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The Mossbauer recoilless fraction of solid krypton is calculated in the temperature range
0—85'K, using a simple treatment of the effects of lattice anharmonicity and thermal expansion
upon the phonon frequency spectrum. The model calculation is compared to recent experi-
mental and theoretical studies.

I. INTRODUCTION

In a recent paper' the present author presented
a calculation of the Mossbauer recoilless fraction
of solid krypton using a simple treatment of the
effects of lattice anharmonicity~ upon the phonon
spectrum. The harmonic phonon spectrum used
in I was based upon a sampling of the first Bril-

louin zone using a simple first-neighbor Born-von
Karman force-constant model for the interaction
of the atoms in the Kr lattice.

In the present paper we also include the influ-
ence of thermal expansion upon the phonon frequen-
cies, an effect which shifts the frequencies in the
opposite direction from the anharmonicity correc-
tion included in the earlier paper.
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In Sec. II we present a brief discussion of the
re1.evant theory for the frequency shifts. In Sec.
III the results of the calculations are presented,
and a comparison is given with the recent experi-
mental curve for the Kr 9.3-keV line obtained by
Gilbert and Violet. ' In addition, the present result
is compared with recent calculations due to
Mahesh' who used the Debye approximation for
the phonon spectrum and included only the shift
due to thermal expansion.

II. THEORY

The Mossbauer recoilless fraction f is given by

where the exponential factor is given by

2W= 2R —P —((ns)+ R)
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In the above expression R= Asks/2M is the recoil
energy and s = (q, j) represents a phonon frequency
of wave number q and polarization index j = 1, 2, 3
in the first Brillouin zone. (ns) is the Bose factor
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FIG. 2. Harmonic phonon spectrum of Brown and
Horton (solid curve) compared to the Debye spectrum
used in Mahesh's calculations.

which gives the average occupancy of the sth pho-
non mode, and P= 1/kT.

We assume, as in I, that the effect of anharmon-
icity is to shift each phonon frequency by the amount

where
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is the average energy of a lattice oscillator.

In addition we include the shift in frequency due
to thermal expansion of the lattice, given by

(». 5 d( (e/((» = —y d2Q/Q, (8)
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where y is the Griineisen constant, and AQ/Q is
the relative change in lattice volume due to ther-
mal expansion.

A phonon frequency ~ is shifted to u& = (d(l+ ()
owing to the combined effects of anharmonicity
and thermal expansion, where $ = $,~ /th ~ and

h,~= (A/3NkXe); 52„, =y(&Q/Q). (7)

meERATuRE (os )

FIG. 1. Present calculation including anharmonic
and thermal expansion frequency shifts compared with
experiment and the harmonic calculation of GV. Pres-
ent calculation is the solid curve. GV harmonic calcu-
lation is the dashed curve. Experimental data are in-
dicated by the error bars. Small circles indicate the
Debye-model results of Mahesh.

As in our first paper, the exponential factor given
in Eq. (2) becomes

2(2= 2R(1 2»
' f —

(
— „ t„„),(2»

where g((d) is the harmonic phonon spectrum. s

The effect of both of the above mechanisms can be
described by the formula
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where T = T/(I+ $). In other words, anharmon-

icity and thermal expansion effects reduce the
factor 2W by 1+ $, and shift the temperature at
which 2W is to be calculated using the harmonic
spectrum.

IIL CALCULATIONS AND DISCUSSIONS

In Fig. 1 we have plotted the Mossbauer fraction
e ~ including both thermal expansion and anhar-
monicity corrections. The harmonic phonon spec-
trum of Brown and Horton mas used. The con-
stant A appearing in the anharmonic shift was taken
to be 1.0 & 10 as suggested by calculations of
Feldman and Hortonv on corrections to the lattice
heat capacities in the solidified inert gases.

To calculate the shift due to thermal expansion,
we have used the experimentally determined Kr
Gruneisen constant plotted in Fig. 25 of Klein,
Horton, and Feldman (KHF). In addition, the
volume shifts &II/O are taken from the experimen-
tal plots in Fig. 17 of KHF.

For comparison we have plotted the Mossbauer
fraction calculated by Mahesh, ' mho based his cal-
culations on the Debye model. The value of the
Mossbauer characteristic temperature H„used by
Mahesh was obtained from the data of Pasternak
et a/. , who estimated the Mossbauer temperature
to be 37 'K. This value was obtained at 50'K,
however, and when extrapolated to 0 K according
to the relation 8»--8„(1—PyT), Mahesh found
8~= 42 K.

Because of the differences between the phonon
spectrum used here and that obtained from the
Debye model at low frequencies, the Mossbauer
fraction at 0'K obtained by Mahesh is in better
agreement with the GV data. In Fig. 2 me present
a plot of the Brown-Horton spectrum with the
Mahesh-Debye spectrum superimposed upon it.
It is noted that the anharmonic shift in the present
model is nonzero at 0 'K, while the shift due to
thermal expansion vanishes there. Nevertheless
the effect is not large enough to shift the curve by
a significant amount from the harmonic value.

For higher T, the Mahesh curve falls mell below
the GV data. Mahesh's shift includes only thermal
expansion effects and consequently overestimates
the anharmonic correction, which is smaller if
we use the experimental data to calculate $gh gy.

On the other hand, our present curve falls signif-
icantly above the GV data. In our earlier paper,
the temperature shift was incorrectly included in
the exponential factor, and if included correctly

it would have shifted our curve farther away from
the GV curve. However, over the entire tempera-
ture range the shift due to thermal expansion is
larger in magnitude than the anharmonic shift, so
the net effect is to shift the anharmonic curve
closer to the experimental one.

We note that if, in addition, Mahesh's model
included the anharmonic shift, the net effect would

be to raise the curve and bring it up closer to the
GV curve. In effect his inclusion of only thermal
expansion has overemphasized the shif t.

As mentioned earlier, Mahesh's calculation is
based on a Debye approximation, using a charac-
teristic temperature of 42 K which is obtained
from Pasternak's experimental curve. In fact GV
fit their experimental data to a Debye model with
characteristic temperature 25 'K. The Brown-
Horton spectrum leads to a value of 63'K for the
characteristic temperature. Neither this calcula-
tion nor Mahesh's is able to account for this dis-
crepancy.

In summary, we have presented a calculation of
the Mossbauer fraction of solid Kr, including the
frequency shifts due to anharmonicity and thermal
expansion. A comparison with the Debye-model
calculations of Mahesh show that the curve so ob-
tained does not agree well with experiment or with
his curve. It is noted that the inclusion of anhar-
monicity in Mahesh's calculation would shift his
curve into much better agreement with the experi-
mental results.

In conclusion, we stress that the problem is by
no means solved; any explanation which might be
forthcoming must explain the discrepancies be-
tween the Debye temperature obtained by fitting a
Debye spectrum to the 0 'K value of f, and the
Debye temperature found from the phonon disper-
sion curves, as the Brown-Horton spectrum mas
determined. As noted by the present calculation,
the combined effects of the anharmonic shift and
the shift due to thermal expansion is to shift our
theoretical curve closer to the GV curve. On the
other hand, the shift does not account for the above
discrepancy in Debye temperatures and leaves the
basic problem still unresolved.
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An approximate Hartree-Fock self-consistent-field (SCF) calculation has been carried out
for the (NiF6) cluster. Exponential-type orbitals with four independent radial functions
were employed for the nickel 3d electrons. two radial functions for the fluorine 1s and 2s
electrons, and one for the fluorine 2p electrons. A core potential was used to represent the
metal (1s-3p) electrons. All one-electron integrals and all one- and two-center two-electron
integrals were evaluated. A closed-shell SCF program was used with orbital occupation num-
bers adjusted to approximate the open shell. The results of comparisons at different stages
in the convergence of the SCF iteration show large differences in 10Dq and the degree of de-
localization. This implies that some of the earlier simplifications of the SCF treatment are
not valid; that is, significant ligand (2s-2pg mixing is found and the metal 3d functions make
an important contribution to the bonding orbitals.

I. INTRODUCTION

Although crystal and ligand field theory have
been highly successful in fitting experimental data
for transition-metal complexes when used in a
semiempirical framework, ' attempts to study such
system from a fundamental theoretical viewpoint
have been less satisfactory. Each new calculation
has revealed that parts of previously used theoret-
ical models are inadequate. As a result, a gen-
erally accepted description is not yet available.

A number of recent efforts ~ have concentrated
on a common subject, the (NiF6) cluster of crys-
talline K¹iF„because of the detailed experimental
results that exist for this system. ' The pioneer-
ing calculation of Sugano and Shulman was soon
followed by that of Watson and Freeman. 3 The
disagreements between these two studies, both of
which involved severe approximations, stimulated
a series of papers that attempted to analyze some
of the possible shortcomings. ' ' All of the papers
followed closely the work of Sugano and Shulman
in that only an approximate self-consistent-field (SCF)
calculation or its Heitler-London analog was at-
tempted, that a minimum basis set was used, that
the inner-shell Ni electrons were replaced by a

core potential, and that only two-center two-elec-
tron integrals and some three-center one-electron
integrals were included. More recently, Ellis,
Freeman, and Ros" and Gladney and Veillard"
have carried out limited basis set SCF calculations
involving all the electrons and free of additional
approximations. Since the former used a one-
center (Ni or F) expansion, whereas the latter em-
ployed Gaussian functions, it is important to have
an exponential orbital SCF calculation for com-
parison.

In this paper we report the first step in such a
treatment of the (NiF, )' cluster of KNiF„with
primary emphasis on the analysis of the approxima-
tions introduced in earlier studies. A basis set
consisting of four d orbitals on Ni and the minimum
set for the ligands is used; the j.s 2s 2p 3s 3p
core electrons are replaced by an effective poten-
tial. Because of the magnitude of the work re-
quired to evaluate the integrals over these exponen-
tial orbitals, the calculation includes all one- and
two-electron one- and two-center integrals, and
one-electron three-center integrals, but neglects,
all two-electron three- and four-center integrals.
Although this approximation is a limitation on the
relation between the present work and that of


