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Energy transport is shown to be nondiffusive at finite temperatures in a magnetic chain of
spin-2 particles with isotropic nearest-neighbor Heisenberg interactions in zero external
fieM. In a uniform magnetic field, the Zeeman energy ensures that energy diffusion is re-
established at all temperatures if spin diffusion is present. At infinite temperatures the in-
troduction of weak next-nearest-neighbor interactions also reestablishes energy diffusion. We
use the Mori-Kawasaki expression for the diffusion constant in terms of the second and fourth
moments of the time Fourier transform of the relaxation function. Investigation of the sixth
moment indicates that the time derivative of the energy density exhibits diffusive behavior even
though the energy density does not.

It has been shown' that, at infinite temperatures,
energy transport is nondiffusive in an isotropic
magnetic chain of spins with S =

& and zero exter-
nal field. In this paper we show it is true at all
temperatures if one uses an approximate expres-
sion for the inverse decay time based on the
second and fourth moments of the energy relaxation
function.

The Hamiltonian for our system is

(4)

As discussed in Ref. 3, an approximate expres-
sion for F(k) is

I'(k) = [ m/2]' Ms(k)[Ms(k)/M4(k)]'~,

is Boltzmann's constant and T is the temperature.
If diffusion is present, then for small k the time
dependence of R(k, t) is approximatelys

R(k, f) =exp[ —
t f j F (k)].

N 1 N 1
H=-Wg S„S„„+X&S„'

n=o

where
2N

M,„(k)= —. ,—, R(k, t)
1 8

- t=o
=H„+H, ,

where H„ is the exchange energy and H, is the
Zeeman energy. The relevant relaxation function
for energy transport at finite temperature is

R(k, f) =lh(k, t), h(-k, 0)) (h(k, 0), h(-k, 0)]
(2)

where h(k, t) is the Fourier transform of the energy
density

h(k, f) =Z„e'"'"h„(t),

h„(f) = —Z[ S„(f) S„.,(t) + S„(f) S„ ,(f)]
+xs„'(f),

( A, B] = f dX ( e "A e "B)—P(A) (B),
and

( 0) = Tr e s "0/Tr e s ".
The lattice constant is a and P = (ksT )

' where ks

Energy diffusion is said to occur when the aver-
age of the energy density h(r, f), obeys a diffusion
equation for long-wavelength disturbances

h(r, f) =D~'h(—r, f) .

This implies that I'(k) is Dk for small k. D is the
diffusion constant. For zero external field, we
shall show Ms(k) = ks a(k) and M~(k) = k b(k) for
small k. In addition, a(0) is shown to be finite at
infinite temperatures, and b(0) is proved to be
finite for all temperatures. Thus one expects I"

to be proportional to k for small k in contrast to
the k dependence for diffusion.

Convenient expressions for the required mo-
ments are
M (k)= C(k) 'Z„e" ([H, [H, h„]], h ] , , (7)

M4(k) = C(k) 'Q„e'""[[H, [H, h„]],[H, [H, hs]]),
(a)



ENERGY TRANSPORT AT FINITE TEMPERATURE S. . . 234g

and

C(k) = +, e {h,, ho) ~

Next let us apply a uniform magnetic field
(X e 0). The commutators in (7) and (8) become

%e use periodic boundary conditions so that
SN+n=Sn

First consider the case with zero external field
(X = 0). The commutators have been calculated by
Redfield and Yu. For the spin-& chain with
nearest-neighbor interactions they take the form

[If, [a,h„]]= p„+xq„,
where

q„= [ff„,[a„,S„']].
Again using expressions derived by Redfield and
Yu we have

[If„,[ff„,h"„]]=P„,
where

p„= 2J'{r„- r„., —r„,+ r„,),
with

T„=Sn 1 ~ Sn,o+ 2Sn 5n, 1
~ Cn„oxSn, o .

(10)

(i2)

Qn 2Vn Vn+1 Vn-1+ ~n ~n-11

where

V„= 2 J S '„(1+2S~, ~ S„,)
and

U„=4 J (S„',o —S„',) S„~S„„.

(20)

(21)

(22)

From Eq. (11)we see that P(k) vanishes at least
as fast as k~ for k small. Substituting these into
Mo and M4 we have (X= 0)

Mo(k) = 2'C(k) ' J sino(ka/2) cos (ka/2)

xQ eon{ T S, .5,)'

M4(k) = 24C(k) ' Josin4(ka/2) cos (ka/2)

einnn{r. T

(iS)

(14)

C(k)- —,
' J P coso(ka/2),

Mo(k)-8J sin (ka/2),

M4(k) 128J4 sin4(ka/2),

in agreement with Ref. 1.
In M4(k) appears a quantity of the form

Q„e'""{A„,A,)' =A'-'{A(k), A(k)'}' .

(16)

(17)

(i8)
Using the method of Mermin and Wagner' it is
straightforward to show that for finite temperatures
{A,A')' & 0 with the equality if and only if A =-O.o

In our case A(k) 44 0. Furthermore C(O) is the
specific heat which will be greater than zero. Thus,
M4(k) vanishes as k for all temperatures. Dif-
fusion requires that I'(k) vanish as k which to-
gether with M4(k)-k' and Eq. (5) requires that
Mo(k) vanish as k . This nonanalytic behavior
as a function of k seems quite unlikely at any tem-
perature for systems with short-range interactions.
We conclude that energy transport by diffusion
in zero external field is impossible at all temper-
atures if we use moments [Eq. (5)] to calculate
the damping constant I'(k).

C(k) = 2o Jocos'(ka/2) Z„e"'"{S„~S„„,So S,),
(16)

where

{A,B) ' = {A,B) + p (A) (B),
In the infinite temperature limit

c(o)=-,'p {sJ'+x'),
f,(O) = 2a' J',
f,(O) = 4a' J'X'(S J'+X')-'

(28a)

(28b)

(28c)

From (20) we see that Q(k) vanishes at least as
fast as kn

In M4(k) we will have

{p„+xq„,p, +xq, )'={p„,p, )'+x{q„,J,)'
+3C{P„,Qo) +X {Q„,Qo)' . (2S)

Thus, the Fourier transform of the terms of (2S)
will go to zero at least as fast as k4, k, k', and
k~, respectively. The contribution of the final term
of (2S) may be written for small k as

X'Z e'"'" {q q )' X'k'a'{V(k =0), V(k =0)'}' .
(24)

Since U(k = 0) o0, we see M, (k) vanishes as k' for
all temperatures.

In Mo(k) we will have

{P„+3CQ„,h" + XS*}'= {P„,h")' + 3C{P„,S')'
+ X{Qn,ho)' + X'{Q. , So}' . (26)

From (11) the Fourier transform of the first two
terms in (25) vanish at least as fast as ko. From
(20)-(22) we can also show that

P„e'4'"{Q„,ho)' = 4 sin (ka/2)N '{V(k), h" (-k))
—16J sinkaZnsin(kan){S„', oS„~S„„,So ~ S,}'

(26)
and

Q„e'nnn {Q„,So)' = 4 sino(ka/2)& '{V(k), S'(- k))

+ (1 —e'4') 8i JoZ„sin (kan) {S'„,4 S„~S„„,S o)

(27)

Thus, Mo(k)=fo(k)k and M, (k)=f,(k)k', where
f4(O) is finite for all temperatures. At infinite
temperature
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C'(k)- tl/4,
M (k)-2k2a J~

Ms(k) 4kaa2 J4

Thus, we have D~ = Vm a2 J' and

D D {3J2~~2]1/250-1)D

(29a)

(29b)

(29c)

We see that D~ approaches D& for large magnetic
fields, as we expect, and for small fields D~»D~.

Next, we consider the effects of introducing
next-nearest-neighbor interactions. The Hamil-
tonian is

H=-Z J,„S„~S, .
l, ff

For arbitrary J,„=J„,satisfying J» —-0 and arbi-
trary S, we find

[H, [H, k„]]= 25~ (n, m, r, l) {J„J,„J„„(1—5„,)
m, l, 7'

+J„,J',„J,(1 —5 „)—O' „O'„„J,„(l —6,„)
—J„,J.„J,„(1—5„,)], (30)

where

(n, rn, r, l) = S„&&S~ ~ S„&&S, + S„&&S, ~ S„&&S„

and where

k„=-ZJ,„s, s„.
This generalizes the result of Redfield and Yu to
general S and to lattices which have three spins
which are mutually near neighbors. For a chain
we ha,ve

Jr n
= J(5i, n+ i + 5~, n- ~)+J'(~ i, n.2+ 5i, n-2).

From (8) we see that for small k

M4(k)=C(O) k N P~„nA„, Z~mAg'+O(k ),

so I'(k) = Dsk which indicates a diffusive mode of
energy transport as noted by Huber~ with

~~a2 J{3 J 2 50 2)1/2 5C
-1

We have no reason to expect f2(O) to vanish at
finite temperatures, and so we expect energy dif-
fusion to occur at all temperatures in a uniform
external field.

To compare DE at infinite temperatures with the spin
diffusion constant Dz we note that D& is given by I'z/k2

where I'z is given by Eq. (5) if one replaces k„by
S„' in Eqs. (7)-(9). At infinite temperatures one
finds

Thus, the next-nearest-neighbor interactions re-
establishes energy diffusion if nearest-neighbor
interactions are present. Qn the other hand, if
J=0 and J'40, then energy diffusion is not possible.
This follows because a chain with interactions be-
tween mth nearest neighbors is isomorphic to a
chain (or a collection of chains which do not inter-
act with each other) with nearest-neighbor inter-
actions which was discussed earlier.

Let us now return to the question of self-consis-
tency in the use of Eq. (5) for the diffusion con-
stant.

Mori and Kawasaki's derivation assumes that if
diffusion exists, then, because of kinematic slowing
down, R(k, t) decays more slowly than the relaxa-
tion function for k (k, t),

F(k, t) = {k(k, t), k (- k, 0)] {k(k, 0), k (- k, 0)] ' .
(31)

They also assume that the time Fourier transform
of this, F(k, ~), is a Gaussian,

F (k, (o) ={2 (ar')} ' ' exp(-0. 5(o'((o') 'j, (32)

where

((g") = f d(g u)" F(k, a) ) = M„,~/Mg .

Vfhen diffusion is present M2- k and M4- k, so
the ratio of a characteristic time of F(k, t), (ar') '
to a characteristic time of R(k, t), I', is

t/. /ts - M2/M4- k /k k

Thus, t~ «t~ for small k and the assumptions are
self-consistent. Qn the other hand, for the spin- —,

'
chain with no external field we have

t,lt, -k'lk'-1

and the characteristic times are comparable, and

thus R(k, t) does not decay more slowly then F(k, t)
and we have an inconsistency. This is another way .

of saying that energy diffusion does not exist.
One may generalize the form taken for E(k, &g)

by expanding it in a Gram-Charlier series

F(k, ~) = Fa(k, (o) {1+ C4H4(x) + ],
where

H4(x) = x —6 x + 3,
with

x=(0(M )

where A„= [H, H, k„] ]. For a spin- —,
' chain at infinite

temperatures, we find to lowest order in J' and k

M4(k)-24(JJ') k a

which implies

( 4)
' 3 3(')'

Now (ur ) requires a knowledge of MB. We find,
for small k and all temperatures,

(34)

1/I'2 J2
I'(k) - — —k'a' .

6 J M (k) - {Y(k),1'(k)']', (35)
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I'»=~s»" S».8' (S»+I- S».2) .
Thus, Me(k)- k for all temperatures. In the infin-
ite temperature limit Ms- 4J' Q a . Thus, we con-
clude that C4 diverges as 0 approaches zero. This
is another indication that energy diffusion does not
exist. So far we have used the Mori-Kawasaki ex-
pression for the diffusion constant. de Gennes'
arrived at a similar expression for I" by assuming
a cutoff Lorentzian form for the Fourier transform
of ft(k, f):

I (k)
B(k, (d)= — l

( )2
for i(g &8,+I k

for ~w~&s.

From tile condltlon R(k, t = 0) = I aIld expl'essloI18
for M, and M„one may evaluate I' and 8. If diffu-
sion occurs, Ma-k -M4 and one finds

8 = Imp~, }"',
where 1 «s. However, if M, &5. 6MB, one can
shiv that the cutoff Lorentzian will not fit Ma and
M4 for real positive values of 4, T', and s. At in-
finite temperatures in a spin-& chain with nearest-
neighbor interaction, M, = 2M3 so the cutoff Lorent-
zian for B(k, &o) is not possible

A similar criterion for energy diffusion has been

proposed by Bennett. The moment fluctuation
ratio

(R(k) =kf', QS, - kf',}'

becomes very small if diffusion is present andbe-
comes very large if a propagating mode is present.
For the spin- —,

' chain where Ma-k and M4-k, the
ratio (R(k) is independent of k for small k for all
temperatures. At infinite temperature $(k) = I,
which again indicates that energy diffusion is not
present. Unless $l(k) is strongly temperature de-
pendent, one expects energy diffusion to be absent
at all temperatures by this criterion also.

Finally it is worthnoting thatfor the isotropic
span--,' cham we have M~-k, M4-A, and Me-A
for all temperatures. Thus, the relaxation function
fol' k (k f) tllat 18 E(k f) exhlblts dlffllslve be-
havior and thus one may assume that the time
Fourier transform of fk(k, t), II(- k, 0)}is a
Gaussian.

Proceeding as before we find that if E(k, f)
=e-'"~~'& then

('(k)=(~) (w')I- a I

At infinite temperatures we find I' = 4Tk a WII.
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