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The contributions of transverse and longitudinal phonons toward thermal conductivity of un-

doped Ge have been investigated, both in high- as well as low-temperature regions. Four-
phonon processes are also included in the determination of the combined relaxation time w,

and hence the phonon conductivity. The group velocity of respective phonons in the conductivity
integral is obtained on the basis of q = (co/v) (1+0.~2), where the parameter Q.'is determined from
the experimentally obtained dispersion curves for the different acoustic branches in the region
0-2@~and yq~-q~. It is observed that the transverse phonons in general make a major con-
tribution toward thermal conductivity in the entire temperature range.

I, INTRODUCTION

Recently Hamilton and parrott' have used a
variational treatment to calculate the thermal re-
sistance of Ge in the temperature range 5-300'K,
and have shown that the major contribution toward
thermal conductivity is due to transverse phonons.
The contribution of transverse phonons on the
basis of the variational treatment varies from 80
to 9(P/~ Becau. se the variational treatment gives
the nearest approximation to the correct answer,
it is desirable to investigate how far one can ex-
plain the phonon conductivity results on the basis
of transverse phonons alone in the framework of
the relaxation-time approach. The calculations
of phonon conductivity of Ge due to transverse
phonons have been performed in the temperature
range 2-1000'K, both in the presence and absence
of four-phonon processes, which play an important
role at high temperatures. For the above calcula-
tions- we have used Holland's model for transverse
phonons and appropriate expressions for the dif-
ferent phonon-phonon-scattering relaxation times
for the different temperature ranges.

Since the phonon conductivity results of Ge in
the temperature range 2-1000'K cannot be ex-
plained on the basis of transverse phonons alone,
the aim of the present paper is to investigate the
contribution of transverse phonons in the presence
of longitudinal phonons as well as four-phonon
processes. Holland has not considered the con-
tribution of four-phonon processes in his calcula-
tions. Previously Holland replaced s,/e~ by 1/s»
which is a crude approximation. We have used

an empirical relation q= (e/v)(1+ o,+ ) in order to
calculate e~/v~ for the conductivity integrals. The
present approach of calculating s,/e~ is considered
to be quite realistic. Analytical expressions for
the various conductivity integrals under different
approximations are also obtained. These analyt-
ical expressions are quite useful in obtaining the
approximate values of the phonon-phonon scatter-
ing strenghts which are treated as adjustable
parameters.

II. PHONON CONDUCTIVITY DUE TO TRANSVERSE
PHONONS

The integral formulation of thermal conductivity
as originally suggested by Callaway' is divided
into two parts according to the two modes of lat-
tice thermal conduction. It leads to

K= Kg+Kl, .
The conductivity due to transverse mode K~ is
further divided into two parts on the basis of angu-
lar frequency ranges of transverse phonons,

Kg = Kg)+ Kga

2 k~ k~T
2s2 g (+T1)0( iii ( iii)

x'e"/(e" -1)' d„(„)-i
0 7g + 7~t;+By(d J.

//a/T x 4~/yc 1)2

q iq rq' ~ vji+ 8„~[(o /sinii(ii~/i~T)] ')
(2)

In these integrals which refer to the isotropic
case, the phonon velocity (er, or vrs) of the trans-
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verse mode is representative of (va/va)T, where

e~ is the group velocity and e~ is the phase velocity
of phonons. Actually, replacement of (va/vaa)T in
the original integrals by 1/VT is a very crude type
of approximation. This factor in our calculations
is replaced by a more suitable quantity based on

simple calculations. Instead of using the acoustic
approximation 41= ~/v, we considered 41= (u&/v)

x (1+ n~a), where u& is the angular fre4luency
of the phonon moving with velocity v, and a is a
parameter given by the equation

in the directions [100] and [ill] and then averaged
it for further calculations.

It can be shown with the help of the equation
41= (4U/ v) (1+ n& ) that the group velocity

v =d(o/dg= v/(1+Sn(o )

and phase velocity

va=(o/g= v/(1+ nuP)

Therefore, for the isotropic case

Q,=~ —1
y

a is calculated from the phonon dispersion curves
at two values of the wave vector —,'qm, „and q,„.
In the present calculations we have considered n

The term (1+ n~')'/(1+ Sn~') is called the cor-
rection factor. Hence, using this correction
factor, ~» and x» for the isotropic case can be
expressed as

and

2 k~ k~T 1 x'e "/(e" —1)' (1+ n(o')'

3 2v I vrg B(g&g a TB +Ta4+B (HATT (1+Sn(Q) )

kg k~T 1 x'e "/(e" -1)' (1+nard )

3 2v' 5 vra) „,«„ „4)T Ta', +BTU[u&'/sinh(Ku&/kBT)] ( +Snaz')

and the total conductivity zT as

2 I, a, Ta x'e "/(e" -1)' (1+p, xa T'a)'

3 2Ã ff vT4 a« a TB +Ox T +PTxT (1+SP)x T )

1. x'e "/(e" —1)' (1+PaxaT'a)a „
VTa ~ & ~&„a &T Dx'T'+P»(x'T'/sinhx) (1+3p,x'T')

1 2

(~B/@ PT BT(IaB/~) PTU BTU(~B/I)

P1 n1(4/@), Pa naoaB/5)

Shen the boundary scatcering is negligible and

phonon-phonon scattering dominates the isotope
scattering, z» is reduced to the following analyt-
ical form:

T1 3 p 2y4 2 P

where

Similarly when phonon-phonon scattering domi-
nates over isotopic scattering and boundary scat-
tering is negligible, x» reduces to the following

analytic form:

2 CTa 1 1 1 8a 5Pa8a 8a—ln8 +
8

(8 -8g

Pa 4 4
+—(8a —8~)+

8Pa 8a

-(8.—~~)+ —(8.—8~)+—(8, —8,)
3 &a 5 5 P2

PTU ~ 3 v 2 1

1
(8a - 8i)

3P2
(8)

The analytical expression for ~T1, when dis-
persion of transverse phonon branches is neglected,
is given as

2CT, 8f 2 D 8,
~T1 3 p 2T4 5 p T 4

In deriving the above expressions it has been
assumed that at high temperatures, when x= K~/kB T
is small, x e "/(e* —1)a tends to unity.

These analytical expressions are very useful in

determining the approximate values of the adjust-
able parameters PT and P». Thus at 1000 K,
when the contribution of I(.» is negligible, one can

find the values of P» from E41. (8) for the known

values of D or A [D=A(kB/K) ]. Similarly at
100'K, when the contribution of xT2 may be con-
sidered to be small, one can obtain the approximate
values of PT from E41. (7) for the same values of
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DorA.
In the absence of any dispersion in the trans-

verse phonon branch, Eq. (5) reduces to the fol-
lowing simple expression:

2C» 1 2 2 2 D 1—(82 gi—) -- —(82 —ei)
3 2PrvT 5 Pr(( T

where

C = (0 /2m') (0 /h)' (1/v, ) .
For low temperatures, where phonon-phonon

scattering is negligible and boundary scattering
dominates over isotope scattering, one obtains
the following analytical form:

Cr, ve T (1 - 16m DT r3) .2 4g 3 4

III. FOUR-PHONON PROCESSES

It has been shown previously' that at high tem-
peratures, four-phonon scattering processes also
take place. The combined relaxation time v, in
the presence of four-phonon processes is given by

-1 -1 -1
~c ~B + ~P t + ~3ph + ~4ph ~

where
-1 2 2

&4ph= ~H+ ~ ~

The integral expression for phonon conductivity
due to transverse phonon becomes

2 ~
~' x e"/(e"-1) (1+P x'T )

3 "
o 7,'+ D-x'T'+ P,xT' (1+3P,x'T')

2 ((2/T x4e((/(ex 1)2
+—CZ2T':4 4 2 23 (( /r Dx T +Pre(x T /sinhx)+P„x T

where

p//= &e(& /I) ~

(1+P,x'T')'
&

(1
', ,

)
dx, (lo)

The effect of four-phonon processes is not included
in the first conductivity integral as it is not sup-
posed to operate in the region 0--,'q ~. At tern
peratures when four-phonon processes dominate
over three-phonon processes and isotopic scat-
tering is negligible, the following analytical ex-
pression is obtained for the phonon conductivity:

2Cz2 1 1 fl 1 P~
q s 1 (1 1— T I

———+~(82-ei)+ l~-~ +-,' p2(82-ei)" 3 T'spap„&8, e, s op, ~e, e,

Prv 1/1 1 5 8~ P~~ g ~ 1 /1 1—
p 5 l p -p + gapa ln —+—(83 - gq)+

D 1 82 —8, 5 3 pg 5 5 1 1 1
+ -((i(((i —(i ) +—(Hi —((i) +

pHT 3 9 5 sp, e, e, (11a)

D (8', -e', )3P„T (11b)

At 1000'K, the contributions due to terms con-
taining pzv and D are negligible and one can deter-
mine pH from the observed value of K2 =K». As
9H and D are now known, an approximate value of
the adjustable parameter Pzv may be determined
from the above equation at 500 K by considering
all the terms.

The analytical expression of K», when one ne-
glects dispersion of transverse phonon branches,
is given by

2 Cr~ 1 Pre 8q
(8, —8,) —p, ln

gH HT 1

K= KZ1+ Kg2+ Kg .
The expressions for phonon conductivity due to
transverse phonons have been discussed already.
The contribution due to longitudinal phonons Kl,

can be expressed as

1 Aq kqT

(
1 '4' x'e "/(e" -1)' (1+ Q )'

X — „1 4 2 3 2 dX
v/g 0 7e +A(d + Q(d T (1 + 3Q(d )

1 s/ x e "/(e" —1) (1+ n )
+ 1 ' 2 dX ~

Vg2 (( /r A((/ + 73yh+ T4 yh (1 + 3Q(d )
4

(12)

IV. LONGITUDINAL PHONONS

If one considers the contribution of longitudinal

phonons also, the total conductivity due to longi-
tudinal and transverse phonons is given by

The contribution due to the second integral can be
neglected. Since the dispersion curve for longi-
tudinal phonons is almost a straight line, o. = 0,
it is not necessary to introduce the correction
factor. Thus
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TABLE I. Values of the Parameters used in the cal-
culation of the phonon conductivity of Ge in the tempera-
ture range 2-1000'K on the basis of transverse phonons.

v~' (expt)
&g' (theor)'

(VTi) 0

(vT2)coi&+ &&2

(VI)0&g) &g)4

= 1.45x106 sec i

= 1.47x106 sec i

E = 1.08
= 3.55 x 105 cm /sec
= 1.3Oxa05 cm/sec
= 4. 92 x 105 cmisec

BT = 2.5x10 12 deg
BT& ——5. 9 x10 sec

A = 2.4x10 44 sec3

8i = 101'K

hi]q«ii «~q ~
1](i00l at yq m+x

(+iI v at ~tf

t&2]r.i«~ «q
i+2] t;i00) at qmax

[0,2]~~ at qmm

82 = 118'K

3.7499x10 2 sec
2. 15804xlo 27 sec2
2, 95395x10" ' sec
10.538xlo 27 sec
6. 0246 x1O-" sec'
8.2816x10- ~ sec

84/r &4ex/(sg i)2
z =-'Q 7'

v'+Dx 7+x T

D=A —,Pg = Bi(ke/ff), Ce= ~(ke/I)—

At temperatures where boundary scattering is neg-
ligible and three-phonon scattering dominates over
isotope scattering, one can write the analytical

TABLE II. Values of the parameters used in the cal-
culation of phonon conductivity of Ge in the temperature
range 2-1000'K on the basis of transverse phonons in-

cluding four-phonon processes also.

y~'=1. 5x10' sec '
BT—-0.2x10 ii deg 4

BT-5.Ox 10-is sec
BH=8. 2x10 ' sec deg '

Values of other parameters are same as in Table I.

expression for the above integral as

6)4 Dg 2

Ip yll SZ3p )
V. RESULTS AND DISCUSSIONS

It has bqen shown by Hamilton and Parrott on
the basis of variational calculations that transverse
phonons make a major contribution towards thermal
conductivity of Ge in the temperature range 5-300 ' K.
The contribution of transverse phonons is as high
as 80-9(P/0. Using the relaxation time approach,
we have investigated the possibility of explaining
the phonon conductivity results of Ge in the entire
temperature range 2-1000'K on the basis of trans-
verse phonons alone. For the calculations of
phonon conductivity zT due to transverse phonons,
Eq. (6) is numerically integrated for a given set
of parameters Pz, and Prv. The values of the vari-
ous parameters for the best fit between theory and
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FIG. 1. Comparison of
theoretical values of phonon
conductivity vrith the experi-
mental values in Ge in the
temperature range 2-1000 'K.
Theoretical curve is calcu-
lated on the basis of transverse.
phonons alone.
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FIG. 2. Comparison of
theoretical values of phonon
conductivity vrith the experi-
mental results in Ge in the
temperature range 2-1000'K.
Theoretical curve is 'calculated
on the basis of transverse
phonons alone. and it also in-
cludes the contribution of
four-phonon processes.
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experiment are given in Table I. The calculations
have been performed with the desk calculating
machines. Figure 1 shows the results of the cal-
culation of e~ at different temperatures. It may
be observed that phonon conductivity results can-
not be explained in the entire temperature range

on the basis of transverse phonons alone. The
discrepancy lies in the temperature range 40-300'K
and it can be as high as 36/p of the total conductiv-
ity at 80'K.

Next we included four-phonon processes in the
conductivity integrals for transverse phonons.
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FIG. 3. Comparison of
theoretical values of phonon
conductivity vrith the experi-
mental results in Ge in the
temperature range 2-1000 'K.
Theoretical curve is calcu-
lated on the basis of sepaxate
contributions of longitudinal
phonons and transverse pho-
nons. Contributions of four-
phonon processes are also in-
cluded and the better relation
for vz/v&I is used.
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TABLE III. Values of the parameters used in the
calculation of phonon conductivity of Ge in the tempera-
ture range 2—1000'K considering the separate contribu-
tions of transverse phonons and longitudinal phonons.
Four-phonon processes are also included.

84 ——1.
zg =1,
Bp ——1.

BTU
BH= 8.
BI ——6.

92 'K, 83 = 333 'K
96 x106 sec '
0 x10 ~~ deg 4

0xl0-' sec
2x10 '4 secdeg-'
vx10 ~4 secdeg3

Values of other parameters are in Table I.

whereas the similar limit for transverse phonons
for the conductivity integral K» is 8,/T =101/T.
Thus at temperatures beyond the conductivity maxi-

The values of the parameters used in this case are
given in Table II and the results of calculation are
shown in Fig. 2. Here again we find that the dis-
crepancy, though to a lesser extent, still exists
in the temperature range 60-200 K. However,
if we include the contribution of longitudinal phonons,
it is possible to explain the phonon conductivity
results in the entire temperature range. The
values of the various parameters used in this case
are given in Table III and the results of calculation
are shown in Fig. 3. Figure 4 shows the plot of
Kr/K and Kl, /K at different temperatures in the
range 2-1000'K, respectively. Thus Fig. 4 shows
that, in the temperature range 30-100'K the con-
tribution of longitudinal phonons towards thermal
conductivity dominates over that of the transverse
phonons. The maximum difference between the
two contributions, i. e. , zl, —~~ can be as high as
2(P/z of the total conductivity K. This appears to
be the reason for the discrepancy between theory
and experiment in the temperature range 30-100'K
in Figs. 1 and 2, where we tried to explain the
phonon conductivity results on the basis of trans-
verse phonons alone.

At very low temperatures, where boundary scat-
tering is the only relevant scattering of phonons,
one can write

Kr1/K1, = 2(v1/vr1)(Ts )r/(7)1)1, —2(vL/vT2) ~

where(7'a)r =legs/vrl~ ('rs)g =L'egg/vz, and Le!! is
the effective scattering length. Since v1,/vr =1.336,
the contribution of transverse phonons dominates
over that of longitudinal phonons. The same situa-
tion (i. e. , Kr, & Kz) Prevails uP to about 20 'K in
the presence of isotopic scattering of phonons.
However, in the presence of three-phonon scatter-
ing processes, which become relevant at 20 K,
the situation changes. The limit of the conductivity
integral for longitudinal phonons is

5(d ~ gg 319
~max p T T

100-
I-

80-0
0
2

60-0-

40-
4J6
I-
2 20-0
R
Id
Q

oi I I I
I 2 4 6 8 IO 20 40 IOO 200 400 IOOO

FIG. 4. Percentage contribution of longitudinal phonons
and transverse phonons towards thermal conductivity.

mum, xz & K». However, both of them decrease
very rapidly with temperature. ~» at 100'K be-
comes about 5%%uo of the observed value of K. Simi-
larly, Kz, is reduced to about 10%%uo of the observed
value of I( at about 200 'K. The rapid decrease of
~~ and ~» with temperature is due to the high ex-
ponent of the temperature dependences of three-
phonon relaxatlon times, l. e.

~ r~h, z~~2TS a d
~T . At still higher temperatures, three-

phonon umklapp processes are more effective and
the contribution of v~2 due to the transverse pho-
nons dominates over ~~ and ~~&. As a matter of
fact, in the temperature range 400-1000 'K, the
phonon conductivity results are explained by z»
alone, which includes three-phonon umklapp pro-
cesses and also four-phonon processes. Thus,
except for a small temperature range 30-80 'K,
the transverse phonons make a major contribution
toward thermal conductivity in the entire tempera-
ture range 2-1000 'K.

It may be mentioned that the present calculations
(see Fig. 3) differ from Holland's calculations in
two important respects. First, four-phonon scat-
tering processes are included in the determination
of the combined relaxation time v, and second, in
the replacement of the factor (ve/v&) by (1/ve)
&&[(1+ o.Ie1 ) /(1+ 3o.1o')] onthe basis of the relation
q = (1o/ v) (1+ n&u~), which is more realistic.
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The diagrammatic expansion in the real-time domain of the one-electron and electron-hole
propagators for the small-polaron problem is presented. For this purpose, special graphs
consisting of fermion lines, multiphono'n interaction lines, and migration vertices are used.
The spectral function of the small-polaron propagator is calculated for two cases. First, . the
interaction with a narrow band of optical modes, and second, the interaction with longitudinal
acoustic modes, is considered. The expressions for the small-polaron mobility in the hopping
region are also derived for both models.

I. INTRODUCTION

Since the publication in 1959 of Holstein' s funda-
mental paper on small polarons, the problem of
the very low electron mobility in the case of strong
electron-phonon interaction has been the subject of
several theoretical investigations. ~ In this paper
the field-theoretic techniques are applied to the
small-polaron problem. Propagators for small
polarons are introduced and their properties are
investigated. The theory presented leads to some
new results concerning the small-polaron mobility.
One-electron propagators have been studied in
some detail already in the previous paper by the
author and Choi.

Small-polaron theory deals with the motion of
electrons in narrow bands. Therefore in calcula-
tions we use the tight-binding approach and the
corresponding Wannier representation. In this
representation the complete set of states for the
particular band is given by the localized states

1 i) at the individual cells i of the crystal. The
small-polaron Hamiltonian may be written as

includes the wave vector q and the branch p of the
phonon spectrum. The normal modes X and -X
belong to the same branch, the corresponding
wave vectors being q and -q, respectively.
is the phonon frequency and q~ the electron-phonon
coupling constant. N is the number of cells in the
crystal and 8, the lattice vector of the ith cell.
Additionally, w, &

and g~ are real, and w, &= w&, .
The electron-phonon interaction is assumed to

be linear in phonon operators and diagonal with
respect to the localized states li), If the phonon
frequency is greater than the width of the electron
band, only the diagonal coupling terms are im-
portant. This fact justifies the use of (1) in the case
of narrow bands. In the small-polaron theory,
the transfer integrals w, &

are considered as a
small perturbation.

In Sec. II one-electron propagators are intro-
duced and their properties are studied. Section
III deals with the electron-hole propagators.
Small-polaron mobility is calculated in Sec. IV.

II. ONE-ELECTRON PROPAGATORS

a= ~,~c,c, + ~w„c,c, +~&,a,a,

—N Z &zq e ~' ~ c&c&(a&+at&), a= 1 (1)

where c& and c; are, respectively, the creation
and annihilation operators for electrons in the lo-
calized states li), and where eo is the local elec-
tron energy and w, &

the intercell transfer or re-
sonance integral. e~ and a„denote the creation
and annihilation operators, respectively, for a
phonon in the phonon mode A.. The parameter ~

We would like to formulate the theory of propa-
gators for a single polaron. We define the pro-
pagator for the small polaron by

g „(t)= i(Tc, (t)c',(0)),- (2)

where T is a time-ordering operator and ( ) denotes
the canonical ensemble average over the states of
the crystal with no electrons. The underlined op-
erators are Heisenberg operators. It is easy to
realize that the diagrammatic expansion of g&&(t)
in the real-time domain is possible. We consider
the second and also the last term of (1) as the per-


