
PHYSICAL REVIEW 8 VOLUME 3, NUMBER 6 15 MARCH 1971

Ionic Raman Effect. II. The First-Order Ionic Raman Effect*
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A theory previously developed for the Baman scattering of infrared light by the modulation
of the ionic contribution to the polarizability of a crystal by the displacements of the atoms
from their equilibrium positions has been applied to the calculation of the scattering efficiency
of a pure crystal having a fiist-order electric dipole moment and cubic anharmonicity in the
potential energy. The requirements on crystal symmetry for a nonvanishing scattering effi-
ciency are developed, and it is shown that only noncentrosymmetric crystals can exhibit the
effect. The symmetries of the ionic Baman tensor are presented for the 21 crystal classes
lacking a center of inversion. A numerical estimate of the scattering efficiency is given for
the case of gallium arsenide.

I. INTRODUCTION

The Baman scattering of light by phonons in a
cxystal may be viewed as arising from the modu-
lation of the crystal polarizability by the phonons.
This modulation can take place in two ways. First,
the ionic part of the polarizability may be modu-
lated by the atomic displacements. Second, the
electronic part of the polarizability may be modu-
lated by the atomic displacements. If the incident
and scattered frequencies are in the visible region,
the first mechanism is usus. lly negligible compared
to the second. '3 However, with the development
of infrared lasers such as the CO~ laser, it is now

possible to carry out Baman-scattering experi-
ments in which the radiation frequencies are com-
parable to the energy separations of adjacent vi-
brational levels. Under the latter conditions, the
contributions from the modulation of the ionic part
of the 'polarizability may be significant.

For R harmonic cx'ystRl wltI1 R first-older elec-
tric dipole moment, there is no Baman scattering
arising from the ionic polarizability modulation
because a linear system cannot mix frequencies.
In a previous paper a general formulation of the
ionic Bamap effect was developed, and a specific
calculation was presented for the case of U centers
in CaF, vibrating under the influence of cubic and
quartic terms in the potential energy. Only a
first-order electric dipole moment associated with
the localized mode was considered. It was found
that an observable scattering should be observable
under several conditions. These include a x'eso-
nance scattering with frequency shift equal to the
fundamental of the localized vibrational mode when
the incident frequency is twice the localized-mode
fundamental, and a resonance scattering with fre-
quency shift equal to twice the localized-mode
fundamental when the incident frequency is three
times the localized-mode fundamental.

In the present paper, we discuss ionic Baman

scattering by one™phonon processes from a pure
crystal possessing a first-order electric dipole
moment and cubic anharmonic terms in the crystal
potential energy. Crystal symmetry requirements
for a nonvanishing effect are developed. The re-
sults of some illustrative calculations are pre-
sented.

II. INTENSITY OF SCATTERED LIGHT IN FIRST-ORDER
IONIC RAMAN EFFECT

The intensity of light scattered per unit solid
angle into the frettuency interval (co„z,+ did, ) by
the modulation of the ionic part of the crystal po-
larizability tensor by the atomic displacements
cRn be expressed Rs

f((g, )d(g, = 'q Z tt, ttti ~I(Q) E„E„'dttI, . (2, 1)
at/ yX

Here c is the speed of light, n is a unit vector
which defines the polarization of the scattered
llgll't, Rnd E Rlld E = (E )+ RI'e 'tile RIIlplltudes of
the positive- and negative-frequency components
of the incident light. It was shown in Bef. 3 that
the tensor i ~„(Q) is given by

+00 p cO

(g) ~ ds &- iso dt &- trot yt, dt's

-trout'

- t t'2'

x([m, (s t), m, (s)j [m'„(O)—, m'„(- t') ]) .
(2. 2)

The frequency Q= ~, —& is the shift in the frequency
of the light on scattering, where ~ is the frequency
of the incident light. The operator M (t). is the II.'

Cartesian component of the crystal-dipole-moment
operator in the Heisenberg representation. The
angu&ar brackets ( ) denote an average over the
canonical ensemble described by the vibrational
Hamiltonian of the crystal. The damping constant
y is introduced phenomenologically to describe
the broadening of the vibrational levels of the crys-
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P„,(s f) =(I/K)[M (s —f), M~(s)] . (2. 3)

In terms of this operator we define an operator
P„~(s l(0) by

P„(s~(o)=f ate '"' "'P„(s~t) .
The expression for i „s~(Q) which provides the
starting point for the calculations to be described
in this paper can now be written as

(2. 4)

p
oo

i „,„(0)=— ds e ""(P„(s
~
(o) P'„(0

~
(u )) . (2. 5)

7T J

Because the crystal-dipole-moment operator
M, (t) can be expanded in powers of the displace-
ments of the atoms from their equilibrium posi-
tions, or equivalently in powers of phonon creation
and destruction operators, it follows that the
operator P„()(s ~ ar) can also be expanded in powers
of phonon creation and destruction operators.
From the form of the expression for i „8~(Q)
given by Eq. (2. 5), it is seen that if we are inter-
ested in the scattering of light by one-phonon
processes, we require the contribution to the op-
erator P), ~(s la&) which is linear in phonon creation
and destruction operators. It is to the determina-
tion of this contribution that the major part of
this paper is devoted.

In this paper we will be concerned with evaluating
Eq. (2. 5) for i „~,(Q) in the case where the crys-
tal possesses a first-order dipole moment. This
is because crystals lacking a first-order dipole
moment can easily be shown to lack a first-order
ionic Raman effect. Thus we assume that the n
component of the crystal dipole moment can be
expanded in powers of the displacements of the
atoms from their equilibrium positions according
to4

M =Z M„(lK)u„(lK)

+2 Z Z M~~„(IK;I K )Q~(lK)sp(f K )+'''
frey 5~v

2. 5)
In this expansion u„(IK) is the p, Cartesian compo-
nent of the displacement of the Kth atom in the lth
primitive unit cell. The coefficient M „(IK) is the
transverse effective charge tensor of the atom

tal. However, we will treat it here as a conver-
gence factor to give meaning to the integrals over
t and t', and will set it equal to zero at the end
of the calculation. Our result will consequently
be inaccurate in the immediate vicinity of the phonon
frequencies at which i„„~„(A)considered as a func-
tion of + has resonances.

For the purposes of this paper we find it con-
venient to rewrite Eq. (2. 2) in an alternative,
more compa. ct, form. We first define an operator
P„q(s I f) by

(IK), which governs the strength of the infrared
lattice absorption by the crystal. It is the contri-
bution to i,„z ~(&) from the first term on the right-
hand side of Eq. (2. 6) that we will be concerned
with here.

In evaluating P~ ~(s l(f), defined by Eq. (2. 3), it
is convenient to carry out the normal coordinate
transformation from the atomic displacements and
their conjugate momenta to the corresponding
phonon operators:

u, ((~)=( 7 ' - „,e' -
A;, , (2. Va)

e (K tkj) 'f, .,(~)

2NM„g ) (o~(k

1 (em )'~'
P.(IK)-.

~

"~ Z [(u,(k)]'" (Klkf)"" '"'&~

(2. Sb)

Here N is the total number of primitive unit cells
in the crystal, M„ is the mass of the ~th kind of
atom, and x(l) is the position vector defining the
location of the Ith primitive unit cell. &oJ(k) is the
frequency of the normal mode of vibration defined
by the wave vector k and branch index j, and
e (K Ikj) is the corresponding unit polarization
vector. The allowed values of the wave vector k
a,re defined by periodic boundary conditions on the
displacements, and are uniformly and densely dis-
tributed throughout the first Brillouin zone of the
crystal. The phonon field and momentum opera-
tors Ag& and Bp&, respectively, are defined by

Ag] = bg) + b'„"~ =A'„"~,

&rg = br) —b'-)
y

= —8'-rg

(2. 8a)

(2. 8b)

We now proceed to expand this operator in powers
of phonon fieM operators.

where b„'-& and bg& are creation and destruction oper-
ators, respectively, for phonons in the mode (kj).

Using Eq. (2. Va) in the first term on the right-
hand side of Eq. (2. 6), we obtain for the first-
order dipole moment the result that

M~ =Z~ M„(j)Aog, (2. 9)

where

M. (j)= (- ZM. „(K) ' „, . (2. 10)
5N '~~ e~(K )Oj)

K

In obtaining Eqs. (2. 10) we have used the fact that,
owing to the periodicity of the crystal, the effec-
tive charge tensor M (IK) is independent of the
cell index l. In what follows we denote this tensor
by M ~(K).

With the aid of Eq. (2. 9) we can express the
operator P~~(s tt) in the form

P„(s
~
f) = ZM„(q) M, (q') [a;,-(s f), W5, , (s)] . -1

B'
(2. 11)



IONIC HAMAN EFFECT. II.

d
aff Ak) IAk)i 8] @d)(k) Ba) i (3. 3a)

d
2)I —„82,= [Bf„a]=ho, (k) Aa,

+6~ ~ V(-kj' pasa' pasa»sa;As. ..
g2S2 gs 3

(3. 3b)
we obtain the following results:

kj )

(1& . r
Aa) ——21d) ik) BI J i

(2) . 2A„-, =[-2Id, (k)] A-„,

(3.4a)

(3.4b)

6IiI~(k) Z V(-kg;pasa, 'pasa)As s As, ,
gpSp 53S3

(3.4c)

III. EVALUATION OF P»(sl~)

In the harmonic approximation, the commutator

[A5&(s —f), As&. (s)] is a c number, independent of
s. Consequently, we see from Eqs. (2. 4) and

(2. 5) that in the harmonic approximation crystals
possessing a first-order dipole moment do not

display a first-order ionic Raman effect. A first-
order ionic Raman effect in such crystals owes
its existence to the anharmonicity of the interatomic
forces.

In this section we obtain the operator P12(s 1 &@)

to.first order in the cubic anharmonic force con-
stants of the crystal, that is, to the lowest non-
vanishing order in the anharmonic force constants.
This approximation suffices to give the intensity
of light scattered by one-phonon processes.

We begin by expanding the operator A5&(s —f)
in a Taylor series in powers of t to obtain for
P12(s If) the formal result

~ M&(j) M, (j')
1 ' (- I)"f"

0

&& [A5I,"'(s), Ag, (s)] . (3. 1)

The superscript (n) denotes the nth derivative with
respect to the argument. The motivation for
making the expansion (3.1) is that through its use
we have to deal with equal-time commutators only.

To obtain A-'"'(s) to the lowest nonvanishing order
in the anharmonic force constants we proceed as
follows. From the Hamiltonian of the crystal
through cubic anharmonic terms,

H=Q %Os(P) bss IIss+ Z Z Zi V(P,s„Pasa, Pasa)
gs &(s) $ps3 $3$3

xg&, g&, g&, , (3.2)

and repeated use of the Heisenberg equations of
motion

(3)
As) = [—2Idd (k)1 8'k3

62IdI (k)
+ Z Z V(-kj;paSai paS2)

gpSg $3$3

x [&s (pa) Bs s As s + (usa(pa) As, Bs, ],
(3.4d)

(4) ', 4
Aa, =[-iId, (k)] A„-,

6IiI~(k)
+ Z Z V(- kj~ paS2~ paS2).

&2a &33

&& f [(0)(k) + Ids (Pa) + IiIs (Pa)] AS s AS s

+ 2IiIsa(pa) Idsa(pa) Bsasa Bsasa]'I (3.4e)

AITJ [ 2Idg(k)l Aag

I6Q) (k)
+ ' Z Z V(-kj;pasa, pasa)

y~S~ esse

[f„(P s; P s )As, A;,
+gas(pasar paS2) BSasa BSasa] i

A(an+1) [ 2~ (k)]2n+1 8kj

(3. 5a)

+ ~ & ~ V(-kj;Iasa;pasa)6koz(k)

gp$2 g3$3

& [&2..1(Pasa, Pasa) BS...A;...
+~an~1(PaSaiPasa)AS s S s l '32 33 (3. 5b)

The coefficients fan gan Iaan+1&, P2n+1 in these ex-
pressions also depend parametrically on the
mode index (kj). However, to simplify the notation
this dependence will not be indicated explicitly.

The coefficients fa„, ga„, &a„.„and Pa„„ in Eqs.
(3. 5) are related by recurrence formulas. The
latter are easily obtained by equating the time de-
rivative of Eq. (3. 5a) to the expression for
AsI

"'"given by Eq. (3.5b), and by equating the
time derivative of Eq. (3. 5b) to the expression
for AI "'2' obtained from Eq. (3. 5a). In this way
we find that

~an+1= &afan &agan i (3.6a)

In obtaining these results we have made-use of
the fact that the Fourier-transformed cubic anhar-
monic force constant V(kj; k'j'; k"j") is completely
symmetric in the indices (kj), (k'.j'), and (k"j").
In each case we have retained all terms linear in
V(- Rj; pasa; pass) and have neglected all higher-
order terms.

We see from these results that the even- and
odd-order derivatives have different structures
and can be written generally as
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P2n+1 &sfan ~ag2n ~

/ ~ ~2n
f2n+2 ~ 3& ++2 2n+1+span+1 &

g2n+ 2 && 3 2n+ 1 + 1&&2 P2n+ 1

(3.6b)

(3.6c)

(S.6d)

~{I [~.,$ }- .,$,}]"5[I.',(}}x']

=M [(u, (k}, (o„(ps), (u, (p, );x] . (3. Ilc)

In writing these equations we have omitted argu-
ments (p,sa; pass) in the interest of simplifying the
notation. We have also employed the abbreviations
&o, va, and &os for &u1{k), ~, (pa), and &u, (ps), re-
spectively. These equations are to be solved sub-
ject to the initial conditions, which follow from
Eqs. (3.4):

f3=0,

fa = —1, '

go=0

g2=0,

&( =0, P( =0,
+3=&a ~ Ps=1»s ~

f4 + +1s 2+ +3) A4 2+2+3 '2 2 2 (3.7)

The system of Eqs. (3. 6) and (3. 7) is readily
solved by the method of generating functions. We
first eliminate na~, and pa~, from Eqs. (3.6c) and

(3.6d) by the use of Eqs. (3. 6a) and (3.6b} to
obtain the pair of coupled difference equations

fa 2=-(-I}"~'"-»a~sga.-( a+ s)fa. ,

%'e note that because

F(p2s 8', ps s3', x) = F$3s3', pRs aj x}

G(Pass, Pss, ; x) = G $3 s, Pass, x)

we must have that

f2n$RSaj Pass} fan$3Ssj Pa 8)

gan$2 Saj p3 S3) =gas $3 S3 j pa S 2}

(3. 12a)

(3. 12b)

(S. 13a)

(3. 13b)

Vfe now introduce two more generating functions

A$2saj Psssjx) = Zr o'ans1$2saj P3s3}x ys (S. 14a)
n330

B(paSaj paSsjX) = E pang&$2Saj p3S3)x
'

(3. 14b'}
n

Multiplying both sides of Eqs. (S.6a} and (3.6b} by
x "' and summing on n from 0 to ~, we obtain the
relations

R2n+2 2+2+sfan (+2+ +3}A2n
2 2

(3. 8a)

(3. 8b}

A(x) = —&a~F (x) —~3xG(x)

B(x)= —1»sxF(x}—&uaxG(x}

(3. 15a)

(S. 15b)
We next introduce two generating functions
F$asa'pass, x} and G(pasa; p, s,;x) by

(Pa a'Ps s'x)= +~ fan$asa'Ps 3)x, (3. 9a)
n=O

G(P2s2', Pss3, x) = Q gan(Pasaj Pass)x " . (3 9b)
n880

If we now multiply both sides of Eqs. (3. 8a) and

(3. 8b} by xa" and sum on &3 from 0 to ~, then with
the aid of the initial conditions (3. 7} we find the
equations satisfied by F(x} and G(x):

It follows from these results and Eqs. (3. 11) that

~..$2) '{1+[~'.,$2) —~'.,$3)]X%

M[~~(k), 4sa(PR},~s3$3}jx]
(3. 16a)

&s3$3)X {1—[1»»$2) —4&»$3}]Xj
M[&u (k) ~ (p ) & (p ) x]

(3. 16b)

-2+ ~2+~3 G(x)+2~8&usF(x}=0,
1

(3. 102,}

We see from Eqs. (3. 16) that

A{pasa; p, ss;x) =B(psssj pass;x) . (3. 17)

1 2 2 1
2~2~3G(x)+ w+1da+~s F(x)= —

a a (3. 10b)x 1+x
/

The solutions of these equations are

.$}, .$); ]
(3. 11a)

2~ sa(Pa) &43$3)x
$R alps st M[~ $} + $ ) + $ ).x]

(3. 111)

where

M [ 1(k» ~ (P ), ~. $ ) ]

It follows, therefore, that

+ass&(paSaj P3S3) = pa~&$3Ssj pasa) . (3. 18)

What makes the method of generating functions
so useful in the context of the present problem is
that, as we shall now see, it is the generating func-
tions A(x), B(x}, F(x), and G(x) which appear in
the final expression for i „3„(Q},and not the coef-
ficiellts nan+1 ~2&nl fan and g2n obtained from them.

From Eqs. (3. 5) we obtain the following needed
commutators, exact to first order in the cubic an-
harmonic force constants:

A &an& 24&, (k)[A;, , A &l, ] = - ' Q V( gjkj .p )
gS

= {1 [~, $,)+ (p,}] ]. X ga„(kj', pS)B;, (3. 19a)
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[g ja))N 11 g ] 2[
.

(k)]()))ale} 24$(()I(k)
H'+

"~1'(- kj; kj'; ps) (Is~I(kj';ps)&«, .

(3. 19b}

The symmetry of the V coefficients in their argu-
ments, and the relations (3. 13b) and (3. 18) have
been used in obtaining Eqs. (3.19}.

Combining these results with Eq. (3. 1), we ob-
tain for the operator P„I)(sl f} the expression

24
+ ~ 5 Ml(j)M()(j')(01(0)P'(Oj' oj' Oy)

s 2 (~ )
),"a.(ass', os "»sa-(s)

Re+1 .-'
(as+ ))) sa a(0-)'; S)")s)as (s)). . (8. RO)

The first term on the right-hand side of this ex-,
pression is the operator P„z(s It) in the harmonic
approximation. It is seen to be a c number, inde-
pendent of s, and therefore cannot describe the
inelastic scattering of light. %e sall drop this
term in all that follows.

The particular form of the anharmonic contribu-
tion to PlI)(s It) stems from the fact that the coef-
ficient V(kj; k'j'; k"j"}vanishes unless 4+k'+k" is a
translation vector of the reciprocal lattice. If both
k and k' are zero, then'" must also be zero, be-
cause this is the only reciprocal-lattice vector that
a wave vector confined to the first Brillouin zone
can equal.

Tile integration ovel' f 111 Eq. (2.:4) call be carried
out immediately by the use of Eq. (3.20), and we
obtain for the operator Pl()(s I &) the simple result

Paa(sls)= —7 Ma(J)Ma(s )~a(0)v(0);Os';01) - 2 " . ' „B)s(s) a a
—Aiis'(s))p+ i(()

= ' E ()'pa'(S ) ")S)aa(s) —S'ass'(S' ) s)&a!(s))

PI» jI„43~ g Mdj'P4(j")~I (0)~I-(0}~I(0)l'(oj';oj";Oj)
N' r - [ '(())-"'H[ -(())+ (1))]'- 0a -(t))- (t))]'- '] ' (3.22a)

24 E Ml(j'}ikf~(j")~I (0)~I ~ (o)l~'I"(0)- ~I(~) —~'] ~(oi', 6";Oj)
[~I (f}-~']([~I-(I))+~I(t))]'-~'k 6~1"4-~I(t)}l'- ~'] '

In obtaining this result we have used Eqs. (3. 9b),
(3. 11), (3. 14a), and (3. 16a), and, as promised,
have set the damping constant y equal to zero in
Eqs. (3.22).

In the next paper in this series, which is devoted
to the second-order ionic Raman effect, the method
of this section will be applied to obtain the contri-
bution to the operator P„II(s I(()) which is of second
order in the phonon operators Ag& and By&.

The results of the Appendix show that the coef-

I

ficients Pllz'(j I(()) and P~@()l(j I I0) are real, because
the coefficients M, (j) and V(0j; Oj'; Oj") are red, .
However, it should be noted that they are not sym-
metric in the indices I). and P. They become sym-
metric in 1). and P when the frequency of the incident
light ~ is much greater than any of the phonon fre-
quencies.

IV. COEFFICIENT ia~pz(Q)

When we substitute Eq' (3.21) 111'to Eq (2. 5), the
tensor i „(1„(fl)takes the form

d'e ""[P~Y(j I(n»,".'(j'»)&&61(s}&i&(0)&-P."('(j I( }P„"".(j'I(0}&&61(s)&51 (o)&
gg«

aon

-P'"(jI )P"'(j'I )&&lb( )& (o)&+P"'(jI )P,'"(j'I )&&5( )&5 (0)&] (4. 1)

The four correlation functions appearing in this
expression are not all independent, and their
Fourier transforms can all be expressed in terms
of the Fourier transform of the last correlation
function. This last function can be obtained from
the general result thats

dse"~~" A. j,~s A„~«0

, DII.(k; 0+i0) D11.(k; A i0)--
:211'

II�(Q)
Dy1s (ka 0)
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where D&&.(k; z) is the analytic continuation to the
complex z plane of the Fourier-series coefficient
(phonon propagator)

D». (k;i&o,) =—
~

due ' "&"(T„e""A»e ""2 . )
3o

dse ""(&»(s)& „-q. (0})
J-'

,k)
2mPhn(0) D». (k; 0), (4. 4b)

(4. 3}
In this expression, a&, = 2'/Pif; l is an integer and

p= (ksT), where ks is Boltzmann's constant and

7 is the absolute temperature. T„ is the usual
ordering operator for pure imaginary times. With

the aid of the equation of motion (3. 3a) we can read-
ily establish the results that

ds e- ~ (W» (s) a I, (O) )

d, , "-('a»(s) & „-;(0)}
4~ 00

0
( ) ( )

21/ p8'n(Q)Dyy ~ (k' Q) (4 4c)
I

Substituting the results given by Eqs. (4. 2) and

(4. 4) into Eq. (4. 1) and recalling Eq. (2. 8), we

obtain for i „z~(0) the result that

i„„s. q (0) = Pkn(0}~5" P~ g (j (u, 0)P„„(j ~
~, 0)D», (0 0)

jg'
(4.6)

2gPhn(0)D». (k; 0),
~~ ~ (k)

(4.4a) where

+~OUI~ 0}= —pie (jI+)+p~s(jI&)

24 g ~~ (0)~~"(0) iIf& (j')& (8j")V(0j';Oj"; oj) [co';. (0) —(u', (0)+20&@—&o ]I', ," [a),'. (0) —(u'] ([a))"(0) + (o, (0)]' —(u'H[(oy (0) —(u, (o)]' —(u']
(4.6)

The harmonic approximation to D&r (0; 0) suffices
for a qualitative description of several features of

the spectrum of scattered light. In this approxima-
tion we have that

D», (o; 0) = (6», /Pa) [6(0 —~, (o) ) -6(0+ ~, (o))] .

(4. V)

Consequently, we find in this approximation that

i.„,„(Q)=n(0)Z, P„(j~
~, 0)P„.(j I ~, 0)

&& [5(0—(u, (o)) -5(0+ (u, (o))] . (4..8)

The first term on the right-hand side of this equa-

tion describes the anti-Stokes scattering processes,
while the second term describes the Stokes pro-
cesses.

Because the coefficient P„a(j I &a, —&o&(0}) is un-

equal to the coefficient P z(j I &u, —&u~(0) ), as can be

seen from Eq. (4. 6), it follows from Eq. (4. 8) that

because of this the intensities of the Stokes lines

are different from those of the corresponding anti-

Stokes lines, quite apart from any differences due

to the different temperature factors [n(v&(0))+1 and

n(a&&(0)), respectively] associated with these two

Rinds of scattering processes.
If enharmonic contributions to D&&. (0;0) are taken

into account, the theory presented in this paper is
capable of describing interferences between one-

phonon scattering processes if among the k= 0

optical modes of the crystal two or more modes
with different frequencies are found which belong to

the same irreducible representation of the point

group of the crystal. By taking into account anhar-

monic contributions to 8;;.(0; 0) it is also possible
to describe interferences between one- and two-

phonon scattering processes within the framework

of the present theory. Some of these effects will

be discussed in the next paper in this series.
We conclude this section with an estimate of the

scattering efficiency of the first-order ionic Raman

effect. The calculation is carried out for the Stokes
line in which a long-wavelength TO mode is excited
with a resonance of the incident light at twice the

To-mode frequency. Specific numerical results
are obtained for a simplified model of GaAs at

0 'K with parallel polarization.
Among the ingredients required for the calcula-

tion is the anharmonic coefficient V(0 j; 0 j'; 0 j")
for which we use the Peierls's approximation

V(Oj Oj' Oj")= —,',X"'I'xk)"'

x[»(o)~,, (o)&o,"(0)]'"C3, (4. &)

where C3 is taken to be a constant. For an order-
of-magnitude estimate of I &3 I we take the value

1&&10' erg ' appropriate to NaC1.9 While this

value is probably not correct for GaAs, we feel

that it is close enough to give an order-of-magni-

tude estimate.
For the case under consideration, the integrated

scattering efficiency per unit length per unit solid

angle can now be written as
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f S(Q)dQ=(&o,'/c'V) P„(T v, -Idr) ~, (4. 10)

where

e*'C ri~
M~~

The question naturally arises, what kinds of
i

crystals can display the first-order ionic Raman
effect'? From Eq. (4.5) we can say that the effect
occurs for crystals for which the coefficient

(0"- 2 4tJT

(0

(0
14

(0-l6

400
I I I I I I I

600 800 (000 (200
(cm ')

FIG.. 1. Scattering efficiency for Haman scattering
from the fundamental YO mode of GaAs plotted as a func-
tion of the incident light (~z =272 cm ').

e* is the so-called Born effective charge, M is the
mean mass of the gallium and arsenic atoms, N
is the number of unit cells in the crystal, and ~~
is the long-wavelength TO-mode frequency. For
le* twe have taken the value 2. 23e, while for

ur& we have taken the value" 272 cm '.
The calculated result for the integrated scatter-

ing efficiency as a function of incident frequency
ur is shown in Fig. 1. One sees that the efficiency
is very low except in the vicinity of the resonance
at co = 2~~. At this resonance, the scattered radia-
tion has the frequency +T and hence will be absorbed

-by the crystal, thus complicating its experimental
observation. In order for the ionic Raman scatter-
ing to be observable, it must be greater than the
ordinary scattering due to the modulation of the
electronic polarizability by the ionic motion. We
have estimated the integrated scattering efficiency
for the latter process using Bennett's' calculated
values for the Raman tensor and have found the
value 1.5&&10 cm 'sr ' at +=2+~. From this
result we see that the ionic Raman scattering can
only be observed in the immediate vicinity of the
resonance.

V. SELECTION RULES

P„z(j ( &d, Q) defined by Eq. (4, 6) is nonzero.
The results obtained in the Appendix show that

the coefficient V(0j; Oj'; Oj") vanishes in general
if any of the branch indices j, j', or j"refers to
any of the three acoustic branches of the phonon
spectrum. Thus P, II(j (&d, 0) vanishes unless the
index j labels an optical mode. The coefficient
V(0j; Oj', 0 j")is also shown to vanish if the crystal
possesses a center of inversion. Consequently
PI, II(j ( &u, &) is nonzero only for optical modes in
noncentrosymmetric crystals.

We now replace the single-branch index j by the
triple index (saA) as explained in the Appendix,
where s labels the irreducible representation of the
point group of the crystal to which the mode j be-
longs, ~ distinguishes the partner functions in the
case where the representation s is multidimension-
al, and a is a repetition index which differentiates
among modes of different frequencies which belong
to the same irreducible representation. Then,
substituting the results expressed by Eqs. (A21)
and (A23) into Eq. (4.6), we obtain as the transfor-
mation law for the coefficient P„„(saA.(&d, 0) when
the crystal, is subjected to an operation from its
space group

P,.(-&l~, fl)=Z Z S„,S.,",;,&(S)P (sa&'l&o, Q) .
(5. 1)

In this expression S is a real orthogonal 3&3 matrix
representation of one of the proper or improper
rotations comprising the point group of the crystal,
and w"'(S) is a unitary matrix representation of
the sth irreducible representation of this group
corresponding to the rotation S.

The use of Eq. (5. 1) together with a table" of
the matrices ~"'(S) for each of the noncentrosym-
metric crystallographic point groups allows us to
determine the form of the tensor P„(saX(ar, 0) for
each irreducible representation of each of these
point groups. The results obtained in this way are
displayed in Table I, where the notation of Koster
et al. '4 for the irreducible representations has
been used. The representations enclosed in paren-
theses are pairs of complex-conjugate one-dimen-
sional irreducible representations which are degen-
erate by time-reversal symmetry. They have been
treated as a single real two-dimensional i.epresen-
tation. The results presented in Table I, together
with Eqs. (2. 1) and (4. 5), indicate directly the
symmetries of the optical vibration modes observed
for a given scattering geometry.

It should be emphasized that the reason we ca,n
use the point group of the wave vector k = 0, the
point group of the crystal, in obtaining the forms
of the tensors P„(saX I&u, 0) is that the finite wave
vector of the incident light has been neglected in
the derivation of Eq. (2. 2), upon which the, . analysis
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TABLE I. Form of the tensor P~e(saX I m, 9) for the possible Baman-active modes belonging to each noncentrosymlne-
tric crystallographic point group.
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of this paper is based. It is well known' that,
strictly speaking, this approximation is invalid for
Raman-active modes which are also infrared active.
This is because the macroscopic fields which are

associated with the k = 0 infrared-active longitudinal
optical modes split the group-theoretical degen-
eracies predicted for k=-0 modes in the absence of
long-range electrostatic forces. In addition, these
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forces alter the angular dependence of the scattering

efficiency from that obtained in their absence.
Consequently, in Table I we indicate the infrared-
active modes by adding x, y, or z in parentheses
above the corresponding Haman tensor, where x,
y, or z label the polarization direction of the mode.
The theory of the ionic Raman effect from these
infrared-active modes differs in detail from the
theory for nonpolar modes developed here, and

will be presented in a subsequent paper.

The coefficient V(0j; 0j'; Oj") which plays a cen-
tral role in the theory developed in this paper is
a special case of the general Fourier-transformed
cubic anharmonic force constant V(kj; k j'; k' j' )
which is defined by~6

I. t -~If. fly
6 2X [(u (k)ur (k')(o (k")]'"

2 4 z„(f~ l z;f x }
lKfM 1'K'8

e (~lkj) e,(x'Ik'j') e„(x"Ik"j")
M'" M'" M'"

K K K

(Al)

In this expression 4,,„(l~; f v; f z } is a cubic

anharmonic force constant. It is completely sym-
metric in the interchange of any pair of the indices

(4a), (f v P), and l v y), and is invariant under

the addition of the same ceQ index to each of the

indices l, l, I

4 ~„(i+Ex;f +le; f +4 ) =C,~„(lv; f v;f x ).

(A4)

we find that

V(-~q;-k'~';-k"j"}=V (~~;k'~';k"j"). (A5)

Consequently V(0j;0j;0j } is real.
To determine the restrictions placed on

V(0j„Oj'; 0
j") by the symmetry and structure of

the crystal, we begin by introducing the represen-
tation of an operation of the space group of the
crystal. In the Seitz notation such a symmetry
operation is denoted by lSlv(S)+x(m)}. Applied
to the position vector x(lx), this operation trans-
forms it according to the rule

{S~v(S)+x(m)]x(fK) =ax(l~) +v(S) +x(m)

-=x(L,A}, (Ae)

which is to be interpreted in the active sense.
8 is a 3~3 real orthogonal matrix representation
of one of the proper or improper rotations of the
point group of the space group, v(S) is a vector
which is smaller than any primitive translation
vector of the crystal, and x(m) is a translation
vector of the crystal. The vector v(S) is nonzero
only lf the space gx'oup ls nonsymmorphic. The
second equality in Eq. (A6) expresses the fact that
because the operation (Siv(S) +x(m)} sends the
crystal into itself, the site (fx) must be sent into

an equivalent site, which we label by (IE). Where
no confusion can result from doing so, we will use
capital letters to denote the site into which the' site
denoted by the corresponding lower-case letters
is sent by a space-group operation.

Under a space- group operation the force con-
stants (4,~„(bc; f v; f v )) transform according

22

(A2)

The coefficient V(kj; k j;k j ) has several useful

px'opex'ties which ax'e independent of the structure
and symmetry of a particular crystal.

We see, first of all, that V(kj;kj';k j ) is com-
pletely symmetric in the indices (kj), (k j ), and
(ktl. I I)

The property of the cubic anharmonic force
constants expressed by Eq. (A2) has the immediate
consequence that V(kj; k'j'; k"j") vanishes unless
the sum of the wave vectors appearing in its ax'gu-

ment, k+k +k, equals a translation vector of the

reciprocal lattice.
From Eq. (Al) and the choice of the convention'8

e (~
~

—kj) = e*(~
~
kj), (AS}

together with the following consequence of time-
reversal symmetry

= 2 S,& S~„S„„4»„(k;fV; f"x ). (A7)

e.(x ~kj) =e '"'"""*'""e„(x~ig)

together with the relation

(As)

& (&)= (&)+ ()-(fI (&+ ( )) (» (AQ)

which follows from Eq. (A6), we can rewrite 'Eq.

(Al) as

If the point group of the space group contains the
inversion I, i. e. , if the crystal has a center of

inversion, and if we denote by (lx) the site into
which (l~) is taken by the space-group operation
(fi v(I) +x(m)), then with the conventional choice
of phases '
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V(kq; k'q'; k "q")

(I- lr r lyi r«) e*(»lkj) eB(K Ik'j ) ey(K "Ik"j")
[~I(k)~I (k')~I-(k")]'I3 r..r;B r-;y- " " ' ' '

m„-"' M„'!' M'!,'
~a «t ~ ~ «y

~ ~~ Lx(K)+x(K)] «"~x(K)+x(K')] &~"'[x(K )+x(K')] -ft Ex(&)+x(K)+x(K)~(I)] -fk"fx(l')+x(K')+x(K')-v(I)] -$g" [x(g")+x(K")+x(K")-v(I)]e e e e e e

(A 10)

With a change of dummy summation variables, we
find that Eq. (Alo) is equivalent to

V(g~. k ~
.k j } r&k+k'+k")'v(I) V«k(k .k .k }

(A12)
It follows immediately that

v(oj; oj'; oj")=- v" (oj; oj'; oj"). (Als)

This result, in conjunction with the consequence of
Eq. (A5) that V(oj;Oj;Oj ) is real, implies that
V(oj; Oj'; Oj") vanishes for centrosymmetric crys-
tals. In view of Eqs. (4. 5) and (4. 6) this result
means that the first-order ionic Raman effect con-
sidered in this paper is absent from crystals pos-
sessing a center of inversion. In what follows,
therefore, we consider only noncentrosymmetric
crystals.

We turn now to a discussion of the symmetry
properties of the coefficient V(oj; Oj; Oj } itself.

The dynamical matrix of the crystal, whose ei-
genvectors are the vectors {e (KIkj) ), is a, real
symmetric matrix when k= 0. Consequently, the
eigenvectors {e (K Ioj}) can be chosen to be real
with no loss of generality, and we make this choice
in what follows.

If we use the result that e,(K 10j}/M„"3 is indepen-

dent of the basis index I(. when j refers to any one

of the three acoustic branches of the phonon spec-
trum34 it follows that V(0j; 0j;0j ) vanishes when

any of the branch indices j, j, or j refers to an
acoustic branch owing to the property of the force
constant 4 B„(l»; l'K'; l"K") that '

2' 4&~By(l»Il K; l K )= 2 4'~By(l»;l K; l K )

Z C,By(l»;l'»';l K ) =0.
g ttKtt

(A14)

Consequently, in what follows we assume that j,j, and j all label optical branches only.
To proceed farther it is convenient to replace

In writing this expression we have noted that be-
cause the symmetry operation {SIv(S)+ x(m)) takes
an atom of type K into an atom of type E; which
must be the same kind of atom as ~, we must have
that, in general,

(Al 1)

l

the single-branch index j by the triple index (saX).
Here s labels the irreducible representation of the
point group of the wave vector k to which the mode
belongs, X distinguishes the partner functions in
the case that the representation s is multidimen-
sional, and a is a repetition index which differen-
tiates among modes of different frequencies which
belong to the same irreducible representation. In
the present case the wave vector k= 0, so that the
point group of the wave vector is the point group of
the space group of the crystal, the crystal class.

The expression for V(|)j; Oj; Oj ) obtained from
Eq. (Al) in the new notation takes the form

3/2
V(saX;saX;s a X }=—

6 2l)l (Qp&+rd&«+«rd&««+a

Z C,B„(l»;l»;1» )
1Ke ltKtg l "Ktty

e„(»Isa') eB(» Is a )). ) e„(» Is a )). )
~1/2

IVi Kt

(A15)

where we have suppressed all reference to the wave
vectors k=k =k =0. Using Eqs. (A7) and (All)
in Eq. (A15), we rewrite it in the form

3/2

CO Sg40Stgt COSttgtt )

II tl
4~«B«y«(l»j l K I l » )

lkm r'k'B r"k"y a'B'y' krkkk3

xe (Kr
I
sa))) T„'(Kr»l S)eB(»31s'a')) ')

x T„,(K,K ~S) e„(»,js a )). )T„y (»3» p),
.(A16)

twhere the matrix T B(KK IS) is defined by

T B(K» IS) =S~B &(K, Er)(K S)). (A17)

We have denoted by Fo(K; S) =K the index of the
atom into which the atom I( is sent by a space-group
operation whose rotational element is described
by the matrix S. The matrix T B(KK I S) is a real,
orthogonal matrix

.'B(
( &) = T,.(K K

(
S). (A18)
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The effect of multiplying the eigenvector e,' '(visas)
into the matrix T ~(KK l S}has been shown to be

(A19)

where r "'(S) is a d, &&d, unitary matrix represen-
tation of the sth irreducible representation of the
point group of the crystal.

In obtaining Eq. (A19) we have taken note of the
fact that certain of the crystallographic point groups

I

(viz. , C„S„C4„,C„S„C„C»,C,„, T, and T„)
have pairs of complex-conjugate one-dimensional
irreducible representations which are degenerate
by time-reversal symmetry. Complex irreducible
representations are incompatible with Eq. (A19)
and our assumption that the eigenvector e' '(~ lsaX)
can be assumed to be real. This inconsistency is
removed by replacing each pair of complex-con-
jugate one-dimensional irreducible representations
by a single real two-dimensional representation,
constructed from the pair according to

-'[~"' (S) + ~"*'(S)]

(-(I/»)[& '(S) -7 (S)]

(I/2i) [~"'(S)—r" '(S)]

[&(3)(S) &(s*)(S)]
(A20)

where 7'* '(S) = &"'(S) . All of the matrices
g'*'(S)] entering Eq. (A19) become real orthogonal
matrices.

It follows from Eqs. (A16} and (A19) that the
transformation law for V(saX; s a X; s a X ) is

X y)l, pcs

&&V(saX&,' s g'X2, s~a«XS) .
(A21)

If we use the fact that the first-order dipole-moment
coefficients (M,„(4)jtransform under a space-
group operation according to~8

M~„(LR) =Z S~~ S~„M~„(lv), (A22)

the arguments which led to Eq. (A21) yield as the
transformation law for the Fourier-transformed
dipole-moment coefficients (M,(j}]the result that

M, (saA) =Z Z S, &„'P(S)M (saX ). (A23)
g

It should also be pointed out that because
e (x l0 j)/M„'~ is independent of the basis index v
when the branch index j refers to any of the three
acoustic modes, the coefficient M (j) vanishes for
an acoustic mode. This is a consequence of the
definition of this coefficient, Eq. (2. 10), and the
fact that the first-order dipole-moment coefficients
(M, „(l~)f obey the condition"

E M~„(lx) =0, (A24)

which follows from the invariance of the crystal
dipole moment against an infinitesimal rigid-body
displacement of the crystal.

The results expressed by Eqs. (A21} and (A23}
are used in Sec. V of the text to establish the selec-
tion rules governing the first-order ionic Raman
effect.
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The microwave absorption of semiconducting CdF2. Gds' crystals at 77'K was measured
from 0. 1 to 11 GHz, and at 17.5 and 37 GHz. o~ increases with frequency at an increas-
ing rate in the 0. 1-10-GHz region. At higher frequencies, 0'~ decreases with increasing
frequency, indicating the presence of a conductivity peak near 12 GHz which may arise
from intertrap tunneling of semiconducting electrons. Absorption from 40 GHz to 3 ~10 2

Hz may originate from the hopping process.

Kingsley and Prenner' discovered in 1962 that
CdF& with a trivalent dopant can be made semi-
conducting by baking in cadmium vapor. Since
then many electrical, magnetic, and optical studies
have been made on this semiconductor. Eisen-
berger et al. observed near- and far-infrared'
photoconductivity and a large polaron mass in
the microwave region. In this paper, the micro-
wave absorption spectrum of semiconducting
CdF2 from 0. 1 to 37 GHz is reported. These ex-
perimental data intend to bridge the gap from the
dc electrical to the far-infrared data and are in-
terpreted to explain the semiconducting mechanism,
especially in the far-infrared and cyclotron-res-
onance regions.

The main features of the data are (i) the presence
of a microwave absorption peak near 12 GHz, (ii)
higher low-frequency background absorption, e.g. ,
the absorption at 3 GHz is greater than absorption
at 37 GHz, and (iii) indication of a smooth extrap-
olation of ac conductivity from the far infrared
down to about 40 GHz. These features may be in-
terpreted, respectively, as (a) tunneling of semi-
conducting electrons from one trap to the other
(e.g. , intertrap tunneling), (b) band conduction
of polarons, and (c) electron hopping on cations
around the trivalent dopant.

Two measuring techniques were employed: the
transmission technique below 10 GHz and the

resonance-cavity method for frequencies at 10.8,
17.5, and 37 GHz. In the transmission-line method,
semiconducting CdF&.'Gd ' single crystals 2 mm
in diameter and 0. 2-1.5mm in thickness were
electroded on opposite flat faces by rubbing with
In-Hg amalgam or hot indium solder. Samples
were mounted directly on an OSM connector at
one end of a 50-0 coaxial line. The line had
Teflon insulation with solid copper shield and was
submerged in liquid nitrogen at the sample end.
Hewlett-Packard model No. HP 8410A network
analyzer, model No. HP 8411A harmonic fre-
quency converter, and model No. HP 8741A or
HP 8742A reflection test units were used to dis-
play the series impedance between 0. 1 and 10
GHz on the Smith chart. The series impedance of
the sample at each frequency was deduced by com-
paring two measurements, one with the sample at
the end of the transmission line and the other
with the end short-circuited. From the measured
series impedance of the sample, the equivalent
parallel resistance of the sample and hence the
corresponding microwave conductivity &,(f) was
calculated. The data up to 6 GHz, where &,(f)
rises appreciably, have been checked by com-
paring the semiconducting sample with an iden-
tical, except unconverted, CdF& at the end of
another "identical" transmission line. This
method, however, cannot be used above 6 GHz


