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Atomic Vibrations in the (00.1) Graphite Surface:
Observation with Low-Energy Electron Diffraction and Lattice-Dynamic Calculations
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Low-energy electron diffraction has been used to measure the variation of the surface Debye
temperature O, in the [00. 1] direction of graphite as a function of the energy of incident elec-
trons. A change (hexagonal-trigonal) in the symmetry of the diffraction diagram, depending
on the penetration of electrons, was observed. This change in symmetry has been made use
of in selecting, from the many other values of ©, we had measured, the one associated with
the first layer of the (00.1) surface of graphite, namely (690 +70) °K, Furthermore, the
dynamics of the Born lattice has been applied to compute the Debye temperature of the first
layer of the surface associated with the normal (6,) and parallel (6,) directions of the (00.1)

face.

The computed value of ©, is in fairly good agreement with the one determined experi-

mentally.  The computed value of 6, is close to that previously obtained by other authors using

different methods of calculation.

I. INTRODUCTION

The measurement technique of mean-square dis-
placement for surface atoms by low-energy electron
diffraction (LEED) is now a well-established tech-
nique!; nearly all the cubic metals have been
studied in this way. The interpretation of the re-
sults, however, remains problematical owing to
the lack of a precise definition of the surface. Ex-
perimentally, {#?) is determined by using a beam
of progressively decreasing energies of the inci-
dent electrons, thereby, obtaining smaller and
smaller penetration of the surface layers. Hith-
erto, it has been assumed that the pattern obtained
with the smallest energy of incident electrons is
representative of the surface structure. This bold
hypothesis is a consequence of the absence of any
precise LEED theory.

A pseudokinetical theory linking the diffracted
intensity to (#?) was proposed by Jones, McKinney,
and Webb, 2 but recently Baudoing et al.,® taking
Ni as an example, showed that the above theory is
not elaborate enough to explain the experimental
observations. It can be said that, at present, it is
not possible to ascertain which pattern - among
those obtained with very low-energy electrons —
corresponds to the vibrations in the first layer of
the surface. *

In this paper, we shall first report the measure-

ment of the mean-square displacement { %?), per-
pendicular to the (00. 1) surface of graphite as a
function of the electron energy. Then a means. of
obtaining the precise value of {#?), associated with
the first atomic layer of the surface is suggested.
Finally, a calculation based on Born lattice dy-
namics® is provided to check the experimental re-
sults.

II. EXPERIMENTAL

If the incident electrons strike the surface nor-
mally and observation is made onthe reflected elec-
trons in the same direction (or in one very close
to that), the intensity I of the specular spot is given
by the expression®

I=Kexp(-167°/3)(u?), , 1)

where ) is the wavelength associated with the elec-
trons. Here the term K stands for the contribution
due to the diffraction and the exponential corre-
sponds to the diffusion due to the thermal vibra-
tions.

The mean-square displacement (%% ) depends on
the temperature 7. Usually! another parameter,
the Debye temperature ©, is introduced to de-
scribe (u?); this parameter is independent of T in
the harmonic approximation except at low tem-
peratures. (u®) and © are linked by the relation
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FIG. 1. Intensity of (00) spot vs temperature for
various electron energies (arbitrary units).

(u?) = 3K2T/4r°mk6? , (2)

where the symbols have their usual meaning.

Equations (1) and (2) give a linear relation be-
tween Inl and 7, from which it is possible to cal-
culate the Debye temperature ©, of the surface
vibration in graphite normal to the (00. 1) face.

Measurements were made on Ceylon graphite
thathad been cleaved, thenbaked at 900 °C inanultra-
high vacuum. The remaining pressure was about
107 Torr. We observed the intensity variation of
the specular spot (00) as a function of temperature.
Observations were made as the temperature was
decreasing from 300 to 100 °K in about 30 min. The
sample of graphite (3%X3x0. 2 mm?®) was fixed on
a metallic holder through which cooled gaseous
helium was passed.

The temperature was measured by a thin-foil
resistance-temperature sensor stuck to this holder 8
The intensities were measured by means of photo-
metry and were corrected for the background.

For all electron energies (14-400 eV), we always
found a linear relation between InJ and T. Some
of these experimental lines are shown in Fig. 1.
The slopes of these lines enabled us to determine
the corresponding Debye temperature. The results
obtained for various electron energies can be found
in Fig. 2. There are about 50 experimental points.
The scatter of the experimental points never ex-
ceeds 10%.

A. Debye Temperature of Bulk

In Fig. 2 [for high-energy electrons (> 150 eV)]
the existence of an asymptote parallel to the energy
axis can be noticed. This indicates that the Debye
temperature of the bulk in the [00. 1] direction is
about 800 °K, which is in agreement with an esti-
mation (760 °K) of Magnus. "’

B. Debye Temperature of Surface

In the absence of LEED theory it is impossible
to pick out the correct value of © for the surface
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atoms in graphite from the various values obtained
by low-energy diffraction. In what follows, an in-
direct method of solving this problem is presented.
We have observed that the symmetry of the dia-
grams varied with the electron energy. For an en-
ergy greater than 200 eV, the symmetry is hexa-
gonal. At medium energy it becomes trigonal, re-
verting back to hexagonal again at lower energies
(below 70 eV). This behavior is depicted in Fig. 3
where the ratio [ Ijgy) + 130y )/[ Li10y + L(oTy] is shown.
This curve is only approximate as far as the ab-
solute magnitudes of the extrema are concerned,
but it gives a tolerably good description of the vari-
ation of [ Irgyy +I G0y /[ 10y + Loy ]- When [ Igyy +I 30y )/
[I0y+I0Ty]=1, the symmetry is hexagonal; other-
wise it is trigonal. We agree with David et al.®
that this behavior is related to the symmetry of
graphite. (In some cases the trigonal symmetry
may be replaced by a hexagonal symmetry resulting
from the existence of different parity steps at the
surface of the crystal.®)

The symmetry of the graphite in bulk is hexagonal
as observed from the diffraction at high energies
(deep penetration). On the other hand, if we con-
sider a crystal made up of only two layers, the
symmetry turns trigonal, becoming hexagonal again
for monolayer crystal.

We think that at high energies the bulk symmetry
imposes on the pattern a hexagonal symmetry. At
about 100 eV, the contribution is mainly due to the
first two layers. This might explain the trigonal
diagram obtained here. Below 70 eV, the diffrac-
tion would be due to the first layer or to a fraction
thereof.

On the basis of the above arguments we have
chosen the Debye temperature measured at 70 eV,
as the one associated with the first layer atoms,
namely,

0,°K

800

I-600

<u®>) = 3HT/mke?y

100 200 /400 Energy (eV)
/

FIG. 2. Debye temperature of surface atoms perpen-
dicular to the (00.1) plane as a function of electron
energy.
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©=(690x70) °K ,

a value which is in good agreement with a mea-
surement made by Laschkarew and Kuzmin® in
1934 using LEED.
This choice involves an important implication,
viz., below 70eV, the effective Debye temperature
decreases very quickly. We think it represents
the “Debye temperature” of the electrons of the
outside areas of the surface atoms. The low values
may arise from three sources. (a) The electrons
of the outer shells of the surface atoms are far
from the nucleus and as they tend to spread out?
near the surface, one may think that their vibra-
tion amplitude is greater than that of the nucleus.
(b) There may be local overheating due to the im-
pact of the electrons, and therefore a change in the
distribution of the surface phonons. (c) At very
low electron energies, dynamical effects (multiple
diffraction) are not negligible.

We also have endeavored to measure the surface
Debye temperature 6, in a direction parallel to the
(00.1) plane. According to MacRae! the incident
and reflected beams must make an angle close to
+7 with the normal of the crystal.

This experiment could not be carried out ongraph-
ite for it was impossible to observe a diffraction

spot of high order in order to obtain a grazing re-
flection,

III. CALCULATION OF ?)

The theoretical determination of © by means of
(u?) is done by using the lattice dynamics of Born.?

Until now, such calculations!! have been applied
only to few substances of the cubic system. We
thought it interesting to generalize this method to
the hexagonal system, and to try and check our ex-
perimental results. This is the reason why we have
calculated the mean-square displacements of the
vibrations to the (00.1) surface of graphite.

According to Born® and Wallis ef al.,! («?) sat-
isfies the equation

W)y B 1, 3)

in the high-temperature limit, where i=1, 2, 3 cor-

responds to the vibration direction, k=1, 2, 3 de-

scribes the atom, and [D'l],' » is the diagonal coef-

ficient corresponding to the atom % for the direction

¢. The normal direction to the (00.1) surface is
chosen such that 7=3.

Besides the harmonic approximation, the hypoth-
eses used for the calculation are (a) noncentral
forces; (b) first-neighbor interaction in the layer
and out of the layer; (c) a crystal in the shape of
a parallelepiped including N-nn cells, N represent-
ing the number of cells normal to (00.1); (d) free
vibrations in both the (00. 1) and (00. 1) faces ful-
filling the cyclic condition of Born for the four
other faces.

The graphite cell includes four atoms (see Ap-
pendix). They are numbered 1, 2, 3, 4, having the
respective coordinates 0, 0, 0; 3, %, 0; 3, %, %;
2. 5,%. We have expressed the dynamical matrix
by following the classical method.® For graphite
it is a 12N X12N matrix, rotationally invariant.
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(See the Appendix for details.)

In the present case, the atoms 1 and 2 are on the
free (00.1) surface. The solution of (3) with the
help of the dynamical matrix [D] enables us to ob-
tain, using Eq. (2), the Debye temperature of the
atoms 1 and 2 on the (00. 1) surfaces.

A. Computation of 6

Computation for the atoms 1 and 2 is made by
using (3) with 2=1, 2, i{=j=1and k=1, 3, i=j=2,
respectively.

Thus, having obtained («2),, and («2),,, we deduce
the Debye temperature in the direction normal to
the surface, i.e., ©,;and ©,,. The corresponding
equations have already been expressed in a previous
paper, 12

In the form (4) of Ref. 12 giving ©,, and O,
the Hooke’s force constants ¥ and v’ appear. ¥
is the force applied to atom 1 in the [ 00.1] direc-
tion when atom 2 moves a unit length in the same
direction. 7y’ is a similar coefficient (see dynam-
ical matrix) concerning the atoms 2 and 3.

The tables®® give the elastic constants of graphite.
Using Ref. 14 we may deduce the Hooke’s force
constants. We obtain y’ with a low scatter, whereas
vy varies from 1 to 100 in range. To carry out the
calculation we have used the magnitude of y' given
by Ref. 13, i.e., ¥'=5.67x10° dyn cm™, but we
did not use any of these values for ¥ on account of
their extreme scatter.

In order to determine y, we have fitted its value
so that the Debye temperature of the bulk, com-
puted by Eqs. (2) and (3), was 800 °K for atom 2.
We found =53 x10% dyncm™.

We have chosen atom 2 for the fitting of y for, in

our model, this atom is directly linked to the ad-
jacent layer, whereas for atom 1 this is not so.
As such, atom 2 is nearer to reality than atom 1.
As a matter of fact, this choice is nat very impor-
tant because with the value of ¥ computed as above,
we find the bulk Debye temperature of atom 1 to be
780 °K, a value quite close to 800 °K, the Debye
temperature of atom 2.

The computation carried out under these condi-
tions gives the following results for the surface
Debye temperatures:

0,,=720°K, ©O,,=730°K .

We have used a computer and taken a crystal with
N=17 (14 layers) and »=200. So we obtain Debye
temperatures close to those of a semi-infinite crys-
tal to within about 1%. ’

The fitting with the experimental determination
[6. = (690+70) °K] can be considered as fairly sat-
isfactory in spite of the roughness of the model
chosen,

We have also computed 6,5 and ©,,, the Debye
temperatures of the atoms located in the second
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layer under the surface, and the values obtained
are

6,3="180°K, ©,,="760°K.

The theoretical mean-square displacements of the
vibrations of the second-layer atoms are, there-
fore, not far from those of the bulk atoms. This
shows that the motion of the atoms is mainly gov-
erned by the forces operating in the layer,

B. Computation of 6,

The same values as those previously computed,
but associated with the directions parallel to (00.1)
(k=1or k=2), i.e., ©,, and ,, were determined
from (2) and (3).

The parameters occuring in the calculation are
the Hooke’s force constants @, B, and a’(see the Ap-
pendix), taken from Refs. 12 and 13: a=194
x10°%, B=913x10% a'=10x10® dyncm™.

Note the very low value of a@’, a parameter ex-
plaining the interaction between the layers. To
make the computations easier, one neglects a’in
favor of @ and B. It is as if one considered a crys-
tal made up of only one layer for the computation
of ©,. This implies for our model that the surface
Debye temperature is the same as that of the bulk
for the directions parallel to (00.1).

The hypothesis of the high~temperature limit is
no longer valid here., This is why we use a more
general expression'! to compute (%, =(u?);,, with
i=1, 2and k=1, 2,

(u®,; o= B/2m)[DV 2 coth(BD*?/2kT)];,, . (@)

The expression (4) makes it possible to find (3)
again by expanding the hyperbolic cotangent function
and retaining only the first term. Thus we get an
error for ©, which can be neglected if compared
with the one due to the incertitude already existing
ony and y’. It is quite different for the vibrations
parallel to (00.1). The computation using (2) and
(4) gives

0,1 =96,3=2300 °K for T=400°K.

This quantity was determined previously with the
help of two other methods: Application of theDebye
theory of the heat capacity to graphite” yields ©,
~ 2300 °K; whereas a similar calculation for low
temperature and for the long-waves approximation'®
gived ©,~ 2500 °K. Our computation is therefore
in agreement with the above results.

IV. DISCUSSION

In this study the variation of the symmetry of the
diffraction patterns, when considering their inten-
sity, provided us with a method of choosing a pre-
cise value of the Debye temperature associatedwith
first-layer surface atoms from a range of values
obtained with low-energy diffraction of electrons.
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It should be emphasized, however, that this
method is slightly imprecise, since the transition
from trigonal - hexagonal symmetry is not clear-
cut. However, in the absence of a satisfactory
LEED theory it is the only method at our disposal.

We must also say that, unfortunately, it is not
a general method, since the crystal observed must
have a symmetry of surface different from that of
bulk.

Another point which we did not emphasize is the
linear variation observed experimentally between
the logarithm of the intensity diffracted in (00) and
the temperature (Fig. 1). This shows that the
Debye temperature normal to the surface is con-
stant with temperature (T>+©). This fact is not
comparable with the theoretical'®'!” and experi-
mental®® results showing that © varies with temper-
ature when T< 36 and T< 36, respectively. Cal-
culations!®'!” have been carried out on fcc crystals
and observations!® have been made on chromium
(bcc) whereas graphite is hexagonal.

Finally, it must be pointed out that in our com-
putation we have used the same Hooke’s-law coef-
ficients for bulk and surface. It was not necessary
to proceed like Wallis et al., ' i.e., to fit the
force coefficients in the first layer, to obtain a sat-
isfactory agreement between the computation and
the experiment,
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APPENDIX

The dynamical matrix for N cells in the [00. 1] direction (2N layers) is

--------------------

Xy ¥y 0 0 -+
Y, X ¥, 0 -
0Y, XY,

D=t | .

m

0 0 0O
0 0 0O
"0 0 0 O

D is a 12N x12N matrix where X, X,;, X;, Y, Y, are 12x12 matrices. These 12 X12 matrices stand for
the interaction between the i twofold layer and the j twofold layer ,

AB 00 A B 0O
B*C D 0. B* ¢, D O
X=\lopc Bl % |0 b cB
0 0 B A 0 0 B*A

ABoO O
B*C D 0
0 D C, B’
0 0 B*A

X5 =
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0000 0000
0000 00DO
Y= , Yp=
0DO0O 0000
0000 0000

where A, B, C, Cy, and D are 3 X3 matrices which describe the interaction between the atoms of a cell

Ha+p) O 0 abo Ha+p)+20’ 0 0
A= 0 Ha+p) 0|, B=lbcoO| , C= 0 Ha+p)+2a2" 0 |,
0 0o 3y 00d 0 0 3y+2y’
Ha+p)+a’ 0 0 -2’ 0 0
Co= 0 Ha+p)+a' 0 , D=| 0 -a' © '
0 0 3y+y’ ‘ 0 0 -9

with
a=- aexpi(}u + %u?;) - (a+3B) {expl = iGu, +5u;) ] + expi(3uy —5uz)} ,
b=~ 13 (- B)fexp[- i uy+ 3up)] - expi Gy ~ 3)}
c=— Bexpi(buy +3uy) - § B+ Afexpl- i(Gu; + su) ]+ expi(zus - )}
d= - v{expi(3u; + ;) + exp[— i (G uy + Fup) ]+ expi(5uy - $up)}

where u, and u, are the components of the “wave vector” in the first Brillouin zone, and where

’

a00 a” 0 O
0B80| and |0 a" Of |,
00y 0 0 ¥y
respectively, stand for the Hooke’s-law constants between the 1-2 and 2-3 atoms (see Fig. 4). B and y' are

central forces; @, v, and @' are noncentral forces.

A. Debye Temperature Perpendicular to (00.1) Surface

We have
n( 8 \'? i 3\'?
eu=z(;;5> o emiln)
where
E=n% 2 My, F=n?2 M,y .
u1,u2 ul,uz

M,,y and M, y are given by the N following iterations:
My,={P=-QIR-y"*s- P},
My, =[R - QP = y'%(s- @P*Y) ],
with
P=3y, Q=72[3+2cosu, + 2cosu, + 2 cos(u, +us)] ,

R=3y+y'(2-6;4), S=3y+y'(2=8;) =y *Mp, 11 , My,0=0 Mjz,0=0 .
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B. Debye Temperature Parallel to (00.1) Surface

We have

#nl 3 1/2
O,= Z (ﬁ) ’
where

=n? 2 M, ,
U,

and where

N 1(n 1 1 i
M=% E(%"T") T 5 @2¢ <k1> (@+ B+
with
= 3(a+B)E (a+ B - bb* - cc*]

and
D=4 (a+p)?-aa*-bb*[+(

35 12y

kT,

( ﬁ>6[%(a+ B +bb*+ cc*] |

a+ )% = bb* = cc*] = [ab*+ be*][a*b+ b*c] .
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