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The electronic energy levels associated with vacancies in PbTe are obtained through the
Green's-function method of Koster and Slater, the unperturbed Bloch functions being obtained
from a relativistic K' 7 augmented-plane-wave (APW) energy-band calculation. APW one-
electron energies were obtained at I' and the corresponding eigenfunctions were used to obtain
matrix elements of the relativistic momentum operator ~ between states at 1 . These energies
and matrix elements were used in a K ~ ~ secular equation to obtain energies and wave func-
tions at approximately 4300 points in the Brillouin zone. With 11 relativistic bands at I', ex-
cellent results were obtained. Localized Wannier functions were constructed by taking suitable
linear combinations of the unperturbed Bloch functions and these Wannier functions provided
the basis in which the energy levels in the presence of the perturbing impurity potential were
found. We have solved the vacancy problem using Wannier functions from nine bands (five
valence and four conduction) and 13 lattice sites. The results obtained from this calculation
showed that Pb vacancies produce p-type PbTe, whereas Te vacancies produce n-type PbTe,
and in both cases, carriers are present at all temperatures.

I. INTRODUCTION

It is our intention here to present a detailed ac-
count of the previously published calculation of the
energy levels associated with vacancies in PbTe. '
Lead telluride is known to have a NaC1 crystal
structure with a lattice constant of 6. 452 A (12.193
a. u. }2 and to be a semiconductor with a direct gap
of about 0. 3 eV at room temperature. ' The gap is
located at the L point in the Brillouin zone. The
measured and calculated electronic properties of
the lead salts have been recently reviewed by
Prakash, ' in his work on the measurements of the
optical-absorption edge of these salts and its vari-
ation with temperature and pressure. A very in-
teresting property of the lead chalcogenide group
of semiconductors is that they have ranges of non-
stoichiometry, the lattice incorporating either ex-
cess lead or chalcogen with the corresponding de-
fects. While excess lead produces a n-type semi-
conductor, excess chalcogen gives rise to a P-type
material. Both cases are characterized by high
mobilities at liquid-helium temperatures and it is
not possible to freeze out the carriers at low tem-
peratures. It has been found that for excess chal-
cogen the principal defect is a singly ionized lead
vacancy while for excess lead, the situation is not
yet clear: For PbSe it seems that the principal de-
fect is a doubly ionized intersticial Pb, ' while for

PbS, a singly ionized sulfur vacancy appears to be
the primary defect, although an appreciable con-
centration of doubly ionized intersticial Pb also
exists. ' On the other hand, a singly ionized tellu-
rium vacancy is probably the most important defect
in PbTe. The theoretical study of vacancies in
PbTe, therefore, presents the possibility of ex-
plaining the behavior described above.

The defect problem associated with a Pb and a
Te vacancy is solved here in a manner similar to
that used by Callaway and Hughes' for single and
divacancies in silicon, that is, by applying the
Green's-function method of Koster and Slater, "
which has also been successfully used in the study
of impurities in metals, 2 and in the problem con-
nected with scattering of excitations in solids by
localized imperfections. The effect of the vacancy
is treated as a time-independent localized potential
and the perturbed wave functions are expanded in
terms of Wannier functions of the unperturbed lat-
tice. Because the latter functions are defined as
linear combinations of Bloch functions, the knowl-
edge of those wave functions, on a reasonable mesh
of points in the Brillouin zone, is necessary.

The one-electron energy bands of PbTe were ob-
tained by Conklin, ' through a first-principles rela-
tivistic augmented-plane-wave (APW} calculation,
and by Lin and Kleinman, "using a pseudopotential
approach. Some experimental results can be very



LOCALIZ ED DE FE CTS IN PbTe 2043

well explained by Conklin's bands, and the effective
masses' and deformation potentials' obtained with
these bands are in good agreement with the experi-
mental values. In principle, we can use the APW
method to calculate the eigenfunctions and eigen-
values of the one-electron Hamiltonian at every
point in the Brillouin zone. However for a low-
symmetry point the calculation is prohibitive, due
to the size of the secular equations to be diagonal-
ized and to the computational time. What one does
is to calculate the energy levels and the wave func-
tions only for high-symmetry points and one or two
points in the symmetry axes of the Brillouin zone.
The energy bands are then sketched along these
axes using the compatibility relations between the
groups of the wave vector at these different points.
In Sec. II we show how the eigenfunctions and the
eigenvalues of the one-electron Hamiltonian can be
obtained through a first-principles K m interpolation
scheme. In this method, if the energies, wave
functions, and momentum matrix elements between
these functions are known at a particular point in
k space, ko say, the energies an/ wave functions
can be obtained at every other point. This method
involves no approximation if all energy bands at k
are included in the calculations. For a semicon-
ductor, however, we are mainly interested in the
conduction and valence bands, and we expect that
bands with energy far away from these bands will
give a small contribution in the calculations. Thus,
if a reasonable number of bands around the conduc-
tion and valence bands is used in the K m calcula-
tion, we expect good results near the Fermi level.
The K m method was first used by Cardona and Pol-
lack" for germanium and silicon. The values for
some of the energy gaps and momentum matrix ele-
ments were obtaine'd from the experimental data on
cyclotron resonance and optical measurements. The
remaining parameters were assigned values sug-
gested by the orthogonalized-plane-wave (OPW)
calculation of Herman and pseudopotential calcu-
lation of Brust and were adjusted until the cal-
culated energy bands agreed with the ultraviolet
reflection data. Our calculation, however, differs
from that of Cardona and Pollack in that in ours
the relativistic bands at I' and all momentum matrix
elements between these bands were calculated. The
information was used in a K ~ 71 secular matrix and
the bands were obtained in a mesh of points in the
Brillouin zone. The results were surprising~ it
was necessary to change only one of the nonrela-
tivistic momentum matrix elements by 2. 5 lo in
order to fit the experimental gap, and at the points
where Conklin performed his calculation, our re-
sults differ little from his. It is interesting to
mention here that one of the main advantages of the
K ~ m method is the saving of computation time. Once
the single-group momentum matrix elements have

been calculated at k„ it takes less than 1 min on the
IBM 360-MIT system, in order to obtain the ener-
gies and wave functions at a general point in the
Brillouin zone, for a K w secular matrix of.dimen-
sion 30.

In Sec. III we solve the vacancy problem in PbTe,
using the K ~ w APW bands. There we present the
general theory of localized defects in semiconduc-
tors and the method of constructing vacancy poten-
tials and Wannier functions. The theory is applied
to PbTe and the above-mentioned behavior of this
material can be well explained by the results ob-
tained with nine K m APW bands and 13 lattice sites.

+2 'b'(~' V) -(2m)-'p'] . (2. l)

The first two terms are the kinetic and potential
energies; the third is the spin-orbit coupling and
the two last terms are the Darwin and mass-velocity
corrections. The eigenfunctions of Ho are Bloch
functions b„, ,(k, r ) which transforms like the i
partner of the double-group irreducible representa-
tion l",'"' of the group of the wave vector k.

Suppose that at a particular point ko in k space
the Bloch functions b„~ 8(.ko, r) and energy levels
E„(ko) are known. We can then construct the Kohn-
Luttinger functions

X„,( K, r) = b„, ,(k„r)e'"', (2. 2)

where K= (k —ko). These functions form a complete
set of orthonormal functions and can be used as a
basis for expanding a Bloch function at k, i.e. ,

b„, „(k, r")=Z'„,Z,. C„,.. .
~ (K) X. ,(K, r). (2. 3)

Now, if Eq. (2. 3) is substituted in Eq. (2.2) and
the resulting equation is multiplied by Z„,(K, r)*
and an integration over the whole crystal is per-
formed, the following secular determinant is ob-
tained for the expansion coefficients C„, , (K),

II. E. n SCHEME

A. Theory

Let us consider the one-electron relativistic
Hamiltonian derived from the Dirac equation by de-
coupling large and small components of the four-.
component wave function by means of sucessive ap-
plications of the Foldy-Wouthuysen unitary trans-
formation. In the absence of a magnetic field, and
for coupling terms between the large and small
components of the order of (v/c)', where v and c
are, respectively, the velocities of the electron
and of light, we obtain

Ho=(2m) 'p'+V(r)+(4m'c~) '[(hiV&&p) o
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det~ [& ~ (k,)+ (2m) '(h K)' —(8ynsc') ~(g K)4

—E„(k)]5„,5( y+m hK ~ v„(,~. ~(K)~ =0,

(2.4)

n„(,~. ,(K)= drb„, ~(ko, r)*nb, , (k„r)
(2. 5)

7=p+(4n c') '(K(7&&iV) —(2m'c') '

x [p'+ (k K)'p+2 'n Kp'+ (h K p) p] . (2. 6)

(&~ t ]b„(k, r)=f„(uk, r)e"" (2 8)

Recently, however, Callaway and Hughes' showed
that if only nondegenerate bands are considered, it
is necessary to define

(~l t. )&.(k, r) = X"'(~)e'"" '.&.(~k, r) (2. 9)

in order that the periodic part of the Bloch function
associated with band n vary smoothly in k space.
In Eq. (2.9) y. "~(c') is the character of one of the
one-dimensional representations I'z of the point
group and can only have the values +1. This point
is important in all problems where localized Vfan-

No approximation has been made until this point.
However, the secular matrix (2.4) has infinite di-
mension and for practical purpose has to be trun-
cated at some point. The dimensionality of the
secular equation is choosen by considering the com-
putational complexity vs the expected accuracy of
the calculated 'energies and wave functions which
depends not only on the number of bands used at k„
but also on the accuracy of the calculated energies
and momentum matrix elements at this point.

Before we consider the practical application for
PbTe, let us discuss more carefully the symmetry
properties of the Blach functions obtained through
the K m scheme. It can be showna~ that for a gen-
eral point k

(~~t„jb„, ,(k, r)=a(~k, r)8'"'"', (2. 7)

where (o It, J is a space-group operation, B(~k, r)
is a Bloch function with wave vector &k, and r (k)
is a real function of k. But {&lf ) being a space-
group operation leaves the crystal lattice and the
electron charge density unchanged. Then, (& It )
will interchange members of the star of k. The
phase factor exp(ir, (k)j brought in by the symmetry
operation (& It, ]. has to be specified and also one
must express the function B(&k, r ) on-the right-
hand side of Eq. (2. 7) in terms of the functions in

the star.of k. For a nondegenerate band it is rea-
sonable to define b„(k, o' 'r) =b„(nk, r) and in this
case

= C„,.„,, (K)1',"0'(n), , 5

which shows us that the periodic part of the Bloch
function will not vary smoothly near k(). For the
purpose of obtaining- localized Wannier functions we
are interested in generating Bloch functions that
exhibit reasonable continuity near ko. One way of
doing this is to consider, for every &, a new set of
values for the K m expansion coefficients, which we
will call C „',, „, ~(&K) such that they vary smoothly
near ko. Define

C', ~;. , &(«)=Z, f [I'""(~)]'), ,C„„„,, (nk) .
(2. 11)

In this case

C „' &.„.&(uK ) = C«.„, &(K ) . (2. 12)

The transformation we have performed is unitary,
because the matrices for the representation at ko
are unitary. If bands n and n ' are one dimensional,
then

C!, ;. , ( K)=X"'""( )C., ;. , ( K) (2 13)

which is similar to the result obtained by Callaway. '
When K is large, probably other bands besides n '

contribute significantly to band n at k. In this case

nier functions have to be defined. I.ater Callaway '
showed that Eq. (2. 9) is a consequence of the K p
perturbation theory near k= 0 for a nondegenerate
band. If Eq. (2. 9) is satisfied at k= 0 it will be
satisfied for all k for which the perturbation series
converges. In this case.x ~(o') is the character of
the irreducible representation of the band at k= 0.
In Appendix A we determine the properties of the
Bloch functions obtained in the K m scheme in the
case where the group of ko is the point group of the
crystal. We obtain that

(&~ t, )5„& z(k, r)=e'""'~b„, ~(nk, r), (2.10)

which shows that the application of one operation of
the space group to a Bloch function at k will produce
a Bloch function in the star, corresponding to the
same band and partner as the original Bloch function
at k. The K m method, however, does not produce
Bloch furictions whose periodic parts vary smoothly
in the Brillouin zone. We can easily verify this by
considering, for example, the region near ko. Con-
sider a point k and a band n and assume that at ko
the i partner of this band corresponds to the i '

partner of band n ', i.e. , C„,.„&(0)= 5„,„,5&, If
we are seeking for a smooth function, then the last
relation must hold approximately at every point k
near ko. Consider now the Bloch function at &k.
According to Eq. (A5),

C„„~,( c K) =Z, C„.. .(K)1","(~), ,
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the coefficients corresponding to these bands mill
not be continuous with the above transformation.
Further considerations about the proper choice of
the phases of Bloch functions will be made in Sec.
III in connection with the study of Wannier functions
in PbTe.

Now, if k is a symmetry point, i.e. , there exist
operations & other than identity such that &k= k,
Bloch functions at this point have to transform under
~ -like partners of the irreducible representations
of the group of k. In this case, by means of suitable
rotations of the basis functions, the K ~

7I matrix
can be factored, each block corresponding to a cer-
tain irreducible representations of the group of k.
Only partners of the irreducible representations of.
the group of ko compatible with partners of a certain
irreducible representation of the group of k will
enter the block corresponding to the latter repre-
sentatloIl.
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PIG. l. Schematic representation of the energy levels
at I' for PbTe.

B. Application to PbTC

Let us now apply the preceding theory to PbTe.
Point ko is chosen to be the I' point in k space and
in this case the group of ko is the point group of the
crystal. The Bloch functions and energy eigen-
values at ko are obtained through an AP%' ener gy-
band calculation.

Figure 1 shows schematically the nonrelativistic
and full relativistic bands obtained at I' through the
APW calculation. In this figure and in the subse-
quent considerations we will represent the energy
bRDds by the correspondiDg 11I'educible I'epx'esentR-
tions. Because this labeling is not unique, an extra
index I~ ls 1Qtl.oduced. Thus I'„) will repI esent
the i partner of the ruth band that transforms like
the irreducible representation I'„.

The transformation properties of the partners of

TA,BLE I. Transformation properties of the single-group
irreducible representations at &.

Representation Transformation properties

1 is, i
1"is, 2

I'is, 3

~i2, 2

(3)i/2( 2 2)

3g -r

~25, i

I'25, 2

~25, 3

TABLE II. Relations between partners of the double-
group and single-group irreducible representations at 1 .

I'
s, i(I'i)

1"
e, 2' i)

I"~, 2~'25)

I'
s, 4~' s)

1 s, s(1"25)

I'
s, 2(1"25)

I'
s, i(I is)

1 s, 2(I'is)

1""7 2(1 2)

1"
s, i(I'is)

~ 8, 4(~fs)

r;, ,(r„)
1"

s, 2(I'is)

= liStI
= (3) '"~(-zT' s, i+I'25, 2)Sg-zT25, 3$~&

—(3) t(-iI'25 i -I'25 2)S~+zT'25 3$~]

= (6) / f(zI'25 i+I'25 2)$ +2zT25 3$~]

= (6)-i/2f(-zr2, i+r2, ,)$8+2zT25 3$.]

(»25, i-1"25, 2)S

= '(2) (z~25 i —&25 2)Sg

- i/2 t(-zI'is, i+1 is, 2)$t -zl" is, 3$+~

= (3) "'t(-zTis, i —I'i5, 2)$ +zT'is, 3$gl

. I'2$g

(2) '"(-zI'is, i+I'is, 2)$e

(z~iS~ i ~iss 2)Sg

(6) '"~(I'is, i+ I"is, »S +2zl"is, sSg~

(6) i/2t(-zTis i+I'is 2)$~+2zI'is 8$~]

the single-group irreducible representations are
shown in Table I, where a system of coordinates
with axes in the [100], [010), and [001]directions
is considered. Table II shows how to write the
partners of the double-group irreducible repx'esen-
tations in terms of the single-group irreducible
representations. In that table, I'„,&(I'„) represents
the i partner of the I'„double-group irreducible
representation coming from the I' single-group
ix reducible representation at I", and 8 and Sz are
the common "spin-up" and "spin-down" functions.
It can be observed that the partners of the double-
group I'epx'eseQtRtloDs form Kx'Rnlex'8 pRlrs; l ~ e. q
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I'„~=KT„ 1, where K is the time-reversal operator
and for four -dimensional representations, I"„4
= K+ri, f and ~ri, 2

= KTri 3.
In order to obtain the K m secular matrix elements

it is necessary to calculate the matrix elements of
m between Bloch functions at I'. The calculation of
the matrix elements between the nonrelativistic
bands of the first three terms in Eq. (2. 6), which
are K independent, was performed for PbTe. As
it happens at the L point the second and third
terms give matrix elements which are 10 to 10
smaller than the corresponding momentum matrix
elements and can be disregarded. The three other
terms in Eq. (2. 6), which are K dependent, and do
not enter the effective-mass calculations, where K
is assumed small, were studied. Results at I'
showed that they are also of the order of 10 ' to 10
compared with any other term, if K is limited to
the first Brillouin zone. These considerations show
us that only the momentum matrix elements them-
selves are important in the calculations. This does
not mean that we are disregarding the relativistic
corrections. Vivat have been disregarded are the
contributions of these terms to the m operator. Ob-
serve that the bands at I' contain all relativistic
corrections. Table III shows the momentum matrix
elements between single-group representations at
1 which are different from zero by symmetry con-
siderations. This can be obtained by noting that p
transforms like T'» and using the transformation
properties of Table TI. The nonzero momentum
matrix elements between double-group representa-
tions can be obtained through Tables II and III, and
observing that for each Kramers pair,

«. , I pI ~.„&=(~. , l pl ~. ,&*

(~., &I pl ~, y&
= —(~., &l pl ~, ~&* ~

The 11 independent momentum matrix elements
were calculated using Conklin's nonrelativistic
bands at I'. Although a good energy convergence
on the number of symmetrized APW (SAPW) was

TABLE IV. Matrix elements of (I/m)p between
basis functions at I'.

Matrix element

(h/m) M

(~/Bl) Mg f jg

(e™~,, „,
(e™~,, „,
(5/m) Mi 3.15 1

(h/m) Mi 3.15 2

(6 I/2m) M12 1 15' f

(6'"I/2m) M12 f 15 2

(8/m) M25, f;2, 1

(3 ~ e/2m) M25 1.15 1

(31~25/2m) M25, 1,„,

Value (a. u. )

0. 969

0. 250

-0. 155

1.180

0.437

-0. 225

0. 534

-l.456

0. 949

1.,068

0.460

obtained, the same was not true for all momentum
matrix elements. A new AP% band calculation was
then performed with 15 SAP''s for each level. Al-
though the energy levels and the mixing changed
very little, an excellent convergence was now ob-
tained for an momentum matrix elements. The
new values, showed in Table IV, were then used in
the K m secular matrix which was diagonalized for
values of k along the symmetry axes. The energy
gap at L was found to be equal to 0.0256 Ry (0.340
eV) which is bigger than the experimental gap. A
quantitative study of the influence of the various
momentum matrix elements in the K m bands, along
the symmetry axes, was then performed. There
are several elements whose variation changes the
gap at L. However, there is one momentum matrix
element, namely, M».»» which, while strongly
changing the gap, also changes the bands at other
symmetry points in such a way that the K m bands
move towards the Conklin's bands. The variation
of the gap with Mf 2, » 2 is shown in Fig. 2. Owing
to the symmetries in a fcc unit cell, energies and
wave functions need to be calculated only for points

TABLE III. Nonzero momentum matrix elements between single-group irreducible representations et p.

Mi, . 15 b
=

& ~f lp„l ~15, 1) =&'~f lp I ~15, 2) =&'I f lp, l ~15, 3)

12, ;15, b & 12, 1 l P l ~15, 1) &~ 12, 1lP l 15, 2)

= - (3)' '&'I f2, 2lp I I f5, f) - (3)' '&'I fz, lp, l'I'15, 2)

M2g, ; 2, y
—('~25, (IP„I ~2)=('~'25, )IP I ~2)=('~' )Ip, l'~2)

M25 a; 15 b= & F25 1 I pyl ~15 3) & 25, 1 lpzl ~f5 2)

25, 2lP l ~15, 1) =&'~25, 2lP l ~f5, 3&

& ~25, 3lP l ~i5, 1) & ~25, 3lP l ~i5, 2)
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coefficients of expansion is obtained:

deti I-GUi =O, (3. 2)

where I is the identity matrix

G„. p. „((Rp —R, , E)

[E E (g)]-1efk (RP-R ') (3 ~ 3)

is the general element of matrix G, with N p being
the number of allowed k'vectors in the Brillouin
zone,

U„. (..„((R, , R,)

(3.4)

is the general element of matrix U and

(3.5)

detI &NN GNNUNNI =0, (3.6}

where G» andI» are, respectively, the block of
the matrices G and I which correspond to the block
U„„of U„. Equation (3.6) can be written as

(3.7)

where G„'N is the inverse of G». Equation (3.7} is
preferred over Eq. (3.6) because I» -G»U» is
not Hermitian, even though G„„and U» are Hermi-
tian. Energy E in Eq. (3.3) is a real number if we

is the Wannier function for band n, partner i, and

lattice site R, 0& is the volume of the first Bril-
louin zone and E'„(k) is a phase factor. These phase.
factors are necessary because if they are chosen

properly, localized Wannier functions are obtained.

The secular matrix in Eq. (3.2) has a general row
or column characterized by the band index n, the
partner index i, and the lattice site R,.

If the perturbation U( r ) and the Wannier functions
are well localized, the matrix 0 can be well ap-
proximated as having only a finite number of non-
zero elements which can be rearranged to appear
in the upper-left corner of the matrix. Let us de-
note this part by U». Then Eq. (3.2) can be writ-
ten as

are limited to states lying in the energy gap of the
host material (bound states). In the case where we
are dealing with states whose energies coincide with
energies in the spectrum of Bo, as in the scattering
problem, E must be allowed to have an infinitesimal
imaginary part.

The definition (3.5) for the Wannier functions may
present difficulties when the band Structure of the
material presents symmetry, accidental or quasi-
degeneracies. Near quasidegeneracies, two dif-
ferent points of view can be taken when defining
Wannier functions. According to the first point of
view, the bands are not allowed to cross and are
defined in their order of increasing energy. In this
case a continuous energy band will be produced and
the G matrix will have the proper asymptotic be-
havior for large values of E. The wave functions,
however, may vary mildly in the zone, making the
definition of locali. zed Wannier functions more dif-
ficult, but not impossible. In this case, under the
operations of the crystal point group, the localized
Wannier functions may not exhibit simple transfor-
mation properties and large matrices may have to
be diagonalized in solving the defect problem. The
second point of view consists of departing from the
above band ordering according to increasing energy
by defining bands with Bloch functions whose peri-
odic part varies slowly in k space. In this case
the points where the quasidegeneracies occur have
to be excluded from the definition of the Wannier
functions and consequently the G matrix does not
have the proper behavior for large values of E.
But localized Wannier functions with simple trans-
formation properties can be obtained and smaller
matrices mill have to be solved. In the present
work we will adopt the first point of view because
for PbTe, which is a small gap semiconductor,
quasidegeneracies occur in a large region of k
space, both for the valence and conduction bands.
At a symmetry point S, where some bands may have
degeneracy greater than 2, and band crossing
may occur between bands that transform like differ-
ent irreducible representations, the situation is
more critical. As far as degeneracy is concerned,
two cases are possible: A single band in the region
A of general points corresponds to a single band at
S, or two or more bands inA will join at S, giving
rise to a band with degeneracy greater than 2.
The first case does not present difficulties, nor
does the second case when a partner j of a band n
at S corresponds to a partner i of a particular band

n at all points in A near S. But this is not always
true. For the I", bands, for example, along the
5 axis the first partner of a h6 band corresponds
to (bl", 4

—cI"8 2), where b=(2) ~~~ and c=(6)
while along the Z axis the same band has to have a
Z, syMmetry and the first partner of a X'z band
corresponds to 1'8 4. In an ambiguous situation such
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as the contribution coming from I' is simply ex-
cluded without seriously affecting the integrity of
the Wannier function. On the surface of the Bril-
louin zone, problems also arise at points k where
there. exist operations & in the point group such
that nk=k+K&, with K& being a reciprocal-lattice
vector. One example i.s the I- point in the fcc lat-
tice. Due to the special transformation properties
of the wave functions, discontinuities may occur in

the K m coefficients. However. contributions like
that can also be excluded. Points where accidental
degeneracies occur can be treated in the same way.
It is easy to see that the %annier functions defined
in this way form a complete orthonormal set because
the Bloch function corresponding to one band con-
tributes to one and only one Wannier function.

In the K ~ m scheme, the general term of the ma-
trix U can be written as

U (R R) N 1 P P e(«F'R&i 4 R&&g Qg P C, (Kl)+ C (K) «(e+&)«& n' &

k' m

xl dr b„. ;. e. (ko, r) e"" " '"U(r)b «e(ko, r) . (s.8)

In Eq. (3.8), k' and k can take general values in k space and even if a reasonable mesh of points is used, th(

number of matrix elements to be calculated would be enormous and the computational time involved prob-
ably prohibitive. However, if U(r) is a localized perturbation we expect that simplifications can be made.
In fact, if U(r) is very localized near the origin, e"" ~ ' ' in Eq. (3.8) can be expanded in Taylor's series
near the origin and only' a few terms be considered. In the case of vacancies in PbTe, as we will see later,
only the first two terms need to be considered if k and k' are restricted to the first Brillouin zone. Equa-
tion (3.8} can then be written as

U, , „,(R,. R,)=P Z ZZ (c, , „,, (%,, )*c„,.„,(A,)T
m' j' m

+[c, , „,, (R„) 5„,.„,(5,,)-c„...(R,)i5„, ,„,, (%„)] N.. .. ..,], (3.9)

where

c„,.„,@,) =N„-'Z„-c., «...,(&)e'""'"' "'

y po(p&(~) (Qk) «(ee(nf)-a&Ã )
g y ~

8
y (3.11b)

(S.1Oa)

5„;. «(R,) =Nj' Z„kc„« . «(K) e

(3.10b}

T~, «;m, «=N) &b~' ~', e'(ko r)l U(r)lb, , e("o r))

(3. 10c)

N~, «, ;=iNf &b~, «, e (ko r)l rU(r)lb, «, e(ko, r)).
(s. Iod)

Suppose an fcc lattice and the case where the
group of ko contains inversion. The integration in
k space need to be performed only over 48 of the
zone if the relations between the coefficients
C„,.„«(K) and C„,. „«(o«K) and the phases p„(k) are
known. If relation (A5) is assumed, then

C„«, «(R,) =N)", Z„.t(k) Z„Z«c„«.„«(R)

)( p(kp) (~) e«(e„& f)- l7 Rzl (3 11a)
t

&., «..., (R.) =N.'~f't(k) '~.~«c. .., , (K)

where the primed sum in k indicates that now k is
restricted to +«of the zone. If k is a general point,
the 48 operations of the point group will give 48
different contributions in the sum on k. However,
if k is the I' point, for example, the 48 operations
will give 48 equal contributions and the total con-
tribution coming from this point has to be divided

by 48. This multiple counting is corrected by the
weighting factor t(k).

Finally, the phases e " ' ' have to be chosen in
order to produce reasonably localized Wannier
functions. In the case of localized perturbations
the Wannier functions can be considered well local-
ized, if the matrix elements of the perturbation
U(r} between the Wannier functions centered at the
site where the perturbation is concentrated is much

larger than any other matrix elements relating
%'annier functions. In order to decrease the num-
ber of possible choices for the phase factors we will
assume that the phase associated with a point in the
star of k, where k is in 48 of the zone, is obtained
by adding a k-independent constant to the phase as-
sociated with k. It can be easily shown that this is
a good assumytion if the important K ~ m coefficients
for a particular band vary in the smoothest possible
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=Z~Z~P»C„» &.»(IIt» =0) C„».„t(@=0)T,

where we have made use of the fact that T& &

= T ~ ~&.
&

and we recall that the representations
corresponding to bands n

' and n have to be the
same. If partner i of band n corresponds to partner
~ of band m, at ko it is possible that for a large por-
tion of the 48 region of k space the leading R 7(

coefficient of the former band is the one correspond-
ing to the later band. Let us emphasize this point
when calculating U„».„»(5~=0). Assume that for
every k in the 4', region C„,. „(K) is the leading
coefficient. If band m, transforms like the irre-
ducible representation I "~', we obtain

U„;,„»gt», =0, R», =0)=A.„,». ,„Z»(Q» „) Q» „,

where

A„», „=(NP ZpZ»; [t(k) t(k')] C„»

(3.12)

x (K') C„;. „(K))tT

q P F (ko» (~)»eg(m»
t

But E(l. (3.12) will be maximum if g& IQ» „I
~ is max-

imum. Let a~ „and b~ „be the real and imaginary
parts of Q, „, respectively. Then, the larger the
numbers I(»; „I and Ib, „I, the larger E(l. (3.12)
will be. For simplicity we will assume that e' ~"'
=+1. One way of obtaining a maximum value for
U„», „»(6~=0, %», = 0) is to choose 8„((»') such that
one element, a„„say, is the largest possible. But
there will be some &'s that do not contribute to a„„.
Then, we choose part of the remaining P„(o») such
that another element is the largest possible and
continue in this way until all P„(o') have been chosen.
We can now quickly choose the phase factor of an

improper rotation in terms of the corresponding
proper rotation, in the case where the group of ko

contains inversion. If I'~"0' has even parity, then
&„'"o' (Zu) = I'~ ' (u), where J is the inversion oper
ator and in this case we have to have e' '

=e' ' '. However, if I", ' has odd parity, then
I"„("(»' (Zu) = —I"„("'(u) and we should choose
e' ' ' = —e '8 ' '. The Wannier functions obtained
according to the above procedure are not the opti-
mal, i. e. , the most localized functions, but for
PbTe, as will be discussed later, the matrix ele-
ment connecting Wannier functions centered at the

way. This is also important when interpolation is
needed in order to obtain wave functions at points
other than the points in the mesh. The perturbation
U(r) being localized at the origin we can write

U„,.„,.(R,= 0, 5,= o)

origin was found to be 5-20 times larger than any
other matrix element.

Recently, 6 however, it was shown that it is pos-
sible to choose the phase e„(k) in order to produce
optimal Wannier functions. This was accomplished
by making the width or mean squared radius

(a„»(r —Ro)
~

(r - ro)
~
a„»(r R—(»)) extremal.

8. Application to PbTe

Let us apply the formalism developed in the pre-
vious sections to the case where the perturbing po-
tential U(r) is due to a neutral Pb or Te vacancy.

In the APW method the periodic potential in the
crystal is assumed to be of the muffin-tin type
which is obtained by placing touching spheres
around the atoms in the lattice. The spherically
symmetric potential (inside the spheres) is made
of the Herman and Skilman's atomic potential 7 at
the site under consideration plus the spherically
averaged contribution of the neighboring atoms.
The constant potential (outside the spheres) is cho-
sen by linearly averaging the spherically symmetric
potential in the region outside the spheres. As-
sume, now, that one atom, Pb say, is missing and
that no lattice deformation or screening occur. The
crystal potential at the sphere corresponding to this
atom is only due to the contribution coming from
the neighboring spheres and the perturbing poten-
tial is given by the negative of the crystal potential
decreased by this contribution. In the neighboring
Te spheres the spherically averaged contribution
of the Pb atom is missing and it represents the
perturbing potential in these spheres. The perturb-
ing potential can be obtained in the plane-wave
region by performing the same averaging used in

obtaining the constant potential, It is evident that
the perturbing potential constructed in such a way
has the point-group symmetry and is important
practically only in the cell where the vacancy is
located.

First, the matrix elements of the operator NgU(r)
&&e"" " '~ were calculated between the nonrela-
tivistic APW Bloch functions with ten SAPW, the
cutoff in the sums on the l parameter of the spher-
ical harmonics being l = 10. The convergence of

the matrix elements both in the number of SAPW's
and l terms was excellent. Figure 4 shows some
of typical matrix elements in the case where t(k
= k —k = (»(/a) (t, 0, 0), a being the lattice parameter
and I; varying from 0. 0 to its maximum value 4. 0.
Two important conclusions were then deduced.
First, if the representations are the same, the ma-
trix elements are reasonably large and decreases
slowly as l~kl increases; second, for different
representations, the matrix elements are in gen-
eral small: if the representations have different
parities, the matrix elements increase almost lin-
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FIG. 4. Variation of 'some of the typical matrix ele-
ments of the operator N» e '~~'~'between nonrelativistic
single-group functions. at 1 as a functions of hk, in the
case where 4R= (7t/a) (t, 0, 0) .

early with Ideal, and, if the representations have
the same parities, the matrix elements increase
quadratically with ~ ~k). This behavior of the ma-
trix elements provides the important key in the
solution of the vacancy problem in the K r scheme,
because it shows that we can expand e"""'~ in
Taylor's series near the origin (the impurity po-
tential is assumed to be localized near the origin),
and, as a very good approximation, considers only
the two first terms. This is equivalent to saying
that the vacancy potential is so localized that in
the Brillouin zone e' "'~ plays the role of a slowly
varying function of r. In this case we may apply
the formalism deduced in the previous sections.
Table V presents the values obtained for the ma-
trix elements of U(r ) and ixU(r ) between the non-
relativistic Bloch functions at l . These wave

functions are such that the matrix elements are
real numbers. With these matrix elements we

can construct matrix T and tensor N, defined by

Eqs. (3. 10c) and (3.10d), respectively, observing
that the operator r U(r ) transforms in the same

way as the momentum operator under the opera-
tions of the crystal point group.

Next step in the calculations consists in obtain-
ing for the important bands of PbTe the expressioris
for C„,.„&(R&) and D„, „&(R~}given by Eqs.
(3. 10a) and (3. 10b). Let us consider the three va-
lence and three conduction bands which, at I", cor-
responds to '16, 'I'» 'I'6, and I'8. They will be
referred to as valence band numbers 3, 4, and 5

and conduction band numbers 1, 2, and 3, ip the
order of increasing energy. Because these bands
have, over almost the entire zone, a large contri-
bution coming from the Kohn-Luttinger functions
correspondingtothe above I~ and I, bands, area-
sonable choice for the phases e„(nk) canbe made.
The phases for the improper rotations are chosen
such that e' &' '"' = e' "' "', where J is the inversion
operator. For the valence bands, the important K ~ m

coefficients vary reasonably slowly over 4', of the
zone, with the exception of a region near the point
in the [100]axis where band crossing and quasi-
degener@cies exist. The contribution coming from
I'6 is the largest for the lowest valence band

(number 3) and although the contribution coming
from the even-parity I' bands is not small near the
I point, a reasonably localized Wannier function
can be obtained, if the I'6 contribution is optmized.
This optimization consists of defining e' "' "'=1

TABLE V. Matrix elements of U(r) and i x U(r) between nonrelativistic bands at I', for Pb and Te vacancies.

Matrix element of U(r)

Te

Matrix element of i x U(r )

Te

Band

2p

2p

3p

I'15, 1

1
~15,1

2
~15,1

1"
2

I'25, 1

Band

iz

2p

2p

3p

3p

1
~15,1

2
15 1

2
~15,1

I'2

vacancy
(a. u. )

2. 397

-1.474

-1.239

0. 921

0. 751

0. 648

0.752

1.768

4. 534

2. 305

0. 160

1, 575

vacancy
(a. u. )

0.468

1.065

-1.054

2. 466

-2. 364

2.413

4. 085

-1.686

0. 800

1.774

0. 143

1.190

2p

2p

I, f

3p

I'25, 1

~25, 1

I 25, 1

Band

1
~15,1

2
~15,1

1
~15,1

2I'15, 1

1I is, 1

2I'15, 1

1I'15, 1

2ris,

r2

vacancy
(a. u. )

0. 007

0. 013

-0.069

-0. 162

-0. 113

-0. 274

-0.084

-0. 162

-0.005

0. 047

0. 123

vacancy
(a. u. )

-0.824

0.345

0. 103

-0. 039

0. 370

-0. 152

0. 121

-0. 029

-0.019

-0. 124

0. 048
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for all proper rotations. Although throughout a
large part of the ~8 region of the Brillouin zone the
valence band numbers 4 and 5 consist primarily of
the Kohn-Luttinger functions coming from the first
and. third partners of '1",, reasonably large contri-
butions also come from the other partn'ers of 'I'~,
from the I'6 bands and from I', , besides the con-
tribution from the even-parity 1 bands. For both
valence bands, the most localized Wannier functions
were obtained not when the contribution coming
from the first and third partners of '1, were opti-
mized, but when all partners of 'I'8 were optimized.
This corresponds to the choice e' ' '= +1, accord-
ing to Xs(n) && 0, where X8(o.) denotes the character
of the matrix representing e in the I'8-irreducible
'representation. . But, there are some n for which

gs(cl) = 0 and the corresponding phase factors re-
main undefined. The optimization of I"6, which
corresponds to the choice 8' ' '=1 for all a was
the one that produced the best Wannier functions.
The conduction band& are also represented by slow-
ly varying K m coefficients, except in regions near
the points where accidental and quasidegeneracies
exist. Although the lowest conduction band (num-
ber 1) also has a large contribution coming from
the 18 bands, the optimization of the I'

t; bands
proved to give better results. The other two bands
behaved in the same way as the two upper valence
bands, as far as the choice of the phase factors is
concerned. Besides the three above-mentioned
valence bands, PbTe also has two other valence
bands which are important in the vacancy problem.
These bands will be called valence band numbers j.

and 2, and at 1" they correspond to 'I", and 'I", ,
respectively. Valence band 1 has an averaged con-
tribution of 0. 897 coming from the Kohn-I uttinger
function corresponding to I", and valence band
number 2 has an averaged contribution of 0. 731
coming from '16. This means that very localized
VYannier functions can be constructed for these
bands if e' ' ~' = 1 for all o. . In the determination
of the vacancy energy levels, the conduction band
that at 1" corresponds to 1"6 had to be included in
the calculations, because it has an averaged con-
tribution of 0. 627 coming from 1"6 and the matrix
elements of the impurity potential connecting I'6

and 3I'6 and '1
6 are very large.

Once the coefficients C„„„&(R,) and D„,.„&(R,)
are known, the matrix elements of U(r) between
Wannier functions can be obtained. Those matrix
ele'ments were calculated for the five valence bands
and four conduction bands and for the site at the
origin and 12 nearest neighbors of the type H,
= (-,'a)(1, '1, 0). We have found that, for all bands,
-the matrix elements connecting Wannier. functions
centered at the origin were 5 to 20 times. larger
than any other matrix element.

On the other hand, matrix G is diagonal in both

the band and partner indices. Then

G„)., „)(&R„E)

=X.'Z, Z 2[E-E„(k)]' cos(nk ~R,),

where &8,= R, —H, , the sum on k is performed in

~of the zone and the sum on a includes only the 24

proper rotations of the crystal point group. We

.can observe that G„, „,,(-&R„E)=G„,, „,,(&R„E).
Due to the fact that, for values of E near the top
or bottom of the energy band, the G matrix depends
strongly on the details of the band near these max-
ima, the number and distribution of points in the
energy mesh are very important. We have calcu-
lated the elements of G for some values of E near
and far from the extremum of the bands using both
the regular and Conroy's" integration methods.
For all bands very good convergence was obtained
for a Conroy's mesh of 1000 points in 4', of the
zone. As continuous energy bands have been de-
fined in k space, G„, „,,(&R„E)properly approaches
zero for large values of E.

As the vacancy potential has the crystal point-
group symmetry, the wave functions corresponding
to the bound states will have to transform like the
irreducible representations of the crystal point
group. Thus, instead of diagonalizing the total
matrix [G„'„—U»], we factor it in block form, each
block containing only states with wave functions
transforming as the same irreducible representa-
tions. This factorization can be accomplished using
projection operators, if the transformation prop- '

erties of the Wannier functions are known. Al-

though providing a proper G matrix, our definition
of Wannier functions do not produce functions with

simple transformation properties. Because of that,
as proved in Appendix 8, we can only factor the
total matrix U or G into two smaller matrices, one

for the even-parity representations and other for
the odd-parity representations. These two blocks
cannot be easily factored into smaller blocks con-
taining only one irreducible representation, but
each block is totally diagonalized. In the following
discussion we will eall the energy levels obtained
from the even-parity and odd-parity blocks, sym-
metric and antisymmetric levels, respectively.

The symmetric and antisymmetric energy levels
obtained in the single-band approximation for the
five valence bands are shown in Table VI. There
we present the results for one site and 13 sites.
In the first case only one symmetric state is pro-
duced per band, while in the second case, seven
symmetric and six antisymmetric levels exist for
each band. For vacancy potentials in PbTe the
perturbation is not strong enough to pull antisym-
metric states out of the bands, and only symmetric
bound states may occur. For a Pb vacancy one
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TABLE VI. Symmetric and antisymmetric states
obtained in the single-band approximation for the valence
bands of PbTe. The zero of energy is taken at the top
of the corresponding band.

Symmetric

Number Bound
of In the, states

Band Vacancy sites band (10 Ry)

Anti-
symmetric

In the
band

Valence 1

Valence 2

Valence 3

Valence 4

Valence 5

Pb

Pb

Pb

Pb

1
13

1
13

1
13

1
13

1
13

0
6
0
6
1
7
1
7-

1
7

52. 03
94. 22

631.18
758. 37

~ ~ ~

Valence 1

Valence 2

Valence 3

Valence 4

Valence 5

Te

Te

Te

Te

Te

1
13

1
13

1
13

13
1

13

1122.32
1278. 27

43. 22
75. 13

123.81
137.85
38.75
57. 70
16.43
39.01
26. 52

symmetric bound state is produced both for valence
band 1 and 2. The effect of considering more sites
is to increase the energy of these states. The
perturbation, however, is not strong enough to
produce symmetric bound states for valence bands
3-5. A different picture is produced when a Te
vacancy is present in PbTe. Now, besides valence
bands 1 and 2, symmetric bound states are also
pulled out of the valence bands 3-5. All these bands,
except valence band number 5, present only one
symmetric bound state both for one and 13 sites.
For valence band 5, however, one state exists
when one site is considered, but another one ap-
pears when 13 sites are taken into account. Then,
in the single-band approximation and 13 sites, one
bound state appears above the bottom of the lowest
conduction band for a Pb vacancy and, for a Te
vacancy, the number of bound states is equal to
three.

Finally, all the five valence bands and four con-
duction bands were considered together. For 13
sites the resulting symmetric and antisymmetric
matrices have dimensions of 63 and 54, respec-
tively. But due to the fact that valence band 1 and
2 and conduction band 4 have a large contribution
coming from the I'6 levels and the other bands
have a large contribution coming from the Y ~ and

I, levels, these two groups can be considered
separately. We are allowed to make this separation
notonlybecausethe matrixelements (I"; I U(r) i I;or

I', ) are smaller than (I"8 l U(r) I I'6 ) or (I"6 or I', I U(r)
&& l I'tl or I",) but also because they enter tensor N

which gives a second-order contribution to the ma-
trix element of U between Wannier functions. When

all bands are considered we can only look for bound

states for values of E outside the bands. This means
that in the first group we look for solutions with

energy between the top of valence band 2 and bottom
of conduction band 4. In the second group, only
energies in the gap can be considered. But, by in-
vestigating the dependence of the eigenvalues of
the matrix [G~'~ —Uz„j on the energy Z we can de-
termine the number of states lying below and above
a given energy F.. For the first group only one sym-
metric bound state was found at —0.4329Ry, for
a Pb vacancy, and at —0. 2386Ry, for a Te vacancy.
In both cases, the effect of the interaction between
the bands was to decrease the energy of the bound

state obtained in the single-band approximation,
between the top of the valence band 2 and bottom
of conduction band 4. This level, howeve. r, still
lies well above the gap. For the second group, no

bound state was found in the gap either for a Pb or
Te vacancy. Comparing with the unperturbed case,
no extra state appears or disappears above and

below the gap, in the case of a Pb vacancy, but,
for a Te vacancy, three extra states were found

above the gap and, consequently, three states dis-
appear below it. If the results of the two groups
are considered together, we conclude that both for
a Pb and a Te vacancy no bound states are pro-
duced in the gap. For a Te vacancy three states
disappear below the energy gap and appear above
it, while for a Pb vacancy, only one state disap-
pears below the gap and appears above it.

A Pb atom (configuration 6s 6P ) contributes
four valence elections while a Te atom (configura-
tion 5s'5p~) contributes six. If a Pb vacancy is
present in the crystal, then the perturbed crystal
has four fewer electrons than the perfect crystal.
But as only one state (which can accomodate two
electrons) has moved from the valence to the con-
duction bands, there is still an empty state in the
valence bands. Therefore two holes are available
in the valence band and we have a P-type semi-
conductor, in which the carriers cannot be frozen
out. Qn the other hand, if a Te vacancy exists, the
perturbed crystal has six fewer electrons than the
unperturbed crystal. But as four states have moved
from the valence to the conduction bands, then
there is one state filled in the conduction band, i.e. ,
two electrons are available there. An n-type semi-
conductor is produced and again the carriers can-
not be frozen out. These results are shown in Fig.
5.

It is interesting to note here that the number of
states pulled out of the bands depends on both the
str'ength of the perturbation and on the shape of the
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Pb-VACANCY
P-TYPE

Te -VACA N C Y

N-TYPE

E LKCTRON S

fo.'i/a is a general operation of the space group we
have

f~
l a}b„, „(k, r) =Z„E,c„..., (K) e' "'""

I STATE
4 ELECTRONS

MISSING

I

2 ELECTRONS

4 STATES

xZ, &'s"'( o), , b, ,(k„r), (Al)

b„, ,(o'k, r) =Z Zgc„„", , g(o'K) e" b, y, s(ko r)
HOLES

FIG. 5. Schematic representation of the effect of
a Pb and a Te vacancy.

energy bands. I The first dependence is present
in the U matrix, while the second is present
in the G matrix. Because we have calculated
the G matrix using a Conroy's mesh of 1000
points, a point corresponding to the top of the band
probably does not occur in this mesh. Now, if we
allow the energy to have values between the top of
the band and the highest energy in the mesh, other
bound states may occur, when more than one site
is considered. This indeed happens in PbTe. In
order to decide whether these levels are bound
states or not it is necessary to calculate the G ma-
trix for energies very near the top of the band using
a very large mesh of points. However, we believe
that in PbTe these states are in the band because
the comparison of the present mesh of 1000 points
with the regular meshes of 152 and 916 points,
which do include the top of the band, shows that
the value obtained with Conroy's mesh is the con-
vergent value. Even if some of these states were
bound states, they are so close to the band that
screening will be very important. But as the di-
electric constant of PbTe is high the effective
perturbative potential will be much smaller than
the potential we have used in the present calcula-
tion and, as a consequence, these states will be
moved further towards the top of the band.
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APPENDIX A

Let us determine the properties of the Bloch func-
tions obtained in the K g scheme in the case where
the group of ko is the point group of the crystal. If

(A2)

where we have made use of Eq. (2. 4) and the fact
that nko=ko. ln order to relate Eqs. (Al) and (A2)
it is necessary to obtain the relation between
C„;.„)(K)and C„;,„)(o'K).

The general term in the K z secular matrix at
&k is given by

[E (k,)+(2m) '(@K) —(8msc ) '(@K) —E„(ak)]S„

x ~(, y +m 'So.'K (b„, , (ko, r)lo lb„, q s, (ko, r)) .

(AS)

As for practical purposes g can be replaced by

only p,

and

=
&

o.'b„, s (ko, r ) l
(o. 'w)

l
o'b„, ~ (k, r) )

~-'&b„„,s(k„r) l
~

l
b„, , , (k„r))

and the term (AS) becomes

[Z., (k, ) (2m) '()fK)'-(S sc') '(mK)'-Z„( k)]S„„,

xs, , +m 'ffK &n-'b. .~. s(ko r)lwl~'b, &, s (ko r)

(A4)

C„,„,(oK) =g, C„„,„,, (K) rs&fo&(cs). . . (A5)

where we have made use of the unitary nature of
I's'"o~(n '). Comparison between (As) and (Al) gives

fo.'la}b„, „(k, r)=(e' "')b„,„(ak, r) . (A6)

But (A4) is also the general term of the K o secular
equation at k, the basis being e'"'s n ' b„, s(ko, r),
l. e. ~

b„, ,(k, r) =Z„5,C„,,„,(~K) (e*"')n ' b„, ,(k„r)
As

~ ' b, r, s (k~o» = ~y T's"o' (cL ')g. ~ 4, g s (ko r)

we conclude that
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APPENDIX B

Let us determine the transformation properties
of the Wannier functions for an fcc lattice. If P is
an operation of the crystal point group, then

8a„,(r —R,)=Q + (N„") Z„-'[t(k)] 'P Z, C„,.„,(K)

&& I (jQ)(p~) ei[eg(CI)-usa/3 I (I r)

If spin is not present, 8 = pa is one of the 48 opera-
tions contained in the sum on &. Then

Pa„,(r -R, ) =Z„Z (N„") 'Z~[t(lt)] 'Z, Z, C„,.„,(K)

y I'&kP&(8) ef[e„Is ale) &i 85&i y (k r) (B2)

and if for a given k the same phase factor corre-
sponds to all operations 5, we obtain

Pa„,(r —R, ) = a„,(r —PR, ) .
In the present calculation we are dealing with dou-
ble-group representations and 8 = Po! is not neces-
sarily one of the 48 operations contained in the
sum on a. Besides that, in order to produce local-

ized Wannier functions the above choice of the phase
factors is not always possible. For the inversion
operator J, however, 6 = P& is always one of the
48 operations and Ja„,(r -R, ) =+a„,(r+R, ) if we
choose e' &' 6"' =w e' ~""', which is consistent with
the present choices for the phase factors. Then

( %.~(r —Ro) I
U(r)

I ~.„(r—R, ))

=+(a,(r+R~)IU( )Ia„,(r+R, ),),
depending upon whether band m and n have the same
or different choices for e' ~'~'"'.

We may construct for each band the symmetric
and antisymmetric linear combinations

e'„,(r, R~) = (2) '~'[a„,(r -R~)+a„;(r+R~)],

4'„'&(r, R&)-- (2) '
[d!„,&(r -R&) —a„&(r+R )],

and obtain

(4'„,(r, R )IU(r)I4'„', (r —R, )) =0.
If R&=0, we have only the symmetric function

e'„,(r, 6) = a„,(r -5).
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