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A quantum theory of ferroelectricity in Rochelle salt is developed which is an extension of
the two-sublattice model of Mitsui. The isotope effects on deuteration are explained in a
natural way, and the spontaneous polarization, the polarization of the two sublattices, and

the dielectric constant are obtained as functions of temperature. The dynamics of the sys-
tem is investigated for the case of deuterated Rochelle salt and is found to exhibit a two-

mode relaxational behavior. The correlation time of one of these two modes is proportional
to the static dielectric constant and thus exhibits a critical slowing-down on approaching the
two Curie temperatures in agreement with the experimental data.

I. INTRODUCTION

Though Rochelle salt has been the first ferroelec-
tric crystal to be discovered, it is still not under-
stood very well from a microscopic point of view.
The shifts of the upper Curie point towards higher
temperatures and of the lower towards lower tem-
peratures on deuteration demonstrate the role of
the hydrogen atoms in its ferroelectric behavior,
but no theoretical explanation of these isotope shifts
which increase the ferroelectric range by about
40% has been proposed so far. Whereas the lattice
dynamics of both hydrogen-bonded "order - disor-
der" -type ferroelectrics and of "displacive" ionic
ferroelectrics seems to be basically well under-

stood, this is not the case for Rochelle salt.
It is the purpose of this note to present a quan-

tum theory of ferroelectricity in Rochelle salt which

is capable of describing the isotope effects on deu-
teration as well as the dynamics of dipole moment

reversal in this crystal. The theory is essentially
a quantum extension of Mitsui's model along the
lines used'~ ' to describe quantum effects in KH~P04-

type ferroelectrics. It is based on recent neutron-
diffraction' and magnetic-resonance studies ' a.nd

assumes that the ferroelectric dipoles move in
asymmetric double-well crystalline potentials and

form two interpenetrating sublattices (Fig. 1).
The asymmetric double-well potentials for the two

sublattices are mirror images of each other, and
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the ground state is nonpolar due to the antiparallel
arrangement of the dipoles.

The Hamiltonian of the problem can be conve-
niently expressed in terms of quasi-spin--, opera-
tors, where S,=+& designates a dipole in the
"right" equilibrium site and S,= --', in the "left"
equilibrium site:

x= —Z [z„(s~g",s,"J +s,"', s,",')+K„s,"',s,",']
Q

SUBLATTICE ONE SUBLATTICE TAIO

The indices (1) and (2) refer to the two sublattices,
J and K are the effective interaction constants of
dipoles belonging to the same and different sublat-
tice, respectively, 4 is a measure of the asym-
metry of the local crystalline potential, p, is the
magnitude of the dipole moment interacting with
the external electric field F., and 0 is the tunneling
integral which measures the amount of delocaliza-
tion of the ferroelectric dipoles.

II. EQUILIBRIUM PROPERTIES

In the molecular field approximation, the Hamil-
tonian (1) becomes

FIG. 1. Hypothetical asymmetric double-we11 poten-
tial for the motion of the ferroelectric dipoles (a), and
assumed arrangement of the dipoles in the two sublattices
of H,ochelle salt (b).

where

Hgg = 2Z(S, ')+K(s',~') + b, + 2pE,

H, a 2J (S,' ')+K——(s,'~') —b, +2pE, ,

(Sa)

(sb)

(3c)

(Sg") =-', (Hgg/ IH, I) tanh(-', P I H( )),

(S,'+) =-', (H,2/iH2 I) tanh(~ p [H2 (),

(4a)

where P= 1/kT. The spontaneous polarization is
obtained from

p =xp, ((s',")+(s',")),
with N being the number of dipoles per unit volume,
and the dielectric constant from

dP 4N p 2m

dE a-0 1 o.'(K+ 2J')

where e o
= 4v && 10 ' A sec/V m and

(6)

and where the bracket stands for a thermal average.
The molecular field thus forms a vector H&
= (H„O, H„), i = 1, 2 in our pseudo-spin-space, which
interacts with the spin variables and whdch takes on
different values for the two sublattices. The ther-
mal expectation values of the two sublattice polar-
izations, (S,' ') and (SP'), are obtained by solving
the two coupled equations

t h [—'pIH (0)~]

pH'„(o)
4H', (0) cosh'$ PH, (0)]

(7)

1-~(K+u)=0 . (8)

Using 6= 873 cm-, K=1560 cm, J=144 cm
0= 0, and p, = 4.9 D, a rather good agreement be-
tween the experimental and theoretical Curie tem-
peratures, dielectric constant, and polarization
values for deuterated Bochelle salt can be obtained.
The isotope shifts on replacing hydrogen for deu-
terium are then obtained by introducing a nonzero
value of the tunneling integral 0=30 cm '. Though
the numerical values of these constants are only
estimates and may not be unique, it is nevertheless
encouraging that all equilibrium dielectric prop-
erties of normal and deuterated Bochelle salt can
be described by such a simple model.

Figure 2 shows the temperature dependence of
the two sublattice polarizations and of the reduced
spontaneous polarization for deuterated Rochelle

with H&(0) =H&(E = 0). The two Curie temperatures,
T = T&& and T = T&&, where E- ~, are obtained as
solutions of the equation
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salt. For T «Tc„we have (S,"')= -(S',"},so that the
polarizations of the bvo sublattices cancel each other,
and the low-temperature phase is antipolar. It
should be noted that according to Fig. 2, the low-
temperature phase is not completely ordexed. In
the intermediate polarized phase, we have (S',")
(( -(S',"). The temperature dependence of the two
sublattice polarizations show here some similarity
with the temperature dependence of the electric-
field-gradient tensor at the Na sites. In the high-
temperature phase T & Tzz, the sublattice polariza-
tions again cancel each other, (S',")= -(S',2'), but
the disorder is significantly larger than for T & T&7.

III. DYNAMIC BEHAVIOR

Let us now investigate the dynamic behavior of
this system in the random-phase approximation
(RPA). For sake of simplicity we put Q=O, thus
limiting ourselves to the ease of deuterated Hochelle
salt. The dipolar system is supposed to be in ther-
mal contact with a large heat bath. Following the
treatment of the Ising model by Kubo and Suzuki,
we assume that a master equation exists which can
be written as

dipole, 8& is the local field at the spin j expressed
in energy units, and

(S,I(t) ) = Z Stt P(s„~ ~ ~ Sg„,f),
Cs' g'k

with the sum being taken over all quasi-spin-con-
figurations. Intx'oduclng the collective coox'dinates

as Pourier components

6S,"-' =X I('-+, 6S('II e"'"~, x=1, 2 (12)
t

of the small deviations from the molecular field
solution (S', ')

6S( K) (S(r)(f) ) (S(EI)

and using

~( ) g g e((I'(Ã( RII

one gets from (9) the relaxation equations in the

RPA as

~, —6S,",' = —as,",' +-,' p[u(q) bs(", +z(q) 6S('f]

~ {1—tsnh'[-', PH„(0)]],

—, s(s„," s,„,f)=-Zw, (s ) p(s„, "s,„,t)d

+Z w (-s )s(s "-s " s f)

x{1-ta h'[-', PH„(0)]). (16)

lI,(s„)= (1/2~.) (1 —2S„t~h'; PH, ), (10)

where v'o m the correlation time of a nonintex acting

where &(S,I, ' S',„,f) is the probability of finding

the quasispins in the configuration (S„~~ ~ S,„), and

the. trsllsltloll probability W&(s~ ) can be expressed
Rs

Looking fox' solutions of the form

~(i) g ~-t/vg M(3} y @-t/te08

Ne get a system of homogeneous linear equations

for a and b, which has a nontrivial solution only if

pJ(q) pJ(q)
4 cosh g PHI, (0)] 4 cosh (PH~, (0)

[prf(q)]' [pJ(q)]'
16 cosh g PHI, (0)]cosh g PI2,(0)] 16
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FIG. 2. Temperature dependence of the tvro sublattice
polarizations and the reduced spontaneous polarization in

deuterated Rochelle salt. Experimental data (Ref. 1)—
circles —are included for comparison

cosh( pH„(0)] cosh'[-,' pH„(0)] &

(18)

so that the general solution is a linear combination

of these two solutions

S")=Pa e-'/'~&+@a e-'/'~~

S~g~(I
—-Able 'I'le+ Bbm e ' 'mm, (19b)

t

where A and 8 are relative weights of the bvo solu-

tions which depend on the initial conditions.
The system thus exhibits a two-mode relaxation

behavior fox each q. Of particular interest is the

polarization relaxation time which is obtained in

'tile 11111lt q= 0. In tile llllpolal'ized phase (P= 0) we

then obtain
P(K —2Z) (20 )

7, 4 cosh~[-', PH„(0)]
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easily understood in the following way: In the un-
polarized phase both sublattices are equivalent and
are equally disturbed, when the system is placed
in a constant electric field, so that the initial con-
dition for polarization relaxation is

bS(i) (0) bS(2) (0)

From Eqs. (19) and (22) we have

bS,' 0'(0)/&S,'~0'(0) =Aa, +Ba2/Ab, + Bb2= 1 . (23)

(22)

For the unpolarized phase we can get, solving Eqs.
(15) and (16),

a&/b| = —1, aa/bm= 1, (24)

0.2—

0 I I

2I 0 250 260 270 280 290 300 310 320 I ['K]

FIG. 3. Temperature dependence of the two relaxa-
tion times v p/Ti and vp/v2 for deuterated Rochelle salt
in the limit q =0.

7~ P(K+ LT)
cosh [~ PH, g(0)]

Since for T=T&,

Pc(K+ 2J) = 4 cosh~/Pc Hig(0)],

(20b)

(21)

ro/v~ exhibits a critical slowing down (ro/r2 0) as-
T«or 7.'&, is approached from either side, where-
as ro/v, exhibits no significant anomaly and stays
high.

The temperature dependences of the two relaxa-
tion times are shown in Fig. 3. It is obvious that
vo/rz exhibits the same anomalous temperature de-
pendence as the dielectric relaxation time mea-
sured by Sandy and Jonese and Akao and Sasaki. '

The fact that a monodispersive dielectric relaxa-
tion behavior is experimentally observed can be

so thatA =0, B0 and we have a si;ngle-mode polar-
ization relaxation behavior

@(1) + -t/t& pg(2) p -t/&2
p =82+ gp =

p (25)

characterized by 73.
For the polarized phase the two sublattices are

not equivalent, and the ratios &S',"(0)/&S,"'(0)
& a~/b» a2/b2 are temperature dependent and are
generally not equal to +1. Thus A 0 0 and BW 0 and
a two-mode polarization relaxation results. But as
va» v& and A «8 only a single-mode dielectric re-
laxation behavior is expected to be observed. This
agrees rather well with the dielectric relaxation
measurements of Sandy and Jones, who find a sin-
gle-mode relaxation behavior in the paraelectric
as well as in the ferroelectric phase. What is even
more important is that the predicted [Eq. (20b)]
and observed temperature dependences of v& agree
rather well.

The present theory thus seems to give an adequate
description both of the equilibrium dielectric prop-
erties of Rochelle salt and of its dynamics.

The dynamics of undeuterated Rochelle salt is
reserved for a subsequent paper.
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