated the energy bands in symmetry directions.

In the present work, we have calculated the
energy bands of chromium by the APW method.
In this calculation, a muffin-tin version of the
crystal potential was used. The atomic-charge
densities of Liberman et al. " from self-consis-
tent field atomic calculations were used to construct
the crystal potential in the manner suggested by
Mattheis. The contribution of exchange was in-
cluded using Slater's p approximation. A basis
set of 43 reciprocal-lattice vectors was chosen to
expand the wave function. These reciprocal-lattice
vectors are listed in Table 1 in the notation (lmn)
= (2v/~)(li+mj +nh), where i,j, h are the unit
vectors along the three Cartesian axes. The energy
eigenvalues were converged to within 0.001 Hy at
the symmetry points using this set of reciprocal-
lattice vectors. A mesh of 1024points in the whole
Brillouin zone was chosen for the purpose of cal-
culation. By taking symmetry considerations into
account, however, the actual calculations were
performed for only 55 points lying in the 4~th of
the Brillouin zone which is irreducible under sym-
metry operations. The first six bands for all the

TABLE I. Reciprocal-lattice vectors used in AP%
expansion for all points in the zone. They are listed in
order of importance for the zone as a whole (based on

k; =k +g]).

55 points are given in Table II. These bands are
shown along the symmetry direction in Fig. 2.
The APW expansion coefficients of the wave func-
tions were obtained by the Jacobi method of diago-
nalizingthe matrix. The energy bands so calculated
seem to be in reasonable agreement with recent
data on optical transitions in chromium obtained by
Dos and Lynch.

To obtain the density of states and the Fermi
energy reasonably accurately, the mesh in the
Brillouin zone was expanded to a total of 128 000
points and the energy bands in the expanded mesh
were obtained by the method of "spline interpola-
tion. "" The spline interpolation is essentially
a third-degree polynomial interpolation in which
the curve connecting the points, its slope, and its
curvature are all kept continuous everywhere. For
the sake of clarity, the method is briefly described
below. Let us assume that we have an ordered
linear array of n points x&, xz, . .. , x„. Also sup-
pose that the function has the values y&, y2, . . . , y„
at these points and its second derivatives are
g&, g2, . .. ,g„. By linear interpolation, the second
derivative at the point x lying between x and x,&

is given by

X"= g. + (g.,i -g.)(x —x.)/h. , (1O)

where h =x,&
-x . On integration, the equation

of the curve between x and x,qis found to be

The only unknown quantities in this equation are
the second derivatives g and g,&. These are
determined by solving a set of n linear equations.
One makes use of the fact that the slope of the
curve at the point x determined from the equation
involving the set of points (x„q,x„) is identical to
the one from (x„,x, &). The following relation is
then obtained:

y = (x„.) —x)' „+(x —x„)'
nt m

(„)(3' g'
( )~

x s 8' .s
6

'" m iI. 6
(11)

(o o o)
(- 1 o-1)
(—1 o 1)(1—1 o)(1 o 1)
(-1—1-2)

0 0-2}
(—2 1 1)
(o 2 o)
(-1—1 2)
(- 1 1 —2)
(-3 o- 1)
(-3 1 o)
(- 1 2 1)
( 1 —2 1)

( —1 —1 0)
(-2 o o)

{ 0 —1 1)
( o(o11)
(-1-2-1)
(-2 1-1)
(-1-2 1)
( 0 0 2)
( 1 —i —2)
( o-2-2)
(—1 2 —1)
(-2 2 0)
(2 o 2)

( o-1-1)
(-1 1 0)

{ 1 0-1)(11 o)

( o-2 o)

(—2 —1- 1)
{-2-1 1)
(2 o o)

(—2-2 o)

( 1-2 —1)
(-2 o-2}
(-3- 1 o)
(-3 o 1)
{-1 1 2)

6g gh g+ 3g„(h„g+h„) +L6g,gh

h h
(12)

Such an equation is obtained for each point on the
curve except the end points. Thus, we have a set
of (n —2) linear equations containing n unknown

constants. By specifying two appropriate boundary
conditions, the g 's are determined and hence the
interpolation carried out.

The density-of-states curve calculated in this
way using a mesh of 128 000 points in the Brillouin
zone is shown in Fig. 3. The Fermi energy occurs
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FIG, 2. Energy bands of chromium along symmetry directions.

at 0.8S6 Ry, and the density of states at this value
of energy is found to be V. 36 states/Ry atom which
is in good agreement with the value V. 10 states/Ry
atom obtained earlier by Loucks in his APW cal-
culation. It is to be noted that experimental elec-
tronic specific-heat data36 for chromium indicate
an electron-phonon mass-enhancement factor of
about 20% based on the above density of states
(assuming the latter does not change very much
in the transition to the ordered state). This value
is consistent also with the estimates of Rice etal. 3~

for the mass enhancement in chromium.

III. CALCULATION OF UNENHANCED SUSCEPTIBILITY

The unenhanced generalized susceptibility func-
tion g'o'(q) calculated without matrix elements,
i.e. , using the approximation in Eq. (V) and sum-
ming over all six bands, with an expanded mesh of
128000 points in the Brillouin zone, is shown in
Fig. 4. It is basically similar to that obtained by
Evenson etal. ' who, however, used a considerably
smaller mesh. The function X' '(q) shows a peak
at (2g/a)(0. 88, 0, 0). One notices that the value at
q= (0, 0, 0) is not equal to (2gps)~N(E~) and, in
fact, differs from it by a factor of 20. This is due
to the neglect of the matrix elements as discussed
in Sec. I.

In order to examine the difference which the
matrix elements make, y"'(q) was calculated in-
cluding matrix elements with a small mesh of 1024
points in the zone. The method for calculating
the matrix elements is described in the Appendix.
The resulting curve is shown in Fig. 5 where the
contributions from intraband and interband matrix
elements are also shown. We notice that the in-
clusion of the matrix elements has a drastic effect
on both the magnitude of g' '(q) and on the shape of
the curve. It must be realized, as pointed out by
Evenson and Liu, ' that the results for y' '(q)
obtainedusing a mesh as small as 1024 points in
the entire Brillouin zone may be unreliable. The

45.0—

40.0—

I 35.0
a

50.0

25.0—
UJ

y) 20.0
M
l~

l5.0—
O

I-
co lo.o
UJ
CI

50

0.0
00 0.2 0.4 0.6 Q8 EF l.o

ENERGY E (Ry)
l.2 l.4 L6

FIG. 3. Density-of-states histogram for chromium
using a mesh of 128 000 points in the Brillouin zone.

calculation was therefore repeated with a finer mesh
of 128 000 points. The calculation of matrix ele-
ments for such a large mesh requires aprohibitively
large amount of machine time. However, we may
assume that these matrix elements vary very slowly
with q. The matrix elements calculated for the
coarser mesh of 1024 points for all the q vectors
of interest commensurate with this mesh were
therefore stored on magnetic tape. For every set
of Bloch wave vectors k, k' in the finer mesh the
energy denominators used in Eq. (5) were
obtained using the interpolation scheme described
in Sec. II, but the matrix elements were used
between states K, K which lay on the coarser mesh
closest to k, k', respectively. The resulting X '(q)
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for q along the [100] direction is shown in Fig.
6. Comparison with Fig. 5 shows that the increase
in the mesh size affects the y

' '(q) in two respects.
In the first place, the shape of the curve is changed

in the first zone, and secondly, the magnitude of
y' '(q) undergoes an over a-ll increase in the first
two zones. One also notices that the results from
the hvo calculations are closer for larger qvalues.

(4~/~) k

TABLE II. Energy bands of chromium. .
Band 5

(o o o)
(1 0 0)
(2 o o)

(3 o o)
(4o o)
(5 o o)

(6 o o)

(v o o)
(8 0 o)
(11{})
{21 0)
(3 1 o)

(4 1 o)

{51 0)

(61O)
(v 1 o)

(2 2 o)

(3 2 o)
(42 o)
(52 o)
(62 o)

(3 3 0)
(43 o)
{53o)

(4 4 {})
(1 1 1)
(2 1 1)
(3 1 1)
(4 1 1)
(5 1 1)
(6 1 1)
(7 1 1)
(2 2 1)
(3 2 1)
(42 1)
(5 2 1)
(62 1)
(3 3 1)
(43 1)
(53 1)
{441)
(2 2 2)
(3 2 2)
(422)
(52 2)
(62 2)
(3 3 2)
(432)
(5 3 2)
(442)
(333)
{433)
(53 3)
(443)
(444

0.272
0.296
0.363
0.460
0, 555
0. 606
0.599
0.572
O. 560
0, 319
0.384
O. 475
0. 565
0.614
0. 609
0. 584
0.439
0.510
0.571
O. 609
0. 619
0, 540
0.562
O. 585
0.556
0.342
0.404
0.492
o. 5vv

{},628
0.625
0. 598
0.460
0, 530
0. 590
O. 629
0. 637
0 562
0.582
0, 604
0, 576
O. 514
0. 579
0, 628
0. 670
0.680
D, 619
0. 633
0. 652
0.628
0, 685
0, 679
0. 678
0.687
0.714

0.845
0, 843
0.841
0, 832
O. 750
0.673
O. 612
0.573
0. 560
0, 825
0, 812
0.796
0, 741
O. 677
0, 623
0.587
0.781
0. 768
0.762
0. 716
0.664
0, 741
0.739
0.763
0.726
0. 818
0. 800
0. 772
0.729
0, 677
0.629
O. 598
0. 772
0, 752
0.734
0, 709
0.668
0, 734
0.731
0.747
0.720
0.751
0.728
O. 709
0.694
0.680
0.720
0.714
0.720
0, 710
0.709
0.710
o. 725
0.704
0.714

0. 845
0, 843
0.841
0.848
0. 873
0.919
0. 983
l. 050
l. 083
0. 837
0. 823
0. 812
0. 832
0, 873
0.934
l. 003
0. 801
0.788
0.777
0.810
0. 866
O. 823
0.837
0. 784
0.899
0. 818
0. 801
O. 800
O. 816
O. 834
0. 874
0. 941
O. 780
0, 774
0.781
0, 785
0, 812
0.795
0. 815
0.775
O. 860
0. 751
0.747
0.763
0.751
0.748
0, 744
0.770
0.751
O. 795
0. 709
0.737
0.725
0.744
0.714

0. 845
0.853
0. 876
0.848
0. 873
O. 919
0. 983
l. 050
l. 083
0. 877
0, 912
0. 898
0. 897
0, 916
0. 959
1, 019
0. 958
0. 951
0.940
0, 921
0.925
0. 979
0. 972
0. 945
0. 984
0. 901
0. 942
O. 915
0.910
0.938
0.992
1, 055
0. 964
O. 955
0.947
0.947
0.970
0. 980
0. 977
0. 960
0. 988
0. 983
0. 974
0.968
D. 978
1.012
0. 991
0.990
0.986
0.998
l. 005
l. 004
l. 006
1.009
l. 014

0. 981
0.961
0. 908
0, 913
0. 957
1.004
1.045
l. 073
l. 083
0. 962
0. 930
0. 954
1.000
l. 044
1.077
1.088
0. 963
1, 011
1.058
l. 089
l. 098
l. OO1

1, 046
1.109
l. 008.
0. 971
0.944
0.987
l. 016
l. 042
1, 062
1.055
0.987
1, 007
l. 030
1.056
l. 065
1, 002
l. 024
l. 056
1.009
0. 983
l. 004
1.018
l. 025
l. 012
1.004
l. 014
1.020
1,Oll
1.005
1.Oll
1.006
l.013
l. 014

D. 981
0.987
l. 005
1.031
1, 072
l. 162
1.317
l.499
1, 602
0. 981
0.998
1.026
l. 074
l. 180
l.346
l. 515
0.988
l. 013
l. 072
l. 199
1.339
l. 065
l. 099
l. 148
l. 114
0.971
0.993
1.024
l. 090
l.210
1.382
l. 565
0.995
l. 053
l. 130
1,252
l.391
l. 107
1, 162
l.230
l. 171
l. 056
l. 122
1..205
l.333
1.498
1.191
l.266
l. 349
l.290
l.279
l.370
l. 483
l.432
l. 583
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I I I I I I In order to explain the appearance of the SDW
into the observed wave vector, we have to examine
the solutions to Eq. (4) more carefully.

IV. EXCHANGE-ENHANCED SUSCEPTIBILITY

We may write

Xt"(q+6, q+6') = yI„",„(q+6, q+ 6')

(0)
+Xtntra(q+G~ q+6 ) 1

I I I I I I I I I

I' O. l 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 H

Qa/2m

FIG. 4. The unenhanced susceptibility function
X (Q) in units of (2'~) calculated using a mesh of 128 000
points in the Brillouin zone and ignoring the matrix
elements (T = 0) .

Notice in Fig. 6 that y'o'(q) approaches the correct
value of (-', glj, e) 1V(E~) at q= 0, as expected, and
shows a peak at the nesting wave vector. Contrary
to expectations, however, a broad maximum at a
q other than the nesting q is also obtained. This
is presumably due to the suppression of the peak
at the nesting wave vector near the zone boundary
due to the matrix elements, and also the drastic
suppression of the interband matrix elements near
q=0. As may be seen from Fig. 5, both intra-
and interband contributions show the correct quali-
tative behavior, namely, the intraband contribution
drops off rapidly with increasing q, and it is only
the interband contribution which is important for
larger q values. It is to be noted that the peak at
the nesting wave vector itself arises from purely
interband transitions, both the bands concerned
lying close to the Fermi level. We have previously"
calculated the y.

'Ot
(q) in a similar manner by ex-

tending the plane-wave components of the wave
function outside the APW sphere over the entire
cell and suitably renormalizing the wave function.
There, also, a peak at the nesting wave vector
and a higher and much broader peak elsewhere
were obtained. A comparison with present results
seems to indicate that the earlier approximation
overestimates the magnitude of y(q) but does not
alter most of the conclusions drawn from that cal-
culation.

The above calculations wereperformedforoccupa-
tion numbers appropriate to T =0. The same cal-
culation was repeated for T = 7„to examine the
temperature dependence of the function y"'(q) by
inserting in Eq. (5) the actual Fermi-Dirac occupa-
tion numbers for that temperature. A significant
change in the function could not be found. The ap-
parent decrease on increasing temperature found
previously has been traced to a minor computa-
tional error in the earlier calculation.

X" (q+6, q+6') =f(q+6)f*(q +6')X'"(q). (15)

Now we may obtain a solution to Eqs. (4) by writing

2&1(@+6)=f(q+6)w, . (16)

Substituting (15) and (16) in Eq. (4), we obtain a
single equation for so, which yields the solution

8.0
O

7.0

6,0

5.0

4.0

la 50

2.0

I .0

0.0
l20 l6.0 20.0 24.0 28,0 32,0

(4a &w) Q

FIG. 5. The unenhanced susceptibility function p (Q)
in units of (2'&) calculated using a mesh of 1024 points
in the Brillouin zone (T=0). The contributions involving
intra- and interband matrix elements are individually
indicated by dashed curves.

where the terms on the right-hand side represent,
respectively, the contributions of the interband and
intraband matrix elements. We then make the
ansatz that the first term may be written as

XI.'I., (q+6, q+6') =f (q+6)f*(q+6') X"'(q), (14)

where X'"(q) is defined by Eq. (7) where the sum
is now to be taken over all interband transitions
only, and f(q+G) is an averaged generalized oscil-
lator-strength matrix element

&4. I
~ '""'I+')

for all such transitions. It is obvious that Eq.
(14) is not a valid approximation for the second
term, since for small (q+6) at least, the second
teem tends to become diagonal in 6, O'. However,
we further note that at the wave vectors of interest
[i.e. , (q +G) where q =(2tt/a)(0. 88, 0, 0)] the
previous calculations showed that the contributions
of the intraband matrix elements to y' '(q+6, q+P')
were negligible compared to the interband contri-
butions. Hence, in our further discussion, we may
neglect the second term entirely and write
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FIG. 6. The unenhanced susceptibiIity function
X (Q) in units of (~gp~) calcuIatedusing ameshof 128000
points in the Brillouin zone (7= 0).

X (q)f "(q)II,
1-»,o f(q+ 6)f '(q+ 6') X "(q)

Using Eqs. (15) and (16) we finally obtain for the
diagonal element of the exchange-enhanced sus-
ceptlblllty ln the approximation

X(q, q) =X'"(q, q)/[1 —l~-, , X'"(q+6', q+6')].
(18)

Note that the local-field corrections have resulted
in gg. X' '(q+6', q+ 6') entering the denominator in
place of the usual X"'(q, q)[cf. Eq. (9)]. Thus, the
denominator will first vanish where +,X'e'

x (q+ 6', q+ 6') has its maximum rather than where

y. "(q, q) possesses its maximum. It is to be noted
from Fig. 5 that if we represent the position of the
peak in X"'(q, q) at (2m/a)(0. 88, 0, 0) as (2v/a)
x (1 —5, 0, 0), there will also be nesting (although
with different matrix elements) at (2v/a) (1+5, 0, 0)
resulting in another peak which, however, will be
much smaller. These two peaks combine in the
sum gti~ X (q+6, q +6 ), whereas the first broad
peak in X's'(q, q) combines with much smaller values
when a reciprocal-lattice vector is added to the
appropriate wave vector. Thus, the peak due to
the nesting is likely to be favored in such an ex-
pression over the other peak. Figure 7 shows the
function gs. X' '(q+6', q+6') for q along the [100]
direction calculated including a sum over all the
first 49 reciprocal-lattice vectors closest to the
origin. We have assumed that y' (q, q) is isotropic
with respect to the direction of q. It may be seen
that in this sum, the peak at (2v/a) (0. 88, 0, 0) is
indeed the absolute maximum. Note that the func-
tion is now periodic in the reciprocal lattice so that
it has only to be calculated in the first zone. Thus,
the denominator will first vanish for q= (2v/a)
x(0. 88, 0, 0). This compares quite well with the
experimental value of q= (2v/a)(0. 952, 0, 0) at 7„
obtained by neutron diffraction. 4 The relatively
coarse mesh of k points used in our calculations,
together with other approximations introduced,

including the potential used for the energy-band
calculation and the simplification introduced for
the electron-electron interaction are such as to
preclude an accurate determination of the exact value
of the wave vector at which y(q, q) first becomes
inflnlte,

It would thus appear from the above calculations
that the Fermi-surface nesting alone is not enough
to cause the SDW to choose the observed wave
vector, if allowance is made for the matrix ele-
ments. The local-field corrections when approxi-
mately taken into account in our model for the ex-
change-enhanced susceptibility result, however,
in the denominator of the exchange-enhanced sus-
ceptibility being replaced by [1- Igo y, "'(q+ 6,
q+6)] rather than [1—I1's'(q, q)] as in the case
where these corrections are ignored. Thus it
would appear that these local-field corrections
play an important role in determining the wave
vector chosen by the SDW. Further, it may be seen
from the above considerations that local-field cor-
rections actually help the system to go unstable,
in other words, they dramatically increase the
exchange enhancement.

It is almost certainly true that our approximation
has, in fact, overestimated the exchange enhance-
ment. For instance, a better approximation would
have been to replace the electron-electron interac-
tion parameter I by some q-dependent function I(q)
which would be rapidly damped out at larger
values of q. In that case, the solution given in
Eq. (18) for the exchange enhancement would have
to be replaced by

X(q, q) = X'"(q, q)/ [1 —Zo I(q+,6') X"'

'(q+6', q+6')1 (»)

I l I l l l

205.0

204.0l-

~ 205.0

~ 202.0
I-
P 2OI .0

200.0

199 .0
Ia
I~ I98.0

t I97.0

pq 196.0—
I l l I l I l

0.0 I.O 2.0 30 4.0 5.0 6.0 7.0 8.0

( —.') o

Fla. 7. The function goy"' (@+6, @+6) in units of
states/Hy atoll. .
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The denominator in Eq. (19) would only be zero
for values of the electron-electron interaction
larger than that given in Eq. (18). Further, the
approximation represented in Eq. (14) probably
overestimates the effect of the local-field correc-
tions, just as the conventional approximation in
Eq. (9) underestimates them. It is to be noted
that the experimental data indicate that for pure
and strain-free single crystals of chromium, the
actual transition to the SDW state is, in fact, first
order. Thus, strictly speaking, before the ex-
change-enhanced susceptibility goes to infinity
(which would yield a, second-order phase transi-
tion), the difference in free energies between the

paramagnetic and SDW states must vanish. How-

ever, it must also be true that the vanishing of
the free-energy difference will be anticipated by
a sharp rise in y(q, q) at the SDW wave vector, as
indicated by the theory given above, even though
the theory probably breaks down very close to the
transition. The difference in free energies between
the paramagnetic and SDW phases has been calcu-
lated by Kimball and Falicov, by Kimball, "

by
Asano and Yamashita, ' and by Shibatani et al.
They variously estimate the minimum electron-
electron interaction energy required for stability
of the SDW phase to be -0.5-1. 5 eV. The free-
energy calculations of these authors are based es-
sentially on the Hartree-Fock calculation of the
energy of the paramagnetic state. Thus, the ten-
dency towards SDW ordering which already exists
in the paramagnetic phase, as represented by our
exchange-enhancement calculation in the random-
phase approximation, is ignored in these calcula-
tions and this may decrease the electron-electron
interaction required. We should bear in mind that
the interaction I is in any case decreased consider-
ably by screening and phonon effects. ' ' To sum-
marize, the main conclusions of the present cal-
culation are that (i) the matrix elements make a
drastic difference in both the magnitude and the
form of the function X' '(q), the unenhanced sus-
ceptibility, (ii) the local-field corrections, repre-
senting the off-diagonal elements of Z' '(q+6,
q+G ) play an important role in the exchange en-
hancements. These are probably responsible for
the choice of the wave vector of the SDW and work
towards increasing the tendency towards the or-
dered phase more than the conventional approxima-
tions for this exchange enhancement indicate, and
(iii) our way of taking these into account probably
overestimates the exchange-enhancement effect,
and since our calculations are not valid except in
the paramagnetic phase they are probably not valid
very close to the phase transition, which is first
order.

Finally, we close with a discussion of the nature
of the solution for the exchange-enhanced suscep-

tibility as given by Eq. (19). Combining Eqs. (14)
and (19) we may write

1-Zn. i(q+G') y( ' (q+G', q+G' )

=1-g'" (q)&~g. I(q+G')f (q+G') f*(q+ G' ) .
(20)

The sum over G' on the right-hand side of Eq. (20)
is obviously periodic in the space of the reciprocal
lattice, and may be written as

2 I (q +6')f (q + G')f* (q + G') = —2 J;& e ' "'&

(21)

where N is the total number of atoms in'the crystal,
i, j run over lattice sites, R&& is the separation
between these sites, and J;& is a generalized ex-
change integral representing the interaction of
two spin distributions with form factors f (K) cen-
tered on the sites i, j and interacting via an effec-
tive interaction whose transform is I (K).

Thus, Eq. (19) yields, using Eqs. (14), (20), and
(21),

x(t), t))-f'(4) x"'(t() () ——x'"(4)Klx, ,x""").
(22)

This shows that the q-dependent susceptibility of

the system behaves very much like that of a local-
ized Heisenberg system within the equivalent (ran-
dom-phase) approximation, as may be seen by

comparing Eq. (22) with y(q) obtained for the lat-
ter type of system by Liu, ' and Kawasaki and

Mori. Qn the other hand, the expression obtained

in the usual random-phase treatment, neglecting
the local-field corrections [Eq. (9)], does not have

a denominator which is periodic in reciprocal
space. This is understandable because our as-
sumption for the form of y(o) (q+G, q+G') as given
in Eq. (14) already has built into it the localized
nature of the electronic response. This may be
seen by noticing that Eq. (22) is equivalent to
writing the induced magnetization as

~~(-„G) f(q+G)X"'(q)[f'(q) a] (28)
1 —(2/I()') y"'(q) g, & 2J,&e(~ a—'

which corresponds to an induced localized moment
distribution on each site possessing a form factor
f (K) and responding with a susceptibility

to the field avexaj, ed over this distribution as rep-
resented by the factor [f (q) II,]. In fact, there
is a close analogy between the situation here and
that pertaining to the dielectric response of the
electrons in an insulator to an applied electrostatic
potential v(r) = e V, e'~ '~ .

It is well known ' that the self-consistent induced
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charge density is given in terms of its Fourier
components by

M» (Q)=(4&(r)~e ' '~4, (r)), (Al)
[1 & X&0)]-) ~&0) y (24)

where g' ) now stands for the matrix y' '(q+G, q
+G'), but with (-',g pe)~ in Eq. (5) replaced by
( —e ), and hp stands for the set of components
&p(q+G), while V stands for the component vector
V,. The )), is now [I(,'g))e)-+4))e /q ], i. e. , the
total electron-electron interaction jgeludhng the
Hartree term. Equation (24) is to be compared with
Eq. (6). One has the same problem of formally
inverting the matrix [1 —v, y' '] for a solid with
wave functions which are not plane waves. For an
insulator, it has been shown by one of the authors
and by others' that in this case an assumption very
similar to that made in Eq. (14)yields adipolar model
for the response function, i.e. , describes the in-
duced charge density in terms of dipolar distribu-
tions with form factors f (K) centered on the lattice
sites. This approach can be used to derive the so-
called "shell model" of lattice dynamics ' (which
is essentially a localized dipolar model) from the
general formulation in terms of Bloch states. In
both the electrostatic and magnetic cases, the lo-
calized or itinerant nature of the response to an
applied disturbance will depend on the best guess
as to the nature of the solutions to the self-consis-
tent field equations of the type of Eq. (4). Such a
guess will depend partly on anticipating the physical
nature of the response, and the approximations in-
troduced [as in Eq. (14)] hopefully should be con-
sistent with such a consideration. The analogy
here with the dipolar insulator just discussed is
based on the fact that in both cases intexband matrix
elements probably dominate the expression in Eq.
(5). In the magnetic case, of course, further lo-
calization of the response may arise from a more
accurate treatment of the Hund's-rule-type corre-
lations, and, in fact, such local moments may
spontaneously exist (as in iron or cobalt). The con-
ditions for the latter case have been discussed by
several authors. "' ' In the case of chromium,
the absence of diffuse elastic scattering of neutrons
in the paramagnetic phase' and other evidence
(cf. Refs. 13 and 14) indicate that no such sponta-
neous local moments exist, and hence the correla-
tion effects may not be so dominant,
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APPENMX

A typical oscillator-strength matrix element may

where, as before, 4 includes both the Bloch wave
vector k and the band index, and Q =q +6, G being
a reciprocal-lattice vector. The wave function
)I), (r) is expanded in the APW' s as follows 8:

))), (r)=-( )„,Z a,'- (p,"-(r) (A2)

where 0 is the volume of the crystal, ag is the co-
efficient of expansion, g is the reciprocal-lattice
vector used in expansion, and y~(r) is an APW de-
fined as

q g(r) = e'"', r &8 (A3)

p (r) —4veik a„

r =8„+p

R„being the lattice vector, . R) (k, p) denotes the
radial wave function which, of course, depends
only on the band energy and not the Bloch wave vec-
tor k. All other symbols have their usual meaning.
For r &R, (A2) may be written as

e, (x) = „Za'-4~e'"'" Z ~'~, (~k+g ~ft)

where

A) = Za," A(~k+g~A) F,* (k, ) . (AG)

Therefore, M». (Q) may be written as

M„„.(Q) = Z(a,')*a) Z ~(k+g- k'- g'+Q- K)
N K

x[n-„,,-~V, G(AZ)]+M', (Q), (AV)

where N is the number of atoms per unit volume,
Vo 1s tIle volume of the APW sphere, I 1s a 1e-
ciprocal-lattice vector, and functions G (KA) and

M». (g) are defined as

G (x) = 3 (sinx —x cosx)jx (Aa)

M'„,. (Q) =(4~)'Iv Z,„Z
mm'm"

&:(A~,„)*A",. ~ P).,"' (cos8) e' "&

g ~'j, (~k+g~f),')y,* ($,)y, (p)R, (k, p)

l vt A, (k, A)

(A4)

where k~=k+g, R is the radius of the APW sphere,
and the distance r from the origin is expressed as
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x 7 (fl'1", mm'm") (A9)

where Q is expressed as (Q, 8, (I()) in spherical co-
ordinates, and

1
~m', m+B)"

( 1)m"

I

1 s/2
(2B')", m'm"m)=(-i)' ' '' (2)"+2) (, C(B'Y, 000)

xC(ll f mm m ) (22 (A11)

Here C (/l'l", mm'm") is the Clebsch-Gordan coef-
ficient. 7 (l/'l", mm'm' ) was calculated once and
for all and stored. A, was evaluated for all values

I

of k in the irreducible ~thof the Brillouin zone, and
was stored with the coefficients ag on magnetic
tape. M». (g) is then easily evaluated.
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