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Restricted and unrestricted Hartree-Fock molecular-orbital self-consistent-field calcu-
lations were performed on the cluster ¹iF6"4with a fixed internuclear distance appropriate to

KNiF3. A slightly extended multicenter atomic-orbital basis was used. In contrast to the ap-
proach of earlier calculations which sought to describe lODq as a single electron promotion

between t& and e~ antibonding (LCAO) molecular orbitals, we obtained the spectra as the dif-

ference in energy between various many-electron open-shell states. The results obtained

with limited configuration interaction are in good agreement with the five observed optical
absorption bands. We find that the earlier orbital picture can be approximately maintained

only if the covalency parameters are obtained from the open-sheL/ orbitals of excited states,
which are solutions of the Hartree-Fock-Roothaan Hamiltonians. In these orbitals we find

considerable 0 bonding and a smaller m bonding, significant fluoride s-p hybridization, and

a small expansion of the 3d orbitals which is greater in the t than in the e~ orbitals. Al-

lowing for spin-polarization correlation in the unrestricted calculations, however, adds im-

portant contributions to transferred hyperfine interactions and neutron form factors.

I ~ INTRODUCTION

Continued interest in the optical, magnetic, and
structural properties of transition-metal compounds
arising from the occurrence of unfilled shells as-

sociated with the metal-ion 3d electrons has led to
a wide variety of attempts at theoretical explanation.
Recent theoretical emphasis has concentrated on
clusters containing the transition-metal ion sur-
rounded by its nearest-neighbor anions or ligands
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as being representative of the crystal. Early the-
oretical efforts which concentrated only on the tran-
sition-metal ion, while explaining individual phys-
ical pxoperties, were inadequate for any consistent
understanding of the entire range of behavior. For
this reason, early attempts to compute gb initio the
crystal-field-splitting parameter 10Dq failed. Also,
the interpretation of properties such as partial
quenching of orbital angular momentum, magnetic
hyperfine intex'actions, and neutron magnetic scat-
tering experiments established unambiguously the
important role played by the neighboring anions or
ligands. More recently, the role of cluster models
has been emphasized in connection with explaining
the magnetic interaction between metal ions. '

The molecular-ol bital (MO) formulation originally
proposed by Van Vleck naturally allows for covalent
bonding and a redistribution of electronic charge,
evidently necessary to explain the experimental data.
Subsequent development of semiempirieal MO
schemes x'esulted from the obvious numerical dif-
ficulties inherent in any completely ab initio cal-
culation. In the first detailed nonempirical cal-
culation, Sugano and Shulman4 obtained a reason-
able value for 10Dq and other experimental param-
eters by assigning the 3d electrons in NiF6 to anti-
bonding linear combination of atomic orbitals
(LCAO) MO's. The coefficient of the F ligand or-
bitals or "covalency parameters" were determined
from the solutions of the ionic Hartree-Fock one-
electron Hamiltonian. However, it is well known' '
that it is the one-electron Hamiltonian of the bonding
orbitals whose spin is antiparallel to the occupied
antibonding orbitals which determines the extent of
covalency in a minimal basis. %ashen the one-elec-
tron Hamiltonian of Sugano and Shulman was cor-
rected by subsequent workers, ' they failed to ob-
tain agreement with experiment.

, Several important questions can be raised. First
what are the results of solving the many-electx'on
open-shell self-consistent-field (SCF) equations for
the ground and various excited states and how do
they compare to closed-shell or pseudo-closed-
shell calculations 7 Second, what are the effects of
obtaining self-consistency starting with an ionic
Hartree-Fock Hamiltonian, of electronic reorganiza-
tion, and of limited configuration interaction'P Third
what are the effects of using a basis other than the
free-ton l3asls used by Sugano and Shulmall?
Is there a notable polarization of free-ion metal or
ligand orbitals ln R slightly exteQded basis'P And
finally, what are the significant effects of relaxing
spin restrictions 'P

Some of these questions were approached by
E11is, Freeman, and Ros, who solved the unre-
stricted Hartree-Pock equations using a one-center
basis of Slater™type orbitals. However, although
the one-center basis provides a great simplifica-

tion in the calculation of integrals, it was thought
to be a serious compromise to the more accurate
multicenter atomic ox bital basis. Alternatively,
we choose to use a multicenter basis and approxi-
mate the resulting three- Rnd four-center integrals
which, if computed, would consume considerable
computer time. In this way we make a basic de-
parture from those previous calculations which have
made approximations in the one-electron Hamilto-
nians rather than in the integrals.

In this paper we present the results of open-shell
LCAO-MO-SCF calculations on various many-elec-
tron states of the NiF6 cluster. %6 use a slightly
extended multicenter atomic orbital basis and bj.ock
diagonalize the Fock operators in the usual way by
the use of symmetry orbitals. A limited d —d con-
figuration interaction is employed. Recently,
Richardson, Vaught, Soules, and Powell' presented
preliminary calculations on the octahedral clusters
TiF63, CrF63, FeF64, and NiF6'. Because these
authors consistently obtRlQed excellent agl cement
with the experimental fluoride absorption spectra,
we wish to exa'mine in some detail the method and
approximations. In particular, the approach based
on the many-electron Hartree-Fock-Roothaan equa-
tions is contrasted with the more familiar orbital
picture. We show the effect of electron delocaliza-
tion on the electrostatic interactions among the es-
sentially 3d molecular orbitals and discuss in some
detRil th6 contributions to optlcRl transition ener-
gies.

In See. II, we sketch the application of the open-
shell SCF procedure to states of the 4 configuration
in octahedral NiF6 clusters and define the basis
sets u86d ln these cRlculatlons. IQ Sec. III, wave
functions and the d —d spectrum of NiF6 4 are pre-
sented as calculated using various bases and modifi-
cations of the integral approximations. Contribu-
tions to 10Dq and the causes and effects of electron
delocalization are analyzed in Sec. IV. In Sec. V,
we present the results of an unrestricted Hartree-
Fock calculation and compare the magnetic hyper-
fine interactions and neutron form factors in Sec.
VI.

II. APPLICATION OF OPEN-SHELL SCF METHOD

A detailed discussion of the basic open-shell SCF
theory as applied to octahedral transition-metal
clusters is given elsewhere. ' A summary is pre-
sented here, however, in order better to discuss
the results of these calculations. The use of a
cluster in an external crystalline potential as a
model for octahedra1. transition-metal fluorides as-
sumes that the electrons of interest are localizable
in the pseudomolecule and specifically neglects the
periodicity of the lattice. Nevertheless, this model
is suggested by many experimental and theoretical
considerations. For instance, it is well known that
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the purely electronic optical transition energies are
affected very little by structural changes beyond the
nearest-neighbor anions. In the systems KNiF3, '
KZnF3 Ni, "KMg F, :Ni, "and NiF„" the positions
of the transitions vary by less than a few hundred
cm '. Qn theoretical grounds, the cluster model
represents a partitioning in the ground-state or
closed-shell Hartree-Fock Hamiltonian of the crys-
tal which is accurate to terms of the order g~, where
5 is the mixing parameter between basis functions
on neighboring ions. Hence it is a good approxi-
mation in highly ionic crystals and with the use of
a localized basis. For excited states, the cluster
model represents a localized molecular excitation.

'It' Ere ~ ~Wry Cagr ~ (2. i)

Wave functions for states belonging to different
symmetry species are automatically orthogonal.
Those belonging to the same species are orthogonal
if constructed from the same set of orthogonal MO's.

The principal configurations of interest are

(A) (ia«) (le~) (it»)8(2a«)~ (2t»)~(2e~) (3t»)~

x (it„)'(it„)' (it,„)'(2t„)"(3e,)', (2. 2)

where a«, e„ t,„, t„, t«, and t,„label irreducible
representations of 0„ in the Mulliken-Placek nota-
tion, and g+y=8.

(A) contains the localized inner-shell~' or "core"
orbitals. It is possible within the framework of
present programs to include the 3s and 3P orbitals
in the valence set. This would have the effect of ex-
plicitly orthogonalizing them to the ligand orbitals.

These core orbitals are assumed to contribute
little to optical transition energies which arise from
transitions in the largely Sd antibonding orbitals
(2t+) and (3e~). We therefore describe them as
free-ion orbitals in the "frozen" core approxima-
tion, so that

(A) = (1s„,) (2s„,) (2p„,) (ls, ) (is, ) (1s,)

&& (is F,)'(1sr,)' (1sv ~)'(3s N, )'(3PN) )' ~

The total valence-shell electronic energy in the
spin-restricted Born-Oppenheimer nonrelativistic
approximation is given by' ' '

A. Wave Function and Total Energy

In the MO approach the wave' function is written
as a linear combination of Slater determinants of
one-electron MO functions. In the LCAO approx-
imation, the MO's, P's, are expanded in an orthog-
onalized atomic orbital basis (1) which is trans-
formed to a set of functions, X's, belonging to par-
ticular rows (y) of irreducible representations (I')
of the appropriate point group:

E(t"e'; SI') = HOD, + —D, (~ ——3 )D,

——,
' D, (8 —

g X)D, + G(x, y; Sl") . (2. 3)

D, and D, are the familiar total (t) and open-shell
(o) valence-shell density coefficient matrices (row
vectors)

D, = IID~(a„), D (t „), . . . , D (r), . .. II,

D.=IID (a„), D.(t,„),"., D.(1), ."II,

with elements

IID„(r)ll„,=P,. C~+,r C„.r (2 —S„)n(iI"),

(2. 4)

where the sum extends over all, or over open shells
only, for v=t or o, respectively, and n(iI') is the
occupation number of the il" valence shell. In the
core approximation used,

H = H+ V~„„+—,
'

D~ (g ——,
' 3'. ) D~~ . (2. 5)

H is the kinetic plus nuclear attraction energy ma-
trix. V,„, is discussed in Sec. IIB and D, is the
density matrix for the inner shells of the core. The
elements in the matrix H, and in the supermatrices
Q and +, are defined as usual. ' ' '

G(x, y; SI') includes all two-electron electrostatic
matrix elements between electrons in the 2t3 and

Se shells. Nine independent integrals may occur
in G(x, y; Sl') and a tenth occurs in configuration
interaction calculations. 0 These integrals reduce
to the Slater-Condon integrals E0, I'» and I', or the
equivalent Racah parameters A, B, and C only if the

2t~ and 3e MO's were to have purely 3d AO char-
acter. In the more general case when those MO's

do not have the same radial chara. cter, the usual
analysis of the energy levels in terms of Racah pa-
rameters cannot be made. ' In Table I, we define
the set of electrostatic interaction integrals for the

2t2~ and Se~ MO's which is used in subsequent cal-
culations. In Table II, the coefficients of these in-
tegrals appearing in the expression for G(x, y; Sl")
are given for all the terms of d .

B. External Potential

The one-electron potential V,„,(r) resulting from
the ions external to the cluster was studied exten-
sively by Ellis, Freeman, and Ros. They include
the Madelung potential appropriate to the KNiF3
structure and corrections for the finite-charge dis-
tribution of the surrounding ions. Their conclusion
that the external crystal field ha, s very little effect
on the cluster wave function was borne out in more
approximate preliminary calculations we made that
included the external Madelung potential. The lo-
calizedbasis assumed in the cluster model and the

near constancy in the region of the cluster of the
Coulombic potential which is generated by the rest
of an ionic KNiF3 crystal combine to produce this
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TABLE I. Definition of the ten independent e~-t2
electrostatic interaction integrals. +""

Integral General MO's Equivalent AO's

d («& !(&&&I tt&+&ttI nn&+&&(I tt&& ~+~C
d («) —.'(&~e I t't'&+ &« I R&) A+C
d («& &«I tt& A-48+ C
Z(ee) '(&—ee I 88&+ &e& Iee&) A+2C
lf (tt& -'((ft'I ht&+ &t'nl nh&+ &f0 I th&) ',2+ ,O-8+t-- C
It (tt) 4n I nt'& 38+ C
E (et) —'((8& ) &8) + (&g ( gf)) 28+ C
It'(«) &et I C» 4B+ C
K(ee) e(&68I 88&+&9eI e8)& —,'A+48+ 2C

&st I nt& ~3 8
'&eb

I cd&= ffa*(l& b(l)r, 2 'c+(2&d(2& dv, dv2.
(, 0, 0, ~, & refer to MO's transforming like the d

orbitals d„», d~~, d„~, d~2, and d„2~2, respectively.
'A, B, and C are the Hacah parameters, appropriate

for the case that all d functions have the same radial
function.

result. V,„, is therefore neglected in the results
presented here.

C. Restricted Open-Shell SCF

~F C (c) =Z, ~ (c, j)SC(j),

F C (o) =Z;c(o, j)SC(j),
where

(2. 6)

In the restricted open-shell SCF procedure, the
total energy given in Eg. (2. 2) is minimized with
respect to variation of the MO coefficients C„~ sub-
ject to the constraint that they remain orthonormal
and span irreducible representations of the space
and spin symmetry groups. For a given state
t" e'~T", this leads to the familiar Hartree-Fock-
Roothaan equations for closed (c) and open (o) or-
bitals of the form

F,=H'+D, (g--,'X),

F =F -Q
and Q, is such that

(F +R,,)C, =&~~SC

(F +R)C =~ SC,
(2. 6)

with one pair of equations for each MO symmetry
species. Hire ~a, e, are diagonal eigenvalue ma-
trices, and C and C, are the eigenvectors of the
closed and open MO's, respectively, belonging to
I". If no open shells occur in a symmetry species,
R, vanishes and the second equation is ignored.

—,'D. q, =-.'D (.--.'x)D,'- G(x, y;sr') .

C(i) is the coefficient vector for the ith occupied
MO, here spanning the entire basis. These ma-
trices, as written here, actually have block (di-
agonal) form according to the various MO sym-
metry species.

In the Roothaan formulation, off-diagonal Lagran-
gian multiplier s connecting closed-shell orbitals
having the same rock operator are eliminated by a
unitary transformation. Those connecting closed-
and open-shell orbitals both belonging to some rep-
resentation I" are removed by means of the coupling
operators~' ~4

~R(I') =n, (1') [n, (I') -n, (I")] ' E'& [T&(I')+Ttt(I')],
(2. 7)

R, (I')=n, (I') [n, (1)-n,(1')] ' Z [T (I')+T';(I')1.
clos ed

T,(I') is that segment of the matrix SC(i) Ct(i) Q,
associated with MO's belonging to F. By this
means and by taking explicit note of block diagonal
forms, Eqs. (2. 6) may be written

Config Off-diagonal
element

State

TABLE II. Coefficients in the, e~- t2 electrostatic interaction energy matrix. G(x, y; &I') = &g~(t t) +Pl&(tt) + 'Y~&(tt)

+ et2J(et) +P2R'(et) +'p2 J{et)+ b2Z(et& + n3 J (ee) +P3E (ee)

e) P( P y 02 O.'3 P3

t8e2

t5e3

t5e3
4

t5e3

t4e4

t5e3

tee2

t4 4

t'e'
t4

12
2

12
i5
2

12

—9
0

—9
0

0
3

12
14

16
16

14
16

16

12
16

12
18

—1
0

0
—1

+1
0

0
—4

2
-4

2(v3}i

2i

W3 [E(et) —K(et)1

&6 &(et)

~See Table I for definitions of the integrals.
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The original formulation of Boothaan applj. ed to
only a limited number of systems containing only
one open shell. However, it is fairly easy to gen-
eralize this method to cover all the states of inter-
est in the octahedral transition complexes. "

D. Unrestricted Open-Shell SCF

The spin-polarized (SP) procedure, a type of un-
restricted SCF procedure in which electrons of op-
posite spin are allowed to occupy different orbitals,
has also been discussed extensively. ~' For sys-
tems containing only filled and half-filled shells,
the unrestricted Hartree- Fock-Hoothaan equations
analogous to (2. 6) are given by

(2.9)

where the arrows label electron spin and where

F, =H +D],'f —D, X,

F, =H +Dt g —D, X .

The spin density matrices D, and D, are defined as
in Eqs. (2. 4) but with elements

occuyi ed

with s=4 or 4, respectively.
Off-diagonal multjpliers between orbitals of op-

posite spin vanish directly so that only unitary
transformations are required to eliminate all off-
diagonal multipliers. However, this transforma-
tion is different from that used in the Hoothaan spin-
restricted formulation discussed above, so that the
one-electron MO's and energies appear different
even when a minimal basis is used, although both
wave functions give the same values for physical
observable s.

Independent elements of the overlap matrices
S(I') are included in Table IV.

The selection of a basis for the cluster is arbi-
trary. It is well known that a small multicenter
Slater-type basis in which all the parameters are
varied provides a good approximation to the Hartree-
Fock solution. However, it is not yet practical to
vary the exponential factors because of the large
amount of computer time required. How good the
present choice is can only be indicated by the ac-
curacy of the results of the calculations.

Of the required integrals over the basis which
appear in the Fock matrices of Eqs. (2. 8) and (2.9),
all one- and two-center integrals were obtained ex-
actly. Because of the large amount of computer
time required to evaluate all three- and four-center
integrals, these were uniformly approximated. All
integrals containing products of two AO's on differ-
ent fluoride ions are small and were uniformly ne-
glected. Thisapproximationassumes that there is
negligible interpenetration of adjacent fluoride AO's
and has been used by previous authors. ' Second,
all remaining three-center integrals were approxi-
mated using the Mulliken approximation. In the
gEG calculations, using the regular Mulliken approx-
imation, the charge distribution on two of the three
centers is expanded according to

x.x =-.' &x.ld (x! xl),

thus reducing the calculation of three-center inte-
grals to the evaluation of overlap integrals (x,lx,)
and a sum of two-center integrals. The MODcalcu-
lations are the same, except that each overlap in-
tegral was replaced in this approximation by a fac-
tor determined from relationships among exactly
computed two-center two-electron integrals. In the
3CENcalculations, the overlap integral was replaced
by a factor which made the one-electron three-cen-

E. Bases and Integral Approximations

Of the various possible analytical bases used in
molecular Hartree- Fock calculations, multicenter
Slater-type bases have proved to be accurate and
rel. iable. ' In Tab.'e I.'I, we give the STO exponents
used in these calculations. The D basis for the
cluster includes a double-( function to represent
the critical 3d orbitals. Calculations designated
DSI linclude the metal-ion 4s and 4p orbitals,

which, because of their large radial extent, sup-
plement the ligand orbitals in the region between
the metal and ligand ions. Calculations labeled
DDSI' together include the-3d, functions, which are
the 3d STO's with the larger orbital exponent
[f(3d&) = 5. V5] and which permit a limited radia. l 3d
distortion. The double-g 3d function closely ap-
proximates the more accurate Hartree-Fock free-
ion function computed by %'atson.

Center x(nt')

1$
2s
Bs
4s
2P
3P
4p
3d
3d0

1s
2s
2P

27. 37
10.60
4. 90
1.70

11.50
4. 60
1.34
5.75
2.40

8.7
2. 425
2. 425

The "double-f" 3d basis function is
+0.549 69 g(3d,).

The Ni-F distance used is 3.79 a.u.

0.595 89 X(3d])

=z.ooe A.

TABLE III. Orbital exponents of the Ni'2 and F STO
basis. '"
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Metal

TABLE IV. Overlap matrix elements. '
Ligand symmetry-adapted orbital

28 2po' 2p7r

4p
4s
3d
3d)
3s
3p

0.51907
0.47608
0.087 80
0.008 43
0.01943
0.015 03

0.200 65
0.31475
0.10333
0.005 09
0.03140
0.024 00

0.188 78

0.043 00
0.00219

0.004 57

S(3d, 3') =0.883 49,

ter integrals exact; the same factors were then used
in the two-electron integrals. The nature and ac-
curacy of the integral and the frozen core approxi-
mations have been investigated in greater detail
over a range of internuclear distances in connection
with similar calculations on other clusters. ' '"
Detailed results and interpretations will be presented
subsequently. In brief, however, we note the fol-
lowing conclusions. Essentially the same results
for fluoride clusters are produced by using the three
integral approximations and also, in the case of
TiF6, by using more accurate three-center inte-
grals. Likewise, we find that the neglect of two-
center overlap distributions between ligand AO's
has little consequence for fluoride clusters at their
equilibrium geometry. Since valence AO's used in
all three bases are taken orthogonal to all orbitals
on the same center, no problems occur in that re-
spect.

With no further approximations, we solve the
SCF pseudoeigenvalue equations (2. 8) and (2. 9) for
the ground and various excited states iteratively to
a convergence of 10 in the vector coefficients.
Convergence was usually easily reached beginning
with a set of ionic trial vectors.

III. OPTICAL TRANSITION ENERGIES AND

Mf'AVE FUNCTIONS

The electronic absorption spectrum of KNiF, has
been analyzed. ' Its rich detail provides consider-
able information which must be explained by any
theory proposing to describe the effects of covalency
in these compounds. Five absorption bands are
observed and have been assigned to transitions from
the ground electronic state A& to T„, a' T,~, 'E~,
and 0 T„ in order of increasing energy. The
A2~- T~~ transition is magnetic dipole allowed.

The no-phonon line accompanied by a diffuse phonon

sideband is observed at low temperatures. The
I

spin-orbit split transitions have been resolved' and

the spin-orbit coupling parameter has a value in the

range of 305-320cm '. The other four bands are
forced-electric dipole in character, and the spin-
allowed T„bands reveal sharp vibronic progres-
sions at low temperatures which have been assigned-
to lattice vibrations. '

Since the ground- and excited-state energies were
computed at the same internuclear distance, the
calculated transition energies should be compared
to the vertical transiti'on, corresponding to the
maximum in the absorption band at low tempera-
tures. Also, it has been pointed out that this cor-
responds only to a rough average over the spin-or-
bit components. A more accurate value of the ver-
tical 10Dq, in which there was compensation for
spin-orbit splitting, is around 7400 cm '. '8

A. Computed Transition Energies

In Table V, we show a comparison of our calcu-
lated results and the experimental energy levels.
They are seen to be accurate to within 10-20% for
the five observed transitions. The largest devia-
tions occur for the higher-energy transitions which
are computed to be too large.

The energies of the (3T„, 3T,,) and ('T2, 'T, )

pairs were obtained from the SCF solutions for the
average states T„=-,' (T2, + T„)which were then
separated by adding the appropriate electrostatic
integrals. The latter unaveraged Coulomb and ex-
change integrals J(et) and K(et) were assumed to be
reduced from their free-ion values by the same ra-
tio as their averaged counterparts, J(et) and K(et).
Since these are very close to their free-ion values,
this is probably a good approximation. Energies
for the other singlet states were computed from the
I; e 'T „SCF results. All excited-state energies
are given relative to the independent SCF total en-
ergy of the 3A,& ground state.

The calculated '7„, 'Z„T„, 'A.„term energies
contain the usual d-d configuration interaction.
The strong field energy expressions neglecting spin-
orbit interactions have been given by Tanabe and
Sugano in terms of the Racah parameters. In
terms of our more general O„electrostatic matrix
elements, they are the eigenvalues of the matrix

E(f'e'; SI') —E(t6e; A„)
E'(Sl )

E'(Sr)

E(t e; SI') —E(t e; 'A )

where E(t"e'; SI') are the single-configuration en-
ergies and E' (SI') is the off-diagonal matrix ele-
ment given in Table II. In Table V, calculations

with and without configuration interaction are com-
pared. Also, the coefficients of the configurations
appearing in the wave function are given.
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Transition
Coefficients

D DSP D

TABI E V. Best calculated spectral transitjon energies (in cm ) for NiF6 (BEG).

Without CI With CI
Energies Energies

D DSP DSP

tee2 3g
t5~3 3T

pg

a Ti

a' S,

ai T+

b3Ti

a

t5g3 1T
ig

bis

19360

27 450

19990

37 990

32 600

37 470

37 470

63 650

7 210

22 980

20 050

27 390

18 450

39 870

32 640

36 200

36 200

62 810

E

0 ~ ~

0.6278
—0.7784

0.9754
0.2206

0.9355
—0.3534

0.7784
0.6278

0.8925
-0.4510

0.2206
—0.9754

0.3534
0.9355

0.4510
0.8925

0.6020
—0.7985

0.9677
0.2520

0.9208
—0.3899

0.7985
0.6020

0.8755
—0.4832

0.2520
0, 9677

0.3899
0.9208

0.4832
0.8755

7 977

13740

18 380

25 790

29 590

29 200

32600

38 440

39 130

72 440

12480

18 870

25 460

28 950

29 820

32 640

37 380

38 130

72 860

7 250

12530

15 440

20 920

23 810

The upper number in each pair of entries is the coefficient of the t e configuration, and the lower, of the t e
configuration.

"Reference 16.

The most prominent effect of configuration inter-
action is in lowering asT, below a'8, in agreement
with experiment. The a T,~ state is largely t e in
character. This would explain why it has a broader
band than the b T, band which, although it is higher
in energy, is mainly t e . Extending the configura-
tion interaction calculation by including charge-

transfer configurations undoubtedly would improve
agreement with experiment, particularly for the
higher-lying states.

In Table VI, we compare the computed spectra
using various approximations discussed earlier,
looking first at the spectra computed from the T~„
SCF results. The first rom, which gives the posi-

TABLE VI. Calculated d-d transition energies (in eV) as a function of basis, integral approximation, and reference
SCF state. ~

State

ee2 3A
2f

t5~3 3T
a T~
a'Eg
a T2g
b3Tig
a'Ai,

t5 3 iT
b Eg

ig

b T2
biAi

From
A2

BEG
D

0.000
l. 787
2. 909
2.334
4. 058
4. 833
3.938
4. 842
6.253
6.319

10.235

From
TQp

REG
D

0.090
1.024
l.719
2.279
3.197
3.659
3.621
4. 041
4.766
4. 852
8. 980

BEG
D

0. 010
0.989
1.703
2.263
3.206
3.668
3.634
4. 061
4.779
4. 867
9.052

REG
DSP

0. 003
0. 894
l. 547
2. 339
3.159
3.589
3.707
4. 054
4. 638
4. 732
9.060

BEG
DDSP

0. 019
1.022
1.749
2.329
3.248
3.702
3.716
4. 107
4. 785
4. 871
9.044

From T~„

MOD
D

0. 010
1.000
1.720
2. 264
3.216
3.680
3.638
4. 069
4. 793
4. 880
9.056

MOD
DSP

0. 003
0. 873
l. 512
2. 328
3.128
3.553
3..686
4. 023
4. 591
4. 684
9.005

3CEN

0. 011
l. 054
l. 808
2.261
3.272
3.754
3.650
4, 117
4. 900
4. 985
9.139

3CEN
DSP

0. 003
0.916
l. 583
2.335
3.179
3.613
3.708
4. 068
4. 674
4. 767
9.076

Note that the energies calculated for the SA2 state represent energies above the SCF energy of that state. These

quantities reQect the (slight) differences among the SCF MO's for the, ground and excited states.
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TABLE yg, Restricted Hp MO coefficients and orbital energies for the &g and Sy, states of Mire (BEG).

1Qgg

2Qg
14'
2ggg

34u
1@

28'
38'
lt~
2t~
1if)

2Q

—0.42217
0.53212

—0.42202
G. 53324
0.55182

—0.42370
0.49473
0.26335
0.55964
0.26599
0.55184
0.55183

0. 0279
0.1917
0.9906

—0.1642
0.9874

0.0147
0.9999
0.0143
0.9999

—0.0053
0.0174
0.9617

—O. 2928

Symmetry-orbital coefficients
w, (Ni) 28(F)

{a) D Basis 0 9999
—0.0147

0.9999
-0.0143

0.0000
0.9970

—0. 0420
-0.1130

0.0000
0.0053
1.0000

0.9953
0.1216
1.0000
1.0000

3
~av l&

2'
14m

2' g

34g
le
2'
38'
lt~
2t2g

lt~
14m

—0.42071
0.55222

—0..42067
0.53285
0.55397

—0.42248
0.48374
0, 32075
0.54261
O. 26722
0.55391
0.55397

0.0299
0.2101
0.9868
0.0997
0.9960

0.9999
—0, 0154

0.9999
—0.0152

0.0001
0.9967

—0.0465
—0.1110

0.0154
0.9999
0.0152
0.9999

—0.0014
0.0193
0.9560

—0.3106

-0.0000
0.0014
1.0000

0.9907
—0.1423

1.0000
1.0000

1Q@
2ggg

14m

34m
le
28'
38'
it(
2'
1)~
lt2

la~&
20gg

14m

24~
ig

28'
3'
ltd
2'
ltd
14

—0.5OV56

0.35913
—0, 50893

0.39434
0.46995

-0.50853
0.45883
0.3e2V4
0.39326
0.49874
0.46088
0.46167

-0.5O648
0.35919

-0, 50V90
0.39499
0.4vo64

—0.5ov54
0.45395
0.45415
0.46311
0.41784
O. 46241
0.46324

O. O511
0.4701
0.0282
0.4Oll
o.0568
O. olev
0.1379
O. eeev
0.839O

—0.5458

0.0520
0.471O
O. O28V

0.4026
0.0522
0.0206
0.145e
0.9985
0.0641
O. 9989

(b) DSP Basis
0.9748

—0.2357
0.9851

—O. 2149
—O. 0242

0.9980
—O. 0020
—0.1090

0.9V43-0.2368
0.9848

-0.2161
—0.0221

0.9979
-O.oo39
—0.1096

—0.02O8
0.7745

—0.0108
0.5495
0.7232

-0.0150
O. 9763-o.2396

—O. O2O6

O. VV38

-0.0105
0.5532
0.72O8

—0.0141
0.9744

—0.2473

—0.OO1V

0.6298
—0.6877

0.5093
0.861V
1.0000
1.0000

—0.0017
0.6253

—0.69O6

0.9952
-0.1069

1.0000
l.0000

tion of the ground state computed from the particu-
lar SCF results, indicates the small amount of re-
organization energy in these cases. The three-
center Mulliken integral approximations are com-
pared and no significant diffexence is found for the
DSP basis. For the smallest basis D the transition
energies are raised in going from the BEG to the MOD
to the 3CKN approximation. Also the relative loca-

n of the a'&„state is shifted. We have no expla
nation for these effects. The more flexible DSP ba-
sis gives consistently better agreement with experi-
ment, but the further inclusion of the 3d, functions
raises the energy of the Tz, and a T,~ states, by
approximately O. 1 a,nd 0; 2 eV, respectively.

Table VI also exhibits spectra computed from the
t'e 'T„state and the 'Aa, ground-state SCF results.
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TABLE VII (ontinued).

State
3
A2g

3
TQg

MO

1tzy

2Q)~

~iQ

2&ILu

34m

18~

2'
3'
ltd
2t2

1$)g

14u

10)g
20(g
1tiu
2tfg

3&1u

1@~

28~

3'
1tpg

2tg

1$(~
1g,„

e (a.g..)

—0.50909
0.35953

—0.51036
0.39341
0.46962

—0.51040
0.44855
0.35373
0.48824
0.36420
0.45862
0.45948

—0.50782
0.35919

—0.50916
0.39403
0.47024

—0.50921
0.44258
0.41838
0.38249
0.45790
0.46056
0.46147

0.0500
0.4695
0.0278
0.3993
0.0659
0.0314
0.2469
0.9783

—0.4300
0.9499

0.0511
0.4708
0.0284
0.4016
0.0590
0, 0319
0.2501
0.9951
0.1227
1.0337

—0.0106
—0.0905

0.0191
—0.0169
—0.0606

—0.0100
—0.0845
—0.0013
—0.0482
—0.0409

0.9747
—0.2345

0.9850
—0.2141
—0.0241

0.9969
—0.0130
—0.1119

—0.0225
0.7740

—0.0127
0.5456
0.7258

—0.016G
0.9591

—0.2751

lnlnetry-orbital coefficients
3d) (Ni) 2s(P) 2po. (F)

(c) DDSP Basis 0 9753
—G. 2328 0.7749

G. 9853 —0.0133
—0.2123 0.5389
—0.0273 0.7300

0.9970 —0.0172
—0.0111 0.9608
—0.1097 —0.2647

-0.0016
0.6404

—0.6793

0.9142
G. 4035
1.0000
l.0000

—0.0017
0.6329

—0.6847

0.9914
—0.1247

1.0000
1.0000

The spectrum computed from the 'T,„state is in
essential agreement with that computed from the
T„and from the separate SCF calculations. There

is found only a slightly larger electronic reorga-
nization energy. However, the spectrum computed
from the ground state is not in agreement with the
others. The reason for this can be seen upon com-
paring the vector coefficients obtained for the A~.
and the 'T,„states as given in Ta,ble VII. Although
the a„, t,„, and e, MQ's have essentially the same
character whether computed from the ground- or
excited-state SCF's, the closed-shell t~, MQ" s are
apparently more mixed or "covalent" in the ground-
state t calculation. More will be said about this
in Sec. IV. This result forces us to reject any
spectral calculation ba, sed on a closed-shell or.
pseudo-closed-shell Hamiltonian, although, of
course, the total energy is significant.

8. 'Cave Functions

Table VII displays the vector coefficients and
eigenvalues for the three bases used in our calcu-
lations; only those for the BEG Mulliken approxima-
tion are given, since no significant difference is
found in either of the modified Mulliken approxima-
tions.

Because of the physical importance of the 3e and

2t~, MQ's, we briefly discuss the character of these
orbitals. From Table VII the so-called covalency
or ligand mixing parameters for the IID, DSP, DDSI')

bases are (- 0. 113, —0. 109, —0. 110) and (- 0. 293,
—0. 240, and —0. 265) for the fluoride 2s and 2po
symmetry-adapted functions, respectively. These
values can be compared with the theoretical values
obtained by Qffenhartz' using Sugano and Shulman's
basis, ' —0. 105 and —0. 222, respectively, and also
with experimentally determined parameters by
Shulman and Knox, ' namely, —0. 116 and —0. 337,
respectively. These comparisons are only qualita-
tive, since the two theoretical sets are derived
from different fluoride bases, and the "experi-
mental" values incorporate a number of a.ssump-
tions. Nevertheless, it is noted that the 2s coeffi-
cients are very similar and that our 2p coefficients
are intermediate between )hose of Qffenhartz and of
Shulman and Knox and differ less among themselves
than with the other two. In a more reliable test of
covalency, we give the results of directly computing
the hyperfine interactions from our wave function
in Sec. VI.

In contrast to the 3e orbitals, the 2' open-shell
orbitals participate in a much smaller p bonding.
From the T,„SCF results, the Quoride 2pz sym-
metry-adapted orbital coefficients are (-0.142,
—0. 107, —0. 125) for the three bases. We empha-
size that this coefficient has physical meaning only
when the t2 orbitals are not fully occupied as in the
excited state T2, .

Whereas our results indicate that the 3dt orbitals
participate in less covalent bonding or electron de-

/
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localization, they are better described as radially
slightly expanded. Prom Table VII, the coefficients
of the 3d, STO's are —0.0409 and —0.0013 for the
213, and 3e~ MO's, respectively, of the T,„state.
These very small negative coefficients indicate only
a slight expansion from the free-ion radial function.
This result is important because properties which
depend on the shape of the 3d orbitals may be rel-
atively insensitive to a sma, ll electron delocalization
and vice versa. For instance, spin-orbit coupling
and neutron magnetic scattering are strongly affected
by the shape of the 3d orbitals. Recently, Freeman
and Ellis and Soules and Richardson ' in indepen-
dent unrestricted Hartree-Fock calculations have
shown that an expansion of the 3N orbitals in the
cluster MnF~ (2t+) (3e )~ can explain the observed
contraction of the neutron form factor. This effect
is not observed for the Ni salts, which do not have
unpaired /a~ electrons. Also, the spin-orbit coupling
parameter is only slightly reduced from its free-
ion value 324 cm '.

Of interest in discussing the wave function ls the
Mulliken gross population analysis which divides
the electronic charge arbitrarily into atomic basis
functions. This is shown in Table VIII. Of partic-
ular importance is the charge transferred to the
vacant metal-ion 3d orbitals. In going from the
bases labeled D to DSP to DDSI, this charge at first
decreases when electronic reorganization is al-
lowed in the 4s and 4p orbitals but it increases again
when additional variational freedom is given to the
3d function by the inclusion of the 3d, .

There is a greater differential increase in charge
transferred to the 3de orbitals than to the 3dt or-
bita. ls in the t'es T,„state, which has one vacant or-
bital in each MO symmetry. This is a result of
greater c than g bonding. Hence, in making the
transition tee 3A~ - t'83 T@„ there is a decrease in
the charge assigned to the metal-ion 3d orbitals,
which amounts to between 0. 025 and 0.03"I elec-
trons.

IV. WHAT IS loaq~

It ha, s been a major goal of all previous theoretical
studies of transition-metal compounds to calculate
the spectral splitting parameter 10Dq. For NiF6
10Dq may be defined as the energy difference be-
tween N-electron states

Thus we have obtained this quantity in Table V from
solutions of the appropriate SCF equations.

A. Contributions to 10aq

The many-electron approach of Eq. (4. l) is not
in the spirit of semiempirical ligand field theory,
which views 10Dq as an orbital energy difference.
Also it offers no conceptual guidelines to the co-
valency factors contributing to the magnitude of
10aq.

To explore this question we present three distinct
analyses. The first may be viewed as a sequence
of refinements passing from the original crystal-
field model to the SCF result. The others are based

TABLE VIII. Gross atomic population analysis (regular overlaps).

Total
Total
Total

Total

3d
2$'

2po'

2s
2po'

2pr

D

2.000
2.000

6.000
6.000
6.000

2, 117
3.995
.3.888

6.000
6.000

6.000

6.000

11.995
11.888
24. 000

8.117

0.618
1.953
1.429

1.359
5.917
5.265
5.459

2. 0VO

3.995
3.935

6.000
6.000

6.000

6.000

11.865
10.629
23.459

8.070

DDSP

0.617
1.953
1,430

1,359
5.915
5.258
5.468

2.134
3.991
3.875

6.011
5.989

6.000

6.000

11.859
10.563
23.457

8, 145

D

2.000
2. 0:00

6.000
6.000
6.000

3.068
3.997
3.935

5.014
5.986

6.000

6.000

11.997
ll. 935
24. 000

8.082

TQy

DSP

0.620
1.953
1.427

l.365
5.916
5. 268
5.452

3.038
3.998
3.964

5.007
5.993

6.000

6..000

11.867
10.659
23.445

DDSP

0.620
l.953
l.428

1.365
5.914
5.262
5.458

3.087
3.994
3.919

5.021
5.978

6.000

6.000

11.861
10,609
23.436

8.108
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FIG. l. Energies of the 3A~ and
3T2 states at successive stages of
the calculations. Transition ener-
gies indicated in the inset refer to
the same origin.

upon partitionings of the total transition energy, the
second using the same set of SCF MO's for both
states, and the third using the two independent SCF
results.

Based on the HKG and DSP calculations, Fig. 1
displays successive changes in the ground-state
total energy and in the transition energy, as follows.
At the left, column (a,) corresponds to the pure ionic
crystal-field model, in which each fluoride ion is
assumed to interact as a point charge with the metal
and with the other flourides. At column (b) we allow
for the actual spacial distribution of the fluoride
electrons in evaluating the electrostatic perturba-
tion of the metal by the fluorides (Kleiner's correc-
tion"); there is a substantial reduction in 10Dq even
from the too small value at column (a), although
here the value remains positive. Retaining a for-
mally ionic structure but incorporating the exchange
interactions between metal and ligands leads to a
sizable lowering of total energies and to an inversion
of the levels at column (c). This situation arises
because there is a greater number of the larger ex-
change interactions with the 3deg orbitals in the
excited state. One unsatisfactory feature of column
(c) is that the metal and ligand orbitals are not mu-
tually orthogonal. Schmidt orthogonalizing the 3d
AO's to the appropriate ligand symmetry-adapted
functions and evaluating the expectation value of the
Hamiltonian over Azg and Tpg wave functions con-
structed from these functions leads to column (d).
The orthogonality contraint raises the total energy
of T2, by more than A&, and restores them to
proper order. Again this effect arises because

of the greater (overlap) interaction of the 3de AP's
with the ligand orbitals. Orthogonality alone thus
yields a transition energy more than half the ex-
perimental value. '

Based upon the Schmidt-orthogonalized LCAO
coefficients just described, the first iteration of
the SCF process may be carried out. From the
wave function constructed using these LCAO coef-
ficients, the energies at column (e) may be calcu-
lated. Comparatively little net stabilization is
found from 3d bonding alone. The large decrease
in total energy comes from the added participation
of the 4s and 4p orbitals. (See Fig. 1, inset. )

These orbitals have very little effect on the com-
puted optical transition energies however. Signif-
icantly, the transition energy 10Dq has risen to
near the experimental value with the final SCF re-
sults shown at column (f). We have arrived at the
same conclusion as Sugano and Shulman reached
earlier, namely, that the major contributions to
10Dq must arise from factors identified with co-
valency. [Pur results column (e), however, should
not be directly compared with theirs since, among
other things, they used a one-electron Hamiltonian
constructed from strictly ionic (nonorthogonalized)
orbitals. ]

The other partitionings investigated here are
based upon separating the finally computed transi-
tion energy ~E according to

(4. 2)
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TABLE lX. values of the ten independent t~ —e~ electronic repulsion integrals (a.u. ).

21SV

Integral

~ (tt)
K(tt)
K(tt)

Free
ion

3A~ RV

REG BEG
D D

REG
D

0. 96 833 0.97292
0.36 695 0.36 875
0. 03 976 0.04 000

0, 98 788 0.95 447
0.37 458 0.36 137
0.04 076 0.03 889

REG
DSP

REG
DDSP

MOD

D

p. 98 215 0.95 821 0.97 126
0.37 234 0.36305 0.36 810
0.04 049 0.03 928 0.03 991

MOD

DSP

0.98 031
0,37 165
0.04 039

3CEN
D

SCEN
DSP

P.97 174 0.98 085
0.36 829 0.37 186
0.03 994 0.04 042

&(~t)
K(et)
J(et)
K(gt)

0.97 287 0.93 299
0.03 468 0.03 281
0.94 855 0.90 967
0.04 684 0.04432

0.92 220 0.93 627
0.03 237 0.03 305
0, 89 914 0, 91287
0.04372 0, 04464

0.95 847 0.93 934 0.93 559
0.03 411 0.03 321 0.03 301
0.93 451 0.91 585 0.91 220
0.04607 0.04486 0.04459

0.95 598
0.03 399
0.93 208
0.04 591

0.93 402 0..95 641
0.03 294 0.03 401
0.91067 0.93 250
0.04449 0.04593

~(«)
K(ee)

0.99 539 0.94752
0.54 453 0.51 806

0.91288 0.93 634
0.49 889 0. 51108

0.97 198 0.95 701
0.53 164 p. 52 332

0.93 653
0.51 198

0.96 873
0.52 984

0, 93 301
0.51 002

0.96 909
0.53 003

0.01 053 0.01 001 0.01 005 - 0.01 019 0.01 041 0.01 012 0.01 017 0.01 038 0.01 016 0.P1 039

and serve also to illustrate the methodology for
computing transition energies from one given SCF
result. 4II' will be the net transition energy minus
changes in interelectronic Coulomb and exchange
energies whose further definition depends upon the
adopted scheme of interpretation.

In pure crystal-field theory, which assumes that
the transition involves changes only in the occupa-
tions of otherwise fixed 3d atomic orbitals, LG—= 0
and ~H'=-10Dq for this case.

In the more general theory, however, the transi-
tion occurs between the 2tz, and 3e, antibonding
MO's, which have different radial behavior. The
latter are considerably more delocalized and hence
the total electrostatic interaction among these
largely 3d MO's will be lessened in the excited
state. This is indicated in Table IX, from which
one may observe the greater reduction from free-
ion values in integrals involving the 3e~ MO. The
Coulomb J integrals are very large (-2V eV) and
even small changes in them are significant com-
pared to 10Dq.

These ideas may be examined in the second
scheme of analysis, in which a fixed set of MO's is
selected. From Eq. (2. 8) the orbital energies cal-
culated for a given state are

~(xi) =C'(fl)F(l)C(fl) . (4. 8)

+ 2o.s J(ee) + 2PSK(ee)]/n(e) .
From these equations the H'(fl') may be calculated

At convergence the coupling operators R, and R,
give zero contribution, and specifically (with
2t2, =t and Se, = e),

e,(f) =H'(t)+[2a, J(tt)+2P, K(tt)+2r, K(tt)+ o.,Z(e&)

+ p K(et) + y J(et) + 6,K(e&)]/n(&),
(4. 4)

q 0(e) = H' (e) + [n, X(et) + p, K (et) + r, J(«) + 6& K(«)

—K(et) + 2 Z(e e) . (4. 6)

The first two rows of Table X exhibit values of hH'

and b, G using this "frozen-orbital" method implicit
in Eqs. (4. 4)-(4. 6). In this way we computed 10Dq
and other spectral transition energies given in
Table VI.

At this point, ~H' may be viewed as the transi-
tion energy in the field of the ligand ions plus the
metal-ion core —a conceptual analog of the pure
crystal-field 10Dq parameter which, however, is
seen to be several times larger. The compensating
b, G, as has previously been noted, brings the total
AF. to very nearly the same value for all three
bases.

In this frozen-orbital method, not all the change
in interelectronic repulsion occurs in 4G. That
part involving interaction of 2t~ and Se with the
other (frozen) valence shell MO's (call it AG„„)
may be transferred from ~H' to ~G. For purposes
of comparison with the third method of analysis,
we also give in the Table X computed values of

as the sum of kinetic energy, core attraction ener-
gy, and Coulomb plus exchange interaction with all
orbitals excePt 3e~ and 2t~~; for the specified con-
figuration and state, the n, P, y, 5 coefficients are
obtained from Table III.

Now define AH' = H'(e) —H'(t). Then, neglecting
configuration interaction, b, E for the transition

teed sI tx-neym s'I I

is given by

EE =nhH'+G(x —n, y+n; S'I"') —G(x, y; SI") .
(4. 6)

Using Eq. (2. 8), Table III, and (for reasons al-
ready mentioned for discussion in Sec, V) results
from the REG 'T,„SCF solution, we obtain for the
t e A& t e T~ transition

b, G = —6J(tt) + SK(tt) + 2Z(et) —K(et) + J(et)
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Partitioning
method D

Basis
DSP DDSP

TABLE X. Partitionings of &&~ T2 transition
energies, AE(in ep).

B. One-Electron Hamiltonians

It would be convenient to define a one-electron
operator, 3',«, such that

Frozen orbitals AG

Eqs. (4. 2) and (4. 5)
AE

—4.09
5.08
0.98

—1.65
2.54
0.89

—0.81
1.81
1.00

10Dq = e(3e,}—e(2t„)

= C (3e }3.'„fC(3e }—C (2f~ }x,g~C(2t2, } .
Frozen orbitals
Eqs. (4.7) and (4. 8)

Difference of
independent SCF's ~

AG" —2 81 . —0 41
3.80 1.30

AE 0.98 0.89

—0.68 0.21
1.67 0.68

AE 099 0 89

0.56
0
l.00

0.16
0.86

1.02

4G and ~' are changes in total bvo-electron energies
and total kinetic plus core-attraction energies, respec-
tively.

sH" = aH'- aG„„

aIld

=~(v+ v)

aG' = aG+ zG„„,

(4. 7)

(4. 8)

where a(T+ V) arises only from the difference in

kinetic plus core-attraction energies of the 3e and

2t„MO's, and AG' is the total change in two-elec-
tron energy.

In the third partitioning method, which is relevant
to the "best" transition energies of Table V, we
may define the nH' and AG of Eq. (4. 2) in a manner
conceptually paralleling Eqs. (4. 7) and (4. 8), excejt
that the two respective quantities are defined as
changes in the total kinetic plus core-attraction
energies and in total two-electron energies, cal-
culated in passing between the independently com-
puted Az~ and T2~ states. That is, the frozen-or-
bital approximation is abandoned. The problems
with the 1t3, and 2t„MO's previously noted in the

A„ground state are irrelevant here, since the
total energy quantities employed here are invariant
to any unitary transformation among any occupied
MO's.

The results in Table X vividly display the power
of the variational method in achieving differences
in total energy which are much less sensitive than
their individual ingredients to changes in basis.
They also demonstrate the relatively large degree
to which those ingredients may be changed by the
additional reorganization of density permitted by
doing the independent SCF calculations, even though
the net effect on their sum is small.

It is remarkable that, as the calculational meth-
ods go further from the philosophy of the original
crystal-field theory, the hH' and 5G values created
come closer to its expectations.

(4. 9)

Formally, this is easily done if, following Sugano
and Shulman, X,« is Fock-type operator appropri-
ate to the 4 spin 2tz~ MO spin in the ground state or
the Se, MQ of 4 spin in the excited state. ' The am-
biguity in using an equation such as (4. 9) arises
from the question of what one-electron operator
should be used to determine the covalency coeffi-
cients in the eigenvectors C(3e~) and C(2t„}.

Certain requirements must be met. The one-
electron operators should be those arising from
optimizing a proper N-electron MO wave function.
Sugano and Shulman used the operator 3'.,«of Eq.
(4. 9} also to determine these coefficients. This,
however, is not the operator arising in the Hartree-
Fock equations for either the ground or the excited
state. As pointed out by Sugano and Tanabe, it
lacks the effects of the coupling operators R.

In addition, even if the vector coefficients are
determined from some suitable set of eigenvalue
equations, their character may significantly change
in passing from ground to excited state. In this
event, Eq. (4. 9} no longer is valid.

We have already seen in TaMe VII that, unlike
the e~ MO's, the closed-shell t„MO's from the
ground-state SCF (especially D and DSP) are much
different from those from the I'e' T„SCF and all
yield a poor estimate of the spectrum. On the other
hand, all properties of the ground-state wave func-
tion are invariant to a unitary transformation of the
occupied MO's, in particular, one which brings them

(as close as possible, depending upon the basis) to
the form appropriate to the excited state. We sim-
ply observe that in these systems the t'e T„SCF
gives a satisfactory form. Qffenhartz" has pro-
posed using a more general averaged excited state.
(Note that the reorganization energies recorded in
the first line of Table VI must arise only from al-
terations in other than I'2~ MO's. )

V V

Watson and Freeman' and Simanek and Sroubek
(WFSS} determined the set of covalency parameters
for the 4 spin 2tz~ and 3e~ orbitals from their ortho-
gonality to the occupied 4 spin bonding orbitals
whose antibonding counterparts were empty. Be-
cause this approach depended on being able to com-
pute the covalency parameters for the vacant anti-
bonding orbital from its orthogonality to the bonding
orbitals, it was limited to a treatment of the mini-
mal basis. 10Dq obtained from Eq. (4. 9) was in

poor agreement with experiment, and as remarked
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&) s.lF'I".&="('d}+&'~~1~~I "~~&

&~.IF'I "&="(3d)&&.,I~.& Z&".l~'I "& (4 Io)

&).IF'I).&="(I) &&. I&. I&.& ~&&.II'"I}.&
e (3d) and e (L) are appropriate free-ion M and

ligand orbital energies, respectively. Watson and

Freeman point out that there are several distinct
M orbital energies to be considered:

e (t 3dt) = U+ VA, —14B + 5C = —1.414,
eo(0 Mt) = i7+ VA —108 + VC = —1.2V5,

e (43de) = I'I+ VA —148 + 3C = —1.503,

eo(43de) = l7+ 8A —88 + VC = —0. 381,

where U contains the kinetic energy and core inter-
action and A, I3, and C are the Racah parameters
for the 3d interactions. Numerical values are in

a. u. The last orbital energy is that of a virtual or
unoccupied orbital. It differs markedly from those
for the occupied orbitals by the Coulombic-type in-
teraction integral A =1 a. u. which is four times
larger than any other valence-shell Coulombie in-
teraction. Watson and Freeman used this orbital
energy appropriate to the operator properly de-
scribing the closed-shell bonding MO's, each of
which is repelled by eight d electrons.

By contrast, the 3d orbital energies appropriate
to their Fock matrices for the occupied 3d orbitals
depend on the electronic state of the cluster and

typically are given by

e0(3de, f) = U+ VA+ PB+yC,

where P and y are small numbers. Here, the large

(4. 11)

by Qffenhartz, ' "MDq is obtained as a difference
in the orbital energy of unoccupied orbitals, a some-
what peculiar point of view physically speaking. "

One may readily discover how the difference in
character of solutions to closed- aod open-shell
operators arises, by analyzing the approximate ex-
pressions for ionic Fock-matrix elements given by

3d self-interaction always cancels, giving 7A. in-
stead of 8A, roughly corresponding to the motion
of one 3d electron in the field of the other seven.

Based upon the Hartree- Fock-Roothaan procedure,
Eqs. (2. 8), we show typical converged values of the
e~ and f2~ matrix elements of F„F„(F,+ R,&, and

(F~+R,) in Table XI.
Expected properties are clearly evident in the

f'e~BT„diagonal elements of (F,+R,) and (F,+R,)
which occur in the secular equations determining
the closed- and open-shell eigenvectors, respec-
tively. The M elements of (F,+R,), which weight
the participation of the 3d functions in the closed-
shell MQ's; are much more positive than in F,+ R
and "encourage" the closed-shell MG's to remain
localized on the ligands. The converse is true for
the open-shell MG's. Also evident from these ele-
ments is the fact that the same argument which dif-
ferentiates the open- and closed-sheO 3d elements
also applies to the 2s and 2P' elements, though on a
reduced scale since the integrals involved are
smaller.

For both symmetries the matrix elements of F,
and F, from A3~ are very similar to those from
3T,„for the e~ symmetry. This is to be expected
since there is little difference in the gross features
of the charge distribution for the two states. See
Table VHI. The near equality of the 3dt3 and 2pm3

elements in all the F matrices accounts for the ap-
parent extreme covalency in t3~ MQ's of the A3~
state, This near degeneracy is thoroughly lifted by
the coupling operators in 3T, providing the spec-
troscopically satisfactory form of the 2t2~ orbitals.

Because of its pertinence to semiempirical stud-
ies and its further exposition of the bonding factors
exhibited during convergence during the SCF pro-
cess, we present an MO correlation diagram in
Fig. 2. The figure is based upon the HEGD Tf~
SCF calculation. Energy quantities correlating with
the 3e, and 2t3~ MQ's are taken from the open-shell
equations; others are from the closed-shell equa-
tions.

TABLE M. Pock matrix elements On a.u. ) with and without the coupling matrix elements, from the converged
3A& and Tk„SCF eases QEG DSP ealeulations).

Matrix
element

8g'. 3d8
3d82S
28
3d82po
2s 2po'

2p(J

E2g: 3N
3cg2p&
2pr'

0.8535
—0.0806
—0.5073
—0.0694

0.0164
0.4839

0.4206
—0.0281

0.4674

0.3252
—0.0795
-0.5088
—0.0589

0.0150
0.4782

1.8783
—0.0934
—0.5073
-0.1533

0.0169
0.4872

0.4206
—0.0281

0.4674

0.3890
—0.0583
—0.5032

0.0672
0.0200
0.4947

0.6234
—O. 0800
—0.5062
—0.0643

0.0168
0.4835

0.5700
—0.0300

0.4691

)5~3 3y

0.3776
—0.0921
—0.5946
—0.0819

0.0026
0.3928

0.4067
—0.0337

0.4173

2.0090
—0.0985
—0.5062
-0.1865

0.0169
0.4890

2.1866
—0.0910

0.4703

0.4962
0.0292
0.1117
0.2215
0.1088
1.1109

0.4249
0.0843
1.0375
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(a) (b) (c) (c) (b) (a)

environment. We obtain 11000 cm ' in a uniform
crystal field. This result is encouraging in the

I5-

IO-

0-

5e

QQ e

I5 ~

LU

-0

It24
2ee- CF

de

5.3t~
dt ~I4

2t2e

leg

2p-

2$

light of the different bases used. However, the
number should not be compared with 10aq
=E( Tz~) —E(Az~) = 7250 cm '. Rather it corresponds
to the energy of transition to a pseudo-closed-shell
average of the triplets, ,( T„—+T«}= 9900 cm ',
neglecting configuration interaction.

Similarly, we find large differences in the orbital
energies and vector characters of the 4 and ~ spin
electrons in e~ and t,~. In agreement with the pre-
vious authors, we find that it is not possible to de-
scribe the transition energy in terms of orbital en-
ergy differences. However, while Ellis, Freeman,
and Ros attributed this to large "core-distortion"
effects, we have seen in Sec. V that it is a conse-
quence of trying to describe an open-shell state
from solutions of essentially closed-shell (in this
case closed spin-shell) Hamiltonians in these sys-
tems. The effect is better described as a transfor-

-0.29
40 ~ cle

FIG. 2. MO correlation diagram, from D BEG T „SCF
calculation. Calculated open-shell orbital energy differ-
ences are shown in the figure. See text for definitions of
quantities plotted.

Calculated free-ion orbital energies are shown

in the two outermost columns (a). Diagonal ele-
ments of the F +R matrices are then shown con-
structed at column (b) from Schmidt-orthogonalized
ionic vectors, and at column (c) from the final self-
consistent vectors. The central column indicates
the SCF orbital energies.

Step (a)- (b} shows the repulsive effect of the

negatively charged ligands upon their own and the¹ielectrons. The numbers in the figure indicate
the relative energy separations of the (essentially}
de and dt orbitals. They stand in marked contrast
to the total energy separations between the A„and

T2~ states similarly portrayed in Fig. 1.

V. UNRESTRICTED HARTREE-FOCK RESULTS

One can also obtain an energy minimum for Eq.
(2. 3} relaxing spin restrictions and allowing the

orbitals of different spin to occupy different regions
of space. Because there exists a previous unre-
stricted or spin-polarized calculation on the NiF6

cluster using a one-center basis, ' we present the

results of our solutions to Eqs. (2. 9) for compari-
son. For the ground state A2~ and a pseudo-closed-
shell excited state M, = 1 of (2f~)' (Se,)', the orbital
vectors and eigenvalues are given in Table XII.
Ellis, Freeman, and Ros obtained a total electronic
energy difference between the ground and excited
configurations of 10 500 cm ' without an external
crystal field and 10 800 cm ' with their external

mation among the occupied orbitals. In the case of
a minimal basis, this transformation is unitary and
has no effect on physical observables.

The calculated total valence-shell electronic en-
ergy minus the intercore repulsion for our unre-
stricted calculation is —176.60420 a. u. versus
—176.60302 a. u. for the corresponding spin-re-
stricted results. The energy gained by relaxing
spin restrictions in the valence shell MO's
—0. 00118 a. u. or 256 cm ' is small compared to
transition energies, and although we did not permit
a polarization of the core electrons, it is compa-
rable to the results of Hartree-Fock calculations on
free ions. For instance, for Mn' Watson and Free-
man found —0. 002 a. u. The expectation value of
S is found to be very close to the theoretical value
S(S+1)=2, namely, 2. 0016.

VI. TRANSFERRED HYPERFINE PARAMETERS
AND NEUTRON FORM FACTORS

In this section, we present the results of calcu-
lating the transferred hyperfine parameters mea-
sured in ESR and NMR experiments and the neutron
magnetic scattering factors. The hyperfine param-
eters and scattering factors are calculated in keep-
ing with the detailed SCF theory. We emphasize the
role played by spin-polarization contributions and
two-center or overlap contributions which are usu-
ally not included.

The ligand hyperfine interactions, which were the
first experimental indications of electron delocal-
ization in these compounds, are described by a
Hamiltonian which can be written parametrically as

a =f~ A" 0, (6. 1)

where AN is the hyperfine tensor operator for the
Nth ligand nucleus. In O„symmetry, the two prin-
cipal values of the hyperfine tensor parallel and
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Symmetry-orbital coefficients
Tllls

worknl(Ni) 2s(F)3d, (Ni) Ref. 6MO

TABI.E XII. Unrestricted Hartree-Fock MO coefficients and orbital energies for the ground state of NiF8 (BEG DDSP).

& (in a.u. )

& spins:
la&
2+e
14u

fu

lee
28e
38e
ltd
2t2e

ltd
t2u

P spins:
l~
2ay
lou
2tiu

18e
2ee
1t2e

2t2

ltd
lt2u

0.0492
0.4642
0.0269
0.3972
0.0438
0.0503
0.9217

—0.3988
0.9766

—0.3317

0.0506
O. 4742
0.0287
0.4000
0'. 0883
0.0330
0.2660
0.8856

—0.5730

—0.0084
—0.0285
—0.0710
—0.0467
—0.0277

—0.0124
—0.1068
—0.0734

0.0006

0.9758
—0.2314

O. 9858
—0.2119
—0.0171

0.994V
—0.1134

0.0645

0.9750
—0.2336

0.9848
—0.2120
—0.0374

0.9968
—0.0094

—0.0209
0.7783

—0.0111
0.5681
0.7119

—0.0162
0.3639
0.9295

—0.0251
0.7718

—0.0158
0.5095
0.7468

—0.0209
0.9578

-0.0016
0.6157

-0.7006

0.3137
0.9488
1.0000
1.0000

—0.0016
0.6644

—0.6573

O. 5336
0.8450
1.0000
1.0000

—0.51136
0.35493

—0.51282
0.39089
0.46458

-0.51331
0.25759
0.52789
0.33421
0.48177
0.45792
0.45877

—0.50688
0.36455

—0.50796
0.39582
0.47492

—0.50793
0.46574
0.39294
0.49886
0.45916
0.46003

-0.276
1.052

-0.182
0.814
l.384

—1.023
0.296
0.819
0.392
0.792
0.697
O. 832

—0.272
l.064

—0.178
0.820
1.393

—1.018
0.671
0.455
0.801
0.700
0.834

perpendicular to a bond axis can be formally written
as

A' =Ag = 2An+A, + 2(A, -A,), (6. 2)
B'= A"„=- An+ A, —(A, -A,),

where An = 2gpspp„j(5R~) is the classical dipolar
interaction with the magnetic ion. A, is the Fermi
contact interaction with the ligand nucleus

A, =r~a~~C ~) ~ p.*.(x. 5(H~) x,), (6. 3)
r&s

and A, -A, is the anisotropic dipolar interaction be-
tween the electronic and nuclear spins

A, -A, =@psych, „g p~, (X, IRz, Pz(cos 8,) I
&,) -AD,

ry8

(6. 4)

where the ps, are elements of the spin-density ma-
trix

p=,D, —D, . (6. 5)

The appropriate spin- restricted ligand-field ex-
pressions for A, and A, (A, = 0) are given by

(
=gas&v~(T&) Ixa (R&) I f

A. =g~, rl «(6)(x2nl~i' x2p)~. ,

where f, = —,'C~, ' and f,= —,'C», from the Se, MO. With
the values of the integrals taken from Froese's free-
ion F" functions

I&z,(R } I
=10.726a

(xmPI+L Ix2P) = 6. 405 ao',

Charge distribution

(5(lt)):
(2s)'

(3d) (2s)

(rl, 'P2(cosa, )):
(4s)'
(4p) 2

(3d)
(2P~)'

(2pr)2

(3d) (2PO)

{3d) {2s)

ay
4u
ee
ee

total
a&

ee
4u

ee
8e

sr

0.0398
0.0020

0.0000
O. OOQO

0.0754

0.0888

0.0000
—0.0109
—0.0021

sp

0.0008
0.0038
Or0422
0.0020

—0.0002
—O. Q002

0.0751
0.0063
0.0230
0.1000
0.0032
0.0002

—0.0121
—0.0020

'sr means spin-restricted and sp means spin-polarized
SCF results. Contributions from 3d and 3d& have been
combined.

TABLE XIII. Significant contributions to the expectation
values of the isotropic and anisotropic hyperfine inter-
actions (in a.u. ), from the BEG DDSP 3A& MO's. a
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TABLE XIV. Calculated and experimental hyperfine
parameters, A~ and A~-A, {10 4 cm ~), for NiP~ 4.

Case A A~-A,

F iI

Spin-restricted
Spin-polarized
Spin-polarized

DDSP
DSP
DDSP

29.29
33.26
33 ~ 77

3.144
3.171
4, 791

.OOI

Experiment:
ESR(KMgF3)
NMR(K¹iF )

(Ref. 4)

39.2+0.3
33.9 +0.4

6.9+0.3
8, 1+1.4

~T. P. P. Hall, %'. Hayes, R. W. H. Stevenson, and
J. %ilkens, J. Chem. Phys. 38, 1977 (1963).

.OI

.IO

I.O

one can use the measurement of the hyperfine pa-
rameters to determine the covalency parameters
in the open Se~ MO of the ground state. The validity
of this approach to determining covalency param-
eters in the more general SCF &rave function is in-
dicated by the magnitude of the other significant
contributions to Eqs. (6. 3) and (6. 4), shown in Ta,—

ble XIII. The largest factor arises from spin po-
larization.

In Table XIV, we compare the experimental hy-
perfine interaction parameters to the computed val-
ues which were obtained from Eqs. (6. 3) and (6. 4)
using Gauss-I egendre numerical quadrature for the
integrals.

The agreement obtained in the case of the isotrop-
ic hyperfine interaction must be regarded as fortu-
itous since the effects involving the ligand 1s orbital
are not included. In an effort to approximate them,
we orthogonalized the metal-ion orbitals to the ls
and obtained a large negative correction from the
(X~+'"') ()ta, ) charge distribution, which is similar to
that obtained by Marshall and Stuart. The prob-
lem is difficult because it requires an accurate wave
function at the ligand nucleus and is perhaps better
approached by the method suggested by Ellis, Free-
man, and Ros in looking at clusters of the type
(NiaF' ).

Results for A, —A, are in good agreement with ex-
perimental values from which orbital moment con-
tributions have been removed; they show strong o-
bonding interaction. A calculation based upon 3d
AO's which were merely Schmidt orthogonalized to
the ligand symmetry-adapted functions gave A,
=19.. 39x10-' cm ' and A, -A, =O. 34x10 ' cm '.
These results indicate that significant electron de-
localization, beyond the minimal orthogonality re-
quirement, is needed to explain the magnitude of the
observed hyperfine interactions. We also see from
Table XIV that expanding the basis to DDS~ increas-
es the calculated parameters, in agreement with our
observation (see Table VIII) that this most flexible

F

.OI

.OI

.IO
.20

.50
I.OO

Ni

(c)

F

.OI

.OI

.03

.10

.20

I.OO

FIG. 3. Ground-state spin-density distribution con-
tours in an F-Ni-F plane, in units of ao .. (a) purely ionic
structure; (b) spin-restricted SCF results; (c) spin-
polarized SCF results. Note that net negative spin den-
sity occurs in the upper right region of (c). DDSP BEG
calculations.
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LO

Ne limit our discussion to the spherically averaged
component for which Eq. (6.7) becoines

y, (}t)= f „„p(r)q, (nr) d'r, (6. 8)

fofk) fo(k)

.6
.4

sin 8/X

FIG. 4. Spherical components of the neutron magnetic

form factor: curve (a), free Ni'2 ion; curve {b), free
sr NiF6 cluster; curve (c), sr NiF6 cluster, without

ligand-only contributions; curve (d), sp NiF6 4 cluster,
without ligand-only contributions; E is range of the ex-
perimental absolute forward-scattering factor. Note

change of scale at sin~/X=o. 25. DDSP REGcalculations.

f,(k)= J p(r)e'"' dr . (6. I)

basis leads to the greatest net charge transfer into

the Sd orbitals.
Spin polarization increases A -A, by more than

25%. It has the effect of allowing a greater net 0

spin density in the region of cr bonding, as can be
seen from the net spin-density distribution function.

p(r). Figure 3 shows contours of p(r) in a plane

through the Ni and two F's, Fig. 3(a) for the spin-
restricted ground-state solutions of the free Ni'

ion, Fig. 3(b) for the spin-restricted and Fig. 3(c)
for the spin-polarized wave functions for the clus-
ter Compari. ng Fig. 3(a) to Fig. 3(b) shows the ef-
fect of covalent bonding on the unpaired 38, orbitals.
Comparing to Fig. 3(c) shows the additional contri-
butions from spin polarization, mhich increases the
0 spin density in the region of the 2po ligand orbitals
and is also responsible for the net negative or 4 spin
density in the region of the 2pg orbitals. This also
has important consequences in the calculation of the
low-angle neutron scattering factor.

A. Neutron Magnetic Form Factors

Magnetic Bragg-scattering amplitudes are propor-
tional to the Fourier transform of the spin-density
distribution within a unit cell

where jo(kr) is the zeroth-order Bessel function.
The integrals appearing in Eq. (6.8) were evaluated

by the same method as used in Eq. (6. 4).
Hubbard and Marshall3' studied the effects of co-

valency on the measured neutron magnetic form
factors for ferromagnetic and antiferromagnetic
salts using a Heitler-London LCAO wave function.
They showed that the forward-scattering amplitude
should be reduced by covalent bonding and the form
factor raised above that of the free ion. In simple-
cubic antiferromagnetic salts, the forward-scat-
tering amplitude k =0 measures the magnetic mo-
ment integrated over a unit cell containing the mag-
netic ion. It is slightly reduced because the spin
density which is transferred to the region of the
neighboring ligand ion between two magnetic ions
mill be canceled by contributions of opposite sign.

We used the suggestion of Hubbard and Marshall
in evaluating the integral appearing in Eq. (6. 8) by
subtracting the contributions due to ligand-only
charge distributions.

Figure 4 displays form factors obtained from
various cluster calculations and from the free ion,
curve (a). Comparing the spin restricted curves
(b) and (c) shows the reduction in forward scattering
results from the subtraction of density components
associated only with the ligands. Passing from
curves (c) to (d) indicates the further reduction in
the forward direction produced by spin polariza-
tion. Subtracting the consequent greater 0 spin
density associated with the 2po orbitals leads to the
additional flattening of the low-angle portion of the
scattering curve. Adding contributions from core
polarizations and orbital moments would produce
small changes in the large-angle region.

Comparisons mith scaled experimental form fac-
tors for NiO have previously been given. ' The
ligand-corrected forward-scattering factor calcu-
lated from the spin-polarized wave function falls
within the range recently determined experimental-
ly by Hutchings and Guggenheim, 0. 85 +0.050.

VII. CONCLUDING REMARKS

Encouragingly good agreement with experiment
has been obtained for both the optical spectrum and
magnetic properties. In contrast to most earlier
calculations, we adopted a many-electron point of
view and obtained self-consistent solutions for the
ground and various excited states of the cluster.
The best computed spectrum was obtained from
differences in total energy. However, we found
that the spectrum could almost as mell be computed



22O4 SOU LE 8, RICHARDSON, AND VAUGHT

from open-shell solutions from a single SCF calcu-
lation if that calculation was done for an excited
configuration. Such open-shell MO's give good ap-
proximations even to the total energy of the ground
state.

In these calculations, all th ee- and four-center
integrals have been variously approximated. Most
of these multicenter integrals enter into the calcu-
lation only in proportion to the extent to which the
true wave function differs from a strictly ionic con-
dition. Nevertheless, it is important to evaluate
all three- and four-center integrals in order to test
the effect of these approximations on the computed
spectral transitions. Indications are that these in-
tegral approximations are quite good for this sys-

tern and type of basis. " Furthermore, the calcu-
lated physical properties were not found to be es-
pecially sensitive to the extensions of the basis con-
sidered.

An alternative description of covalent bonding was
given by Hubbard, Himmer, and Hopgood, who

derived essentially a valence-bond-type wave func-
tion as a linear combination of Slater determinants
representing the ionic ground and various excited
"charge transfer" configurations. We conclude,
however, that the open-shell LCAO MO SCF method
applied to discrete clusters provides a satisfactory
explanation of the low-energy electronic spectrum
and the gross magnetic features of nickel fluoride
salts.
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