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We propose a model for the electronic structure of SmBg suggested by new transport measure-
ments in combination with analyses of the magnetic susceptibility and lattice energetics. Our
model successfully describes the resistivity, Hall effect, magnetic susceptibility, and Mdss-
bauer isomer shift in this material. In addition, it predicts an anomaly in the low-temperature
specific heat. Analysis of the lattice energetics shows that the rigidity of the boron lattice is
responsible for the fact that Sm ions on equivalent sites can occur with the 4f shell in either
the 4f %or the 47° configuration. A relationship among the compressibilities of the rare-earth
hexaborides is predicted on the basis of this analysis.

I. INTRODUCTION

Samarium hexaboride is remarkable in that Sm
ions on equivalent sites in SmBg can have their 4f
shells in either the 4f® or the 4f° configuration, in
the ratio 4f%:4f% =~ 3:7. This unusual situation has
been established by measurements of the x-ray
absorption, ! resistivity and magnetic suscepti-
bility, 2 lattice constant as a function of tempera-
ture, * and M&ssbauer isomer shift. *

In order to interpret their resistivity and suscep-
tibility data, Menth ef al.? proposed that SmBg was
a narrow-gap semiconductor in which Sm? ions
(47 %) were thermally ionized to produce Sm®* ions
(47°) and conduction electrons. Falicov and Kim-
ball® lent theoretical support to such a model by
showing that a qualitative fit to the resistivity was
obtained when one included electron-hole interac-
tion effects. This picture implied large changes in
valence as a function of temperature. Three subse-
quent experimental results indicated, however, that
this was not the case. First, our new transport data
indicate that the change in carrier density accom-
panying the resistance change below 65 K is only a
few percent of the number of Sm ions per cm?. Sec-
ond, because Sm® ions are larger than Sm** ions,
one would expect an increasing lattice parameter
with decreasing temperature. Although the lattice
parameter does show a minimum at 150 K, 3 its in-
crease below that temperature is much smaller than
that expected from a substantial increase in the
fraction of Sm ions in the 4f® configuration. Third,
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the M8ssbauer absorption line in *°Sm nuclei in
SmBg shows a peak part way between the positions
characteristic of divalent and trivalent Sm ions, but
the peak does not shift in the range 1-1000 K. *

Cohen et al.* interpreted this resultas demonstrating
a temperature-independent mixture of 4f° and 4f°
configurations, which, as they pointed out. is in ap-
parent conflict with both the resistivity and suscep-
tibility measurements.

We present a model for the electronic structure of
SmBg based on mixed configurations, the transport
data, and the susceptibility. This model, by em-
phasizing configurational rather than valence changes
in the Sm ions, effectively decouples the transport
and magnetic properties . In this way the apparent
conflict between the M8ssbauer and other measure-
ments is resolved. In addition, the model predicts
an anomaly in the low-temperature specific heat..

In Sec. II, we present our transport measure-
ments and describe the aspects of the model which
they suggest. In Sec. III, we present our analysis
of the magnetic properties and from this analysis
identify the bands introduced in Sec. II. We ana-
lyze the lattice energetics in Sec. IV, showing that
the rigidity of the boron lattice provides a physical
explanation of the mixed configurations. Finally,
in Sec. V, we discuss the specific heat and present
our measurements.,

II. ELECTRONIC STRUCTURE

A. Experimental

Metal borides exist over a wide range of atomic
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ratios, so that it is difficult to obtain single-phase
material. In addition, the rigidity of the boron lat-
tice permits large deviations from stoichiometry,
especially metal deficiency. 8 We have prepared
SmBg samples by two methods: (i) The elements,
in stoichiometric proportions, were sintered at
about 1600°Cin tantalum or tungsten crucibles
sealed off under vacuum; the resulting granular ma-
terial was then remelted in an arc furnace to obtain
homogeneous samples of the correct density. (ii)
Layers of SmBg were grown on boron crystals by
evaporating Sm metal on boron substrates, which
were then heated to about 1800 °C. Metallographic
and x-ray analysis showed all the material to be
single phase. As we discuss below, the quality of
the material is most easily assessed by its low-
temperature conductivity. We attribute the residual
conductivity to Sm deficiency on the basis of our
transport data.

We have measured the resistivity and Hall effect
in the range 1-300 K using alternating sample cur-
rent and a Princeton Applied Research HR-8 lock-
in amplifier. The samples were rectangular in
shape, typically 6 mm long and 2 mm wide. Leads
were attached in the ordinary 5-lead configuration.
While the resistivity could be measured readily,
the detection of the small Hall voltage involved
some difficulties.

The brittleness of SmBg prevented us from lapping
bulk samples thinner than about 1 mm, thus limit-
ing attainable current densities. This difficulty
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FIG. 1. Resistivity and Hall coefficient of SmB; layer

sample in the range 0—-300 K. The solid curves are from
a calculation described in the text.

2031

prompted us to grow SmBg in the form of thin lay-
ers on boron crystals. The thinness of these layers
(about 3 um as estimated from the room-tempera-
ture resistivity of bulk SmBg) made it easier to
measure the Hall effect over the whole temperature
range.

Figure 1 shows the resistivity and Hall coeffi-
cient as a function of temperature in a SmBg layer.
The room-temperature value of the resistivity has
been normalized to 5X10™* £ cm. Such a normaliza-
tion is justified by our experience that the high-
temperature resistivity of SmBg is, within a factor
of 2, unaffected by sample preparation, or even by
intentional doping with europium or gadolinium.’

Figure 2 shows the resistivity and Hall mobility
of both layer and bulk samples in the range 1-75 K.
As in the earlier study, 2 the resistivity drops ‘
sharply between 10 and 50 K. While the qualitative
features of resistivity and Hall mobility are simi-
lar in the two samples, the layer resistivity below
4 K is lower than that of the bulk by more than one
order of magnitude. Paderno et al.® measured the
thermoelectric voltage as a function of temperature
in SmBg and observed low- and higher-temperature
crossings similar to the Hall mobility.

B. Band Model

On the basis of tight-binding calculations, Long-
uet- Higgins and Roberts® showed that the boron lat-
tice of a hexaboride requires two electrons per
formula unit (in addition to the boron electrons) to
achieve chemical stability, The metal ions in the
rare-earth hexaborides are generally trivalent, and
thus these compounds are metallic. SmBg and EuBy,
however, contain divalent ions, and these are semi-
conductors. 1°

From the transport data shown in Fig. 2 one can
straightforwardly infer a band scheme to describe
the semiconducting properties of SmBg. In inter-
preting the Hall measurements we have made no
corrections for magnetic or many-body effects, !
primarily because there is no magnetic ordering in
SmB,,. 212

Below 3 K, the resistivity is constant and of the
order of 10 © cm. At these low temperatures the
Hall mobility is small and positive, about +1 cm?/
V sec. The data we show are typical of all the
samples we have measured in the sense that, while
the value of the resistivity is sample dependent, the
value of the Hall mobility below 3 K is not. There-
fore, we. attribute the residual conductivity to hole
conduction arising from Sm deficiency, and infer
the presence of an almost-filled valence band de-
rived from Sm-ion states.

Near 6 K, the Hall mobility switches sign, and
at roughly the same temperature the resistance drop
accelerates. This implies the presence of a con-
duction band separated from the valence band by a
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FIG. 2. Resistivity and Hall mobility of SmBg; samples
in the range 0-75K. @, bulk sample; A, layer sample,
Calculated curves are discussed in text.

small (~ 25 K) band gap. The peak in the (negative)
Hall mobility at about 15 K shows the mobility in the
conduction band to be 220 cm?/Vsec.

Two bands, however, are not enough to describe
the transport data, as evidenced by the peak in the
Hall mobility. Above 15 K, the Hall effect indicates
the introduction of high-mobility hole carriers, such
that by about 65 K the Hall coefficient crosses zero
again. These carriers, having mobilities of order
100 cm?/Vsec, are attributed to a second valence
band lying lower than - though close to — the upper
valence band. The mobilities necessary for a sec-
ond zero crossing are high because the resistivity
in the region near and above 65 K is relatively flat.
This behavior indicates that the Fermi level is well
up in the conduction band, and thus the hole popula-
tion in the lower band arises only from the Boltz-
mann tail of the Fermi distribution.

In fact, in the range above 50 K, the slow varia-
tions in the resistivity and Hall coefficient are char-
acteristic of semimetals. We may describe SmB,
as a system which changes from a semiconductor to
a semimetal in the region 40-60 K.

These qualitative considerations suggest the en-
ergy-band diagram of Fig. 3. Before fitting the
parameters of this model to the resistivity and Hall
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effect, it is worth pointing out that the total change
in carrier concentration accompanying the resistiv-
ity change below 65 K is relatively small. As a
rough estimate, we take the conduction-band mobil-
ity to be 20 cm?/Vsec at 20 K, and use this figure
as a mean value for the mobility. !* In such a case,
the bulk resistivity of about 10"* Qcm at 65 K implies
a carrier concentration of order 10?2 cm™3; most

of these will be conduction-band electrons, but their
number still amounts to only a few percent of the
number of Sm ions per cm?3,

Such a small change in carrier concentration ap-
pears to resolve the conflict between the M&ssbauer
and other measurements, but in fact the size of the
carrier change is not relevant to the Mssbauer ex-
periment. The transportmeasurements are primar-
ily sensitive to changes of valence, i.e., carrier
concentrations. On the other hand, the susceptibil-
ity and Mdssbauer isomer shift are sensitive to
changes in configuratiorn, which do not necessarily
alter valence. Earlier work? assumed that changes
in valence and configuration were equivalent, and
it is this assumption which we discard in our model.

E, (0}

FIG. 3. Schematic energy-band diagram for SmBg.
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C. Calculation of Resistivity and Hall Effect
The conductivity in our three-band model is given
by
0= (nl,+Dilky+Doko) €] (1

where 7 is the number of electrons per cm? in the
conduction band, with mobility u,, and p; is the
number of holes per cm?® in the ith valence band,
with mobility ;. The Hall coefficient is given by

2 2 2
—Npp+Dily +Polhs
Ry,= 5=, 2
B+ Dby + Dattn) le] @

and the Hall mobility is related to these quantities
by

2 2 2
—Nln+P1U1+Dols

=R g=——n £ 0 felfe 3
Ha=fy N, +Dily +Dals ®

We shall now show that by using reasonable pa-
rameters Eqs. (1)-(3) give a good fit to the observed
data. These parameters are not unique; nonethe-
less, they are restricted quite severely by the mea-
surements. Thus, the energy gaps must obey 20 K
<|E,|<|E4;|<100 K in order to reproduce the low-
temperature resistivity change.

We have assumed that the lower valence band and
the conduction band have parabolic shape, i.e.,
their densities of states have the form

X\ 3/
ve-gal) le-al” @

where €, is the band edge, d is the band degeneracy,
and m* is the effective mass. The upper valence
band is treated as a broadened level with a constant
density of states, N(€)x 1/B (B equals bandwidth).
The carrier concentrations in the bands are then
given by

n\_ N(e)de (5)

The effective masses (i.e., bandwidths) of the two
high-mobility bands are fixed by the value of the
resistivity and Hall coefficient at high temperatures,
as well as by the T~ 65 K crossing temperature of
the Hall mobility. The width of the narrow band is
small, and it is unimportant, since we use the nar-
row band mainly in the determination of €.

The mobilities of the conduction and lower valence
bands are also qualitatively determined by the
transport data, as indicated above; that of the nar-
row valence band is fixed by the Hall mobility at
the lowest temperatures. In preliminary computa-
tions we found that the transport behavior could be
qualitatively reproduced with constant mobilities,
the two crossings and the peak of the Hall mobility
appearing at the proper places, and the resistance
drop occurringinthe right temperature range. In
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order to make a quantitative fit we improved the
earlier calculation by giving the mobilities tempera-
ture dependence in the phenomenological formula

Ho

w0 T ©
where T, is a characteristic temperature about #th
of the Debye temperature. The exponent @ is taken
to be 2 for the valence bands and 1 for the conduc-
tion band. Because of the high Debye temperatures
of the hexaborides, Eq. (6) has little effect on the
low-temperature behavior, but it does cause uy, to
fall faster toward zero above 30 K, and remain
small thereafter. We attach no physical meaning
to the exponents @, nor to the form we have chosen
for the mobility; apart from phonon scattering, a
study. of the spin susceptibility of the 47® Sm ions'*
indicates that spin-disorder scattering may play an
important role in determining the behavior of the
mobility. Further microscopic calculations are in
progress.

There is a remaining subtlety, introduced by the
fact that the upper narrow valence band is a tight-
binding-like band derived from the divalent Sm ions
(see Sec. III). The electrons here are highly cor-
related, giving rise to states characterized by their
total angular momentum J. As we show in an Ap-
pendix, this correlation may be accounted for by
treating the narrow band as a broadened level, whose
energy relative to the bottom of the conduction band
is temperature dependent. This dependence is giv~-
en by

E\(T)=E(0) +kT(InZ3~ InZ,) , (")

where Z; and Z, are the partition functions for the
trivalent and divalent Sm ions, respectively. The
energies entering the sums over states are mea-
sured relative to the appropriate ground-state con-
figuration energies.

We have computed the resistivity and Hall effect
for various combinations of the parameters. Two
separate fits were carried out, using the data from
a bulk sample and from a layer sample. With pa-
rameters chosen as in Table I, we find the calculat-
ed curves of Figs. 1 and 2.

The difference in mobilities between the two sam-
ples is consistent with a higher impurity (defect)
concentration in the layer sample. The large ef-
fective mass of the conduction-band electrons is
noteworthy, and it will be discussed in Sec. III.

In view of the strong variations of the Hall effect
and the resistivity, we believe that the good agree-
ment between this calculation and the experimental
data lends strong support to the proposed model for
the electronic structure of SmBg.

III. SUSCEPTIBILITY
The measurements of Paderno et al.'® and of
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TABLE I. Band and transport parameters for the
three-band model. Numbers in parentheses are those
used to fit the data from the layer sample, while the
others are for the bulk sample.

Conduction Upper Lower
valence valence
band band
Mobility at T=0 35 1.45 390
(cm?/Vsec) (21 5) 0.9) (265)
Effective mass 25.2 3.1
m*/my) (25.2) o 6.1
Bandwidth (K) 1100 100 9000
(1100) (100) (9000)
Fraction of holes at 7T=0: 0.17% number of Sm ions
(3.3%)
—49K -81K
Energy gaps: E;(0) =(=30) Ezz(__ 81)

Menth ef al. 2 showed that the high-temperature sus-
ceptibility of SmBg falls between the susceptibilities
of the 4f® and 4f° configurations. Initially, then,
one would suppose that a mixture of these two would
explain the measurements. Since the 4f° is magnet-
ic, its susceptibility should show a Curie-Weiss~
type divergence, and, at sufficently low tempera-
tures, a system of 4f° ions should order. Menth

et al,, finding no ordering down to 0. 35 K and no
divergence down to 1 K, concluded that 4f° ions were
not present at low temperatures.

The lattice-constant measurements of Levinstein®
showed, however, an order of magnitude less in-
crease at low temperatures than would be expected
if the fraction of trivalent 4f° ions at room temper-
ature were to lose its magnetism by becoming diva-
lent 478 This result, combined with the discovery
of a fixed 4f%: 4f° ratio by Cohen et al.* made the
magnetic behavior anomalous.

The fact that the Sm-Sm distance in SmBy is ab-
normally large compared to the trivalent rare-earth
hexaborides'® makes it reasonable to consider the
possibility of a second divalent configuration, one
made up from the 4f° core plus a hybridized 5d-6s
electron state.!” Such a configuration would be easy
to ionize, accounting for the small value of the en-
ergy gap E,. Further, the 4f°-like ionic radius of
this configuration would not cause appreciable lat-
tice-constant change upon ionization. Also, as
pointed out by Cohen et al.,* the Mdssbauer isomer
shift is more directly influenced by the number of
4f electrons thanby the number of 5d or 6s elec-
trons, so that the absence of a shift in the M&ss-
bauer peak is explained in this scheme. Finally,
as we show below, the ground-state level of the 4f 5
(5d-6s), -treated as a configurational entity, has
g,=0. That is, although J #0, the spin and orbital
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magnetic moments cancel identically. Thus, with
this configuration we are able to explain the magnet-
ic behavior quantitatively, while retaining an inter-
pretation consistent with all the observed data in
other measurements.

A. Analysis
1. 4f5(5d-6s) Configuration

The 5d-6s electron state derives from the corre-
sponding levels of the free Sm? ion. Its magnetic
character is strongly influenced by the cubic crys-
tal field of SmBg. The crystal field splits the 5d
orbitals into a low-lying nonmagnetic e, doublet and
a higher magnetic #,, triplet, with a splitting of the
order of electron volts.'® The ¢, states are thus
unimportant below 10* K. The e, states have no
orbital angular momentum, so that our model
5de,-6s electron looks like an s electron magneti-
cally, with only a spin moment. For brevity, then,
we shall call the 4f %(5de,-6s)ionic configuration f °s.

We shall discuss the energetics of the f 5s at
length below, but first we compute the ground-state
moment. The 5d-6s spin can couple either parallel
or antiparallel to the 4f° core spin. According to
Hund’s rules, the core spin is 3, and for ferromag-
netic exchange between core and 5d-6s, the parallel
arrangement with S =3 will be the term containing
the ground level. The ground level, by another ap-
plication of Hund’s rules, will be the one with J
=L-S=2. Applying the standard Landé formula,
we find g;.,=0, as stated above. This is an in-
teresting result, that although the angular momen-
tum is nonzero, its associated magnetic moment
vanishes. We assume that Sm ions in stoichio-
metric SmB; are in either the 47 % or f°s configura-
tion at T=0, so that there is no divergence of x at
low temperatures.

We describe the f°s configuration by the Hamil-
tonian

}(3:360+A5-I:5'§5—g2x§5°§ . (8)

3C, is the spin-independent part. f:s and S5 are the
total orbital and total spin angular momentum op-
erators for the f° core, and 5 is the spin operator

for the 5de,~6s electron.

In contrast to the ordinary case, where J,, is so
large that one is confined to a single L-S term, we
must explicitly include the exchange term here be-
cause it may be comparable to the spin-orbit energy
of the 4f° core. In the usual case of a configuration
comprising equivalent electrons, Hund’s rules re-
quire one to maximize the total spin before maximiz-
ing L and coupling these to obtain'J values. In the
f5s configuration, however, J,, will be considerably
smaller because the localized state and the core
states belong to different shells, so that the over-
lap is decreased.



We choose the |LSL,S,) representation as a basis
for diagonalizing the Hamiltonian (8). This amounts
to diagonalizing the exchange term first, so that we
have L-S terms for the whole f’s configuration. The
ground term of the 4f° core is Ls=5, S5=3. Cou-
pling this to the 1 =0, s = 3, 5de,-6s electron, we find
two terms: the L=5, S=3, f°s|l, in which the core
and localized spins are parallel; and the antiparallel
L=5, S=2, f5s#,

In order to find the actual energy level structure
we must then diagonalize the spin-orbit interaction.
The symmetry of 3¢ permits us to label the levels
by the total angular momentum quantum number J.
Note, however, that the spin-orbit ferm mixes lev-
els of the same J, but different S. The small size
of J,, suggests that these pairs of levels may be
close enough to be mixed significantly. We empha-
size that this mixing does not affect the lowest- and
highest-lying (J =2 and 8) levels of the f°s|| because
3= 9="Tin the f’s#term. In particular, the J=2
ground level, which has vanishing moment, is un-
affected.

J:4
T
J=3
__J=2
3200K
840K
1440 K
§_J=1
420K 80K1 g3y
“€+Xp=0 y:2
o TEME 2Ly
6 £Ss 1 55 3
(L=3,5:3) (L=5,S=3) (L=5,5=2)
AN
[~30%] t5% [~70%]

FIG. 4. Energy-level diagrams for divalent Sm-ion
configurations. Level spacings are determined from the
observed susceptibility, except for the splitting between
f’s and 4% ground levels, which is determined by the
lattice considerations of Sec. IV,
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FIG. 5. Susceptibility of SmBg in the range 0—-1000 K.
Experimental data points are taken from Ref, 2. Solid
curve is the theoretical fit described in the text. Dashed
curve shows the sum of the susceptibilities of the 4f®and
f3s |l configurations, which account for the bulk of the
susceptibility. The dot-dashed curve is the contribution
due to the f°s# term. Note that the bare 4f *contribution
is responsible for the weak divergence below 20 K,

In order to take this mixing into account in our
model, we allow the spin-orbit parameters to be ad-
justable, starting from estimates made for the free
Sm* ion.*°

On the right-hand side of Fig. 4.we show the four
lowest-lying levels of the f % configuration, which,
following the x-ray absorption and M&ssbauer data,!*
we take to comprise 70% of the Sm ions. The level
spacings shown are determined from our fit to the
observed susceptibility, 2 as discussed below. The
small distance between the two lowest-lying f°s lev-
els gives rise to a contribution to x from the f5s# J
=3 state, which is magnetic. In our calculations
this is responsible for the hump in the susceptibility
near 100 K (Fig. 5). On the left-hand side of Fig.

4 we show the level scheme for the divalent 4f° con-
figuration, with spacings determined again from the
fit to the experimental data.

2. Calculation of

The susceptibility is the sum of the various Sm-
ion-term susceptibilities, weighted by the probabil-
ities that the terms are occupied:

X(T)=Eipi Xi s (9
where i denotes 4f 8, f5s||, fs# or 4f° L-S terms,
and the x; are calculated from the well-known formu-
la of Van Vleck'®

L+S: 2
@= (ggjﬂfﬂjﬂ+al)(y+l)e-w,/kr

J=l LS | 3kT

Ly (2T +1)e VIRT (10)

The p; are determined as follows: For the two f’s
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terms we use Boltzmann factors to determine their
relative populations; the 4f® fraction is fixed at about
30% by the lattice considerations of Sec. IV; and the
475 fraction is taken to be the number of carriers
plus a fixed fraction (2%) of the Sm ions per cm®,

We associate the fixed fraction with the number of
holes at 7'=0 in the narrow valence band (see be-
low).

We see that the susceptibility depends explicitly
on the energy levels W;. The temperature-indepen-
dent contributions @, are also determined by these
energy levels if we ignore effects arising from the
mixing of the f3s|| and f°s# levels. As this mixing
does not significantly influence the quantitative cal-
culation, these approximate ¢; suffice. In similar
fashion, the g; are computed from the Landé for-
mula, again ignoring spin-orbit-induced mixing of
the J=3 to 7 levels. The relative populations of the
f%s|| and f%# are calculated from the W, as well.
The W, are taken to be of the form'® A J(J +1) apart
from a constant depending on L and S; the A, are the
spin-orbit parameters for the various terms.

We have further modified Eq. (10) to include the
effects of the crystal field on the ground levels of
the 4f° and f° terms. The crystal field splittings
were estimated using a point-charge plus conduc-
tion-electron model for the bare 4f 5 ion, and a self-
induced crystal field due to the 5d-6s electron for
the f3s.1® The crystal field effects are important
only for obtaining a precise fit to the hump in x due
to the excitation of the f°s#.2° The qualitative be-
havior of the susceptibility is dominated by the J=0
and J=1 levels of the 478, neither of which is split
by a cubic field.

The A, are therefore the main adjustable param-
eters. Ab initio estimates of the spin-orbit param-
eters for the 4f® and bare 4f° configurations have
been made by Van Vleck'; both are about 400 K.
From the 4f° value, we may extract the A, for the
f’s by recalling that the spin-orbit energy in both
configurations is the same. Again the estimates
lie near 400 K. We have permitted all the A; to
vary. The calculated curve of Fig. 5 is obtained us-
- ing the spin-orbit parameters of Table II. The val-
ues are in good agreement with the initial free-ion
estimates except for the f°s# term, where the in-
terterm mixing seems to be important.

The agreement between the experimental data®
and our calculated curve is good except perhaps at
very low temperatures, where the possible presence
of magnetic impurities makes the interpretation of
the measurements less certain. As one can see

TABLE II.
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from the partial susceptibilities plotted in Fig. 5,
the 47® and f°s|| dominate the susceptibility through-
out the temperature range; the 4f® makes up the
major part of this contribution. These terms dis-
play Van Vleck temperature-independent suscepti-
bility below 100 K, a fact which is partially masked
by the increase in f°s|| population with decreasing
temperature. - The hump in the calculated suscepti-
bility near 100 K is due to the excitation of the f3s#
J =3 level, as noted before.? The bare 4f 5, with
its Curie-like susceptibility, is negligible except
at the lowest temperatures, where a weak diver-
gence is suggested by the measurements.

We have thus achieved a quantitative fit to the
magnetic susceptibility, using an ionic model based
upon the unusual f3s configuration. The connection
between these ionic localized states and the bands
in our model of the transport properties then com-
pletes our description of SmBg.

B. Identification of Bands

Our band scheme in Sec. II was derived from the
transport data, except for the unimportant temper-
ature dependence of the upper valence band. The
susceptibility fit is independent of the band scheme
as well, taking from the transport only the number
of 4f° ions at T=0, corresponding to the number of
Sm-deficient metal sites. We are now in a position
to identify the bands with ionic configurations.

From its large mobility we infer that the lower
valence band is derived from boron bonding li-
gands. %22 Johnson and Daane studied the alkaline-
earth hexaborides, 2 and showed that the conduction
band (which is probably the antibonding band in these
materials) lies about 0.4 eV above the top of the
bonding band. Our small bandgaps suggest, then,
that the upper valence and conduction bands in
SmBg originate from the Sm ions.

We identify the conduction band with a set of de-
localized 5d-6s electron states. Near the band
edge this band is presumed to have pronounced d
character, which accounts for the unusually high
effective mass and narrow bandwidth assigned to
the conduction band in the fit of the transport mea-
surements. Such an identification is supported by
the resistivities of other rare-earth hexaborides, 2
which have values similar to those found in d-band
metals. In addition, the crystal field splittings in
the other rare-earth hexaborides are correctly pre-
dicted by assuming that the conduction bands in these
materials have 5de,-like character. '8

The narrow valence band is identified with the

Spin-orbit parameters for the configurations of the Sm ion in SmBs.

4% (L=3, S=3)
420

Ground-state term

Spin-orbit parameter (K)

sl (L=5, §=3)
480

4f%(L=5, §=5/2)
500

Fis# (L=5, S=2)
800
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localized states. The precise nature of this corre-
spondence is rather subtle because the strong elec-
tron correlations in the ionic configurations re-
quire modification of the one-electron picture which
underlies the band concept. The band properties

of such a collection of states are inferred from the
form of the partition function for the whole system,
as detailed in the Appendix; as mentioned before,
the net effect is to give a temperature dependence
to the position of the band.

Another remark may be made concerning the nar-
row band. The motion of the band derives from the
redistribution of population among the various ionic
energy levels as kT rises. In principle, the 4f°
could ionize thermally in the same manner as the
f5s configuration. As we discuss further below,
however, the strain and configuration energies en-
force a fixed 47 ®: 4f° f -shell ratio for temperatures
up to 1000 K, * so that this ionization process is
strongly inhibited.

In our case, the motion of the narrow band has
no qualitative effect on the transport behavior. In-
clusion of the motion, which lowers the band gap
with increasing temperature, necessitates choos-
ing a larger T'=0 value for |E,| in order to fit the
resistivity data.

In summary, our analysis shows that the magnet-
ic susceptibility is independent of valence changes
(47 ® or f°s — 4f° transitions), originating instead
from the fixed 4f® fraction and from f°s||~f’s#
configurational transitions. By contrast, the trans-
port properties ave strongly dependent on valence
changes, since the conduction electrons result al-
most entirely from f3s - 4f% transitions.

IV. FIXED 4f% : 45 RATIO

The x-ray absorption, ! lattice constant, * and
M3ssbauer* studies of SmBg show that it contains
ions with 4f® and 4f° f-shells in a ratio of about
3:7 over a wide range of temperatures. The Sm
sites, however, are presumably equivalent. We
now show how the rigidity of the boron lattice pro-
vides an explanation for this remarkable fact.

Briefly, our argument is as follows: Because
of the rigidity of the boron network, a small change
in the size of the unit cell gives rise to a large
change in lattice strain energy. The two Sm-ion
configurations® are of different sizes, the 4f° be-
ing smaller. The SmBg crystal can then minimize
its total free energy by a compromise in which the
ions have a mixture of two configurations.

The metal ions in the hexaborides sit at the body
centers of the unit cells. At each corner there is
a relatively large boron octahedron. The physical
properties of the hexaborides resemble those of
elemental boron, as one might expect with such an
open boron network: The hexaborides are very
hard, have high melting points (~ 2200 °C), small
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coefficients of expansion, and, significantly, lattice
constants which lie within 2% of 4.15 A, %2 Thege
facts, especially the last, indicate the rigidity of
the boron network and its resistance to changes in
unit-cell dimension.

The other contributing factor is the configuration
energy. Compared with the lighter rare earths,
Sm has a smaller divalent-to-trivalent ionization
energy because of the tendency to fill the 4f orbital
subshell as much as possible. In the more extreme
case of europium, one finds a pronounced tendency
for Eu ions to be divalent, as they are in EuBj. !¢

A. Lattice Energetics

We quantify our argument with a simple spring
model which takes into account the boron-boron
and boron-rare-earth interactions which give rise
to the strain energy. Our reason for using such a
picture rests on the belief that, to lowest order,
the role of the rare-earth ion is geometrical. The
parameters defining our model may then be evalu-
ated for SmBg and applied to predict the compres-
sibilities of the other rare-earth hexaborides.

The total energy has two contributions, E,, the
configuration energy, and E,, the hexaboride strain
energy. E,is a function of both the lattice constant
a and the metal-ion radius ». For an ion of given
radius, the strain energy will vary with variations
of the lattice constant (a sort of compressibility-
experiment picture). Conversely, for fixed a, E,
will vary with ionic radius because of the boron—
rare-earth interaction. We emphasize that our mod-
el is crude here, as we reduce wave-function-over-
lap effects to two parameters.

We make the reasonable assumption that there are
values of ¢ and 7 which minimize the strain energy.
Thus, expanding E, about these ideal values a, and
7, and retaining only the quadratic terms, we find
that

E,=3C,(Aa)? +3C, (&7 - ara)? . (11)

C,, C,, and @ are the second derivatives of E, eval-
uated at (@, 7,) in the usual way; Aa=a-a, A&7
=7 -7%,.2 We have chosen the zero of energy at
Ey(ag, 7o),

E, depends on the mixture of 47® and 4f° ions
through the ionic radius.#. We denote the fraction
of ‘4fB ions p; the average ion radius is then

r=prs+67)+ (1= pWs=75+pdr , (12)

where 75 is the 4f° ion radius and 67 =74~ 75 >0 is
the difference between 4f® and 47° ion radii.

The configuration energy in the mixed—f-shell case
is a similar average:

E,=E5+pdE , (13)

where E; is the 4f° energy and 6E =E (47 %) - E(4f°).
Putting (12) into (11) and minimizing with respect to



2038

a, we have a total energy which takes the form

E=E,+E,=Eg—€p+32p?. (14)
Minimizing with respect to p, we find that
p=€/x, (15)

so that if 0 <€ <), there will be a mixture of 4f® and
4f% f-shells at T=0. Putting in the explicit forms
for € and A, the condition for a mixed configuration
becomes

75<vo= [6E/C,(67)] &6y <7y, E=1+0%C,/C, .
(16)

For T+#0 we must minimize the free energy. I
the entropy is given simply by the configurational
entropy arising from the two different species of
ions, then p will change significantly when A/kT=~1.
Applying these results to SmBg, we would set
p(T=0)=0.3, x 21000 K, in order to reproduce the
lattice-constant® and M&ssbauer* measurements.

Note that the rigidity of the boron lattice enters
our argument at two places. First, in order for the
expansion (11) to be valid, Aa and A7 must be
small; the small variation of the lattice constant
among all the hexaborides suggests that this condi-
tion is plausible.? Second, of course, (16) must be
satisfied, which requires C,(57)%~8E in order that
the last term contribute to p without dominating it.

In order to gain more perspective on the mixed-
f-shell phenomenon, we may calculate the energy
separation between the 4f® and 47° (really, the f°s)
configurations, taking the lattice energy into ac-
count. To do this, we note that the total energy in
Eq. (14) is a function of @ and p; keeping a fixed at
its equilibrium value and allowing p to vary, we may
then minimize the free energy at finite temperature.
We find for the effective energy separation that

[E4r®) — E(4f5)] oz = — € + M. @am

This is the energy separation drawn in Fig. 4. At
equilibrium we have p=¢/x at T=0, as in (15).

B. Compressibilities

We may now compute the compressibility k using

1 3\ _ |2 eE
"—_V<3V>T_V[3V<57>S] 75

where the first derivative is taken at constant p
(constant S), and in taking the second at constant T
we allow p to vary, adjusting to its isothermal val-
ue. From (11) and (13) we find that if 0<p<1,

(18)

k=9a/C,, (19a)
while if p is fixed at O or 1,
k=9a/C,t . (19b)

Physically, we expect C, to be independent of
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metal ion for all the hexaborides. On the other
hand, £ will depend on which rare-earth hexaboride
we consider., We make the assumption that ¢ de-
pends mainly upon the presence or absence of con-
duction electrons, so that £ has a characteristic
value for metallic hexaborides which differs from
that for a semiconductor. This difference is re-
flected in the equilibrium lattice constant, which

is given by

a=ag+nAr, n=(-1)/at=aC,/(C,+a’C,) . (20)

In agreement with experiment, a follows the ionic
radius®® with 7~ according to the variation in lat-
tice constant in the rare-earth metals (i.e., the
ionic radius) and in the rare-earth hexaborides.

Using (20), we may evaluate n for the metallic
hexaborides. We use the lattice constants and rare-
earth ionic radii for PrBs, GdB,;, Pr, and Gd to
find that

Aa/Ar=1=0.6 . (21)
1

We take ¢ ~% as a reasonable estimate®” and find
that

(22)

Thus for PrB, (whose lattice constant is the same
as that of SmBg) we find a compressibility 1.4
times smaller than for SmBg. Because the lattice
constant varies by only 4%, our theory implies that
SmBg has higher compressibility than the other
rare-earth hexaborides.

KémBG/K= (aSmBs/a)E ~1. 4a3m36/a .

V. LOW-TEMPERATURE SPECIFIC HEAT

The band structure of Fig. 3 suggests that the
excitation of electrons across the gap E, and the
corresponding movement of the Fermi level up into
the conduction band will result in an interband con-
tribution to the specific heat reminiscent of a
Schottky anomaly. Depending upon the size of the
residual p-type conductivity, moreover, we expect
an intraband specific heat in the narrow valence
band which will be large because of the high density
of states involved. The high Debye temperature of
the hexaboride lattice, and consequent small lattice
specific heat at low temperatures, implies that
these electronic contributions will be particularly
pronounced.

We have measured the heat capacities of two
SmB; samples, whose resistivity ratios p,.sx/Ps00
were 60 (sample No. 19) and 800 (sample No. 22).
Both samples were prepared by sintering boron and
samarium in sealed tantalum crucibles and subse-
quent arc melting. Sample No. 22 is the same bar
cut from the bulk whose transport properties are
shown in Fig. 2.

Sample No. 22 (=90 mg) was measured using a
dynamical-temperature-relaxation method which
we have described elsewhere.?® Measurements on
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FIG. 6. Specific heat of SmBg in the range 1-30 K,

Resistivity ratios: sample No. 19, 60; sample No. 22, 800.

Insert: specific heat in the range 1-10 K,

sample No. 19 were made in two ways. The whole
arc-melted button was used for a measurement by
the pulse technique of Morin and Maita, 2° as part
of an earlier investigation of the rare-earth hexa-
borides. ¥ Later, we used a small chip (~30 mg)
of the button and extended the heat-capacity mea-
surements down to 1 K. For the second measure-
ment, we employed the temperature-relaxation
technique. In the region of overlap the two sets of
measurements agreed to better than their absolute
accuracies of about 5%.

The data are presented in Fig. 6. Note that
sample No. 19, which has higher residual conduc-
tivity, also has a larger low-temperature specific
heat than sample No. 22. Note also that the spe-
cific heats of the two samples merge above 18 K.
For comparison, we have included the specific heat
of LaBg,® an isostructural metal, to indicate the
size of the lattice and conduction-electron specific
heats in the metallic hexaborides. Below 10 K, it
is negligible in comparison with the specific heat
of SmBg, and even at higher temperatures it does
not rise as rapidly as our data do.
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According to our interpretation of the transport
data, the greater residual conductivity of sample
No. 19 is due to a larger number of holes in the
narrow valence band at T=0. We attribute the
larger low-temperature specific heat of this sample
to a larger intraband specific heat in the narrow
valence band. As a rough approximation, we ignore
the motion of the Fermi level and represent the
electronic specific heat by a ¥T term, as shown in
the insert of Fig. 6. This crude construction al-
ready allows us to correlate the specific heat and
conductivity in interesting ways. Using the con-
stant-mobility and effective-mass approximations
for the narrow band, the values of ¥ may be related
to the residual conductivities by

Y1o/V22= (015/03)" % . (23)

We find this relationship obeyed within 25%.
Furthermore, an effective mass of 200 m, is cal-
culated, corresponding to a bandwidth of 100 K,
consistent with the value we used to fit the trans-
port data.

For both samples we find bumps peaked at roughly
3 K, reminiscent of Schottky anomalies. The fact
that the peak occurs at such a small fraction of the
energy gap E;(0)/k is surprising. The calculation
of the theoretically predicted specific-heat anomaly
is, however, complicated by the rapid low-tem-
perature movement of the Fermi level. In fact, the
motion of the Fermi level, which crosses into the
conduction band at about 10 K, provides a reasonable
explanation for the depression of the peak tempera-
ture to = E;/10k. Preliminary calculations indicate
that this effect may provide an explanation for our
anomaly.

It should nevertheless be stressed that the bump
may be due to other excitations in the SmBy system.
The crystal field splitting of the bare 4f° ground
level, for example, is only about!® 9 K; thermal ex-
citation of these levels could contribute to our
bump. Such an explanation has the added virtue
that it explains in a natural way the scaling of the
height of the bump with the residual conductivity
(size of the 4f° fraction at T=0) .

VI. CONCLUSION

The model of SmBg which we have discussed in

‘Secs. I-V correlates all the experimental data

known on this unusual material. The model is both
complicated and apparently ad hoc in several ways,
so that it seems desirable to summarize the range
of correlations which we are able to achieve.

We have employed a model to describe SmBg, in-
cluding three basic concepts which are independent
of, though consistent with, each other. Using an
energy-band scheme with three bands, we have
made a semiquantitative fit to the resistivity and
Hall effect. This model also gives a qualitative
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account of the thermopower measurements of
Paderno et al.®

Quite apart from the transport behavior, we have
explained the magnetic susceptibility? in quantitative
detail by assuming the existence of the f°s configu-
ration. The remarkable feature of this configura-
tion, that its ground state has no magnetic moment
despite a nonzero total angular momentum, allows
us to reconcile the magnetic properties with the
x-ray absorption, ! lattice constant, ® and Méss-
bauer? data, which implied a temperature-indepen-
dent mixture of 47 and 4f° f shells in the Sm ions
in SmBg.

This mixture of valences is the most strikingly
anomalous feature of SmBg. Our consideration of
the competition between strain and fon configuration
energies shows that the rigidity of the boron net-
work may account for this behavior. On the basis
of our simple lattice-energetics theory, we are
able to account qualitatively for the temperature
variation of the lattice constant.® Furthermore,
we have found a relationship between the compres-
sibilities of SmBg and the other rare-earth hex-
aborides.

In our view, then, the properties of SmBg arise
as follows: The rigidity of the boron network,
combined with the small energy difference between
the 4f% and 47°(5d-6s) configurations, leads to an
equilibrium state containing a mixture of these
ionic configurations. The fact that the ground state
of the f5s is nonmagnetic implies that the low-tem-
perature susceptibility of SmBg is of the Van Vleck
temperature-independent type, as observed.?

The transport properties of the ionic levels re-
sponsible for the magnetic behavior are describ-
able in terms of a narrow band with temperature-
dependent energy. Together with a valence band
comprised of boron bonding states and a conduction
band made up of Sm-related 5d-6s states, we have
a three-band model which describes the transport
properties.

The low-temperature specific heat is qualitative-
ly related to the transport behavior, in that the
large electronic contribution to the specific heat can
be correlated with conduction in a narrow band.

Despite the complexity of such a model, we be-
lieve that the range of data described by it justify
our belief that we have given a valid description
of SmB;.
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APPENDIX

In this Appendix, we describe the band properties
of the localized 5de,-6s electrons. The electron
states which make up the ionic configuration are
highly correlated because of the exchange and spin-
orbit interactions which give rise to the level
scheme. In such a case, the free-electron-like
single-particle approximation which is normally
used to describe electron bands fails. Neverthe-
less, one can describe the transport properties of
such electrons within the framework of band theory.
The necessary modification is that the energy band
be dependent upon the relative populations of the
ionic configurations; that is, the band gap is tem-
perature dependent.

We write the grand canonical partition function
for the system, explicitly including both ionic and
conduction-band states. For this purpose we divide
the ionic states into divalent (47® and f%s) and
trivalent (47°) families, denoting the energies and
degeneracies of the divalent states by (E,;, g£,),
and those of the trivalent states (Ej;, g3;). We
may then write the total partion function as the
product

Z= Zcond Zion 3 (Al)

where

Zcond: I'I;[ 1+ e-[é(k)-&p]/kT] (Aza)

and
Zin= H ( Z: gZ{e-(EzrnzeF) /kT

all Sm sites i

+2_ gyye” Fasmatp) /BT ) . (A2D)
K

ny (equal to 60) is the total number of electrons on
a divalent Sm ion, and ng (equal to 59) is the num-
ber on a trivalent ion.

We also write the single-ion partition functions

Z,=2 g e2/* and Zs=zjgsj e B/ (A3)
which would represent the ionic configuration com-
pletely if there were no possibility of divalent-to-
trivalent transitions. Z,, of course, is the sum
of the partition functions of the 4f® and f°s configu-
rations.

Putting (A3) into (A2b), we find that

Zm‘:[l +(Z2/Z3) eeF/kT]N (ZsenaeF/kT)N , (A4)

where N is the total number 'of Sm sites. By analo-
gy with the usual partition function for a degenerate
Fermi gas (A2a), we may identify the first factor
in (A4) as the partition function of an N-fold-degen-
erate level with an energy given by
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e~E2i/rT
E(T)=-kTIn(Z,/Zs) = - kTIn (-E—igu—mﬁ) ,

Ej 83; €
(A5)

which is Eq. (7).
We thus have a total partition function (A1) which
takes the form

(A1)

Z = Zyeve1 Zirivalent ions Z conduc tion band
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The narrow band, whose energy is temperature
dependent, is the upper valence band of our trans-
port model, and the conduction band contains the
delocalized 5d-6s electrons which are ionized from
divalent ions to form trivalent 4f° ions. For com-
puting the susceptibility, it is more convenient to
consider the ion partition function in the form (A2b);
the divalent ion states are thus implicity included
in the Z,,,,, factor in (Al’).
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The electronic energy levels associated with vacancies in PbTe are obtained through the
Green’s-function method of Koster and Slater, the unperturbed Bloch functions being obtained
from a relativistic K+ 7 augmented-plane-wave (APW) energy-band calculation. APW one-
electron energies were obtained at I' and the corresponding eigenfunctions were used to obtain
matrix elements of the relativistic momentum operator ¥ between states at T'. These energies
and matrix elements were used in a K * ¥ secular equation to obtain energies and wave func-
tions at approximately 4300 points in the Brillouin zone. With 11 relativistic bands at I, ex-
cellent results were obtained. Localized Wannier functions were constructed by taking suitable
linear combinations of the unperturbed Bloch functions and these Wannier functions provided
the basis in which the energy levels in the presence of the perturbing impurity potential were
found. We have solved the vacancy problem using Wannier functions from nine bands (five
valence and four conduction) and 13 lattice sites. The results obtained from this calculation
showed that Pb vacancies produce p-type PbTe, whereas Te vacancies produce n-type PbTe,
and in both cases, carriers are present at all temperatures.

I. INTRODUCTION

It is our intention here to present a detailed ac-
count of the previously published calculation of the
energy levels associated with vacancies in PbTe.®
Lead telluride is known to have a NaCl crystal
structure with a lattice constant of 6.452 A (12.193
a.u.)? and to be a semiconductor with a direct gap
of about 0.3 eV at room temperature.® The gap is
located at the L point in the Brillouin zone. The
measured and calculated electronic properties of
the lead salts have been recently reviewed by
Prakash, ? in his work on the measurements of the
optical-absorption edge of these salts and its vari-
ation with temperature and pressure. A very in-
teresting property of the lead chalcogenide group
of semiconductors is that they have ranges of non-
stoichiometry, the lattice incorporating either ex-
cess lead or chalcogen with the corresponding de-
fects. While excess lead produces a n-type semi-
conductor, excess chalcogen gives rise to a p-type
material. Both cases are characterized by high
mobilities at liquid-helium temperatures and it is
not possible to freeze out the carriers at low tem-
peratures.® It has been found that for excess chal-
cogen the principal defect is a singly ionized lead
vacancy while for excess lead, the situation is not
yet clear: For PbSe it seems that the principal de-
fect is a doubly ionized intersticial Pb, 7 while for

PbS, a singly ionized sulfur vacancy appears to be
the primary defect, although an appreciable con-
centration of doubly ionized intersticial Pb also
exists.® On the other hand, a singly ionized tellu-
rium vacancy is probably the most important defect
in PbTe.® The theoretical study of vacancies in
PbTe, therefore, presents the possibility of ex-
plaining the behavior described above:

The defect problem associated with a Pb and a
Te vacancy is solved here in a manner similar to
that used by Callaway and Hughes'® for single and
divacancies in silicon, that is, by applying the
Green’s-function method of Koster and Slater, !
which has also been successfully used in the study
of impurities in metals,'? and in the problem con-
nected with scattering of excitations in solids by
localized imperfections. 13 The effect of the vacancy
is treated as a time-independent localized potential
and the perturbed wave functions are expanded in
terms of Wannier functions of the unperturbed lat-
tice. Because the latter functions are defined as
linear combinations of Bloch functions, the knowl-
edge of those wave functions, on a reasonable mesh
of points in the Brillouin zone, is necessary.

The one-electron energy bands of PbTe were ob-
tained by Conklin, * through a first-principles rela-
tivistic augmented-plane-wave (APW) calculation,
and by Lin and Kleinman, 15 using a pseudopotential
approach. Some experimental results can be very



