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The expectation value of the steady-state velocity acquired by an electron interacting with the
phonons of a crystal in finite electric and magnetic fields is analyzed quantum mechanically for
arbitrary coupling strength, field strengths, and temperature. The rate of loss of momentum
by an electron drifting through the crystal in the applied fields is expressed in a form in which
the lattice coordinates {the phonons) have been eliminated exactly by path-integral methods.
The quadratic influence functional used to simulate the electron-lattice interaction is shown to
be derivable from a self-consistent relation for the impedance tensor of the electron in its
drifting frame of reference. This eliminates the ambiguity of which influence functional to use
in path-int:egral treatments of electron transport. For zero applied electric and magnetic fields,
it is shown that the self-consistency is equivalent to minimizing the free energy of the electron-
phonon system at finite temperatures. The Feynman one-oscillator model is discussed in the
light of the self-consistency relation. Several important changes are indicated by an approxi-
mate self-consistent solution for low temperature. The applied magnetic and electric field
problem is briefly discussed. For optical-phonon scattering, it is shown that the cyclotron
mass is the same as the dynamic effective mass in the absence of a magnetic field. For the
Frohlichpolaronmodel, it is shown that, because of the influence of the magnetic field on the
scattering rate, a longitudinal magnetoresistivity should exist equal to exactly one-half of the
transverse value. Finally, two limitations of this general approach are noted and discussed
briefly.

I. INTRODUCTION

The path-integral method offers a unique advan-
tage in discussing electron-phonon systems. ' 5

the electron-lattice interaction is linear in the lat-
tice variables (the phonon approximation), then
these lattice variables can be eliminated exactly,
and the problem ean then be written in terms of the
electronic coordinates alone. The simplification
thus achieved is remarkable as demonstrated in
previous papers discussing the polaron problem. '

There is one difficulty, however. Written in
terms of electron coordinates alone, the method
cannot be completed without making some approxi-
mation. For weak coupling problems one may use
one of several perturbation techniques. As the cou-
pling increases, however, these expansion tech-
niques quickly become unwieldy, and one searches
for an alternative approach. The most successful
alternative is due to Feynman' who attempted to
simulate the exact influence functional by an approx-
imate harmonic one which imitated the exRct func-
tional as well as possible mhile still permitting the
calculation to be completed. After deriving a vari-
ational pxinciple which gave an upper bound to the
ground-state energy of an electron interacting with
an arbitrary distribution of phonons, he used as
influence functional the now well-known one-oscil-
lator trial distribution whose strength and frequency
are variational parameters used to minimize the
ground-state energy at zero temperature. This

method was soon generalized to finite temperature.
Following this success for calculating self-ener-

gy, transport properties including mobility, im-
pendanee, and velocity-field characteristics ~

were investigated using harmonic in place of the ex-
act influence functionals. However, there was no
longer any guarantee that just because a particular
choice of influence functional minimized the self-
energy that this was necessarily the optimum
choice for the particular transport problem under
investigation. (Unfortunately, this problem of opti-
mization still remains. ) Nonetheless, Feynman
et al. (hereafter referred to as FHIP) were able
to derive a self-consistent set of equations for the
impedance from the minimization principle for the
self-energy at zero temperature. The generaliza-
tion to finite temperatures, though not explicitly
stated, was implicitly evident from the nature of
these equations and those derived in connection with
the impedance. These equations can be derived
from the minimization principle for the free energy
at finite temperature, as we show in Appendix A.
They are also derived here using a method of rates.

More recently in the nonlinear pxoblem of calcu-
lating the velocity-field dependence for arbitrary
coupling, temperature, and field strength, &5 we
were forced to fall back on the Feynman one-oscil-
lator influence functional for lack of anything better.
This was particularly unfortunate because in the
region of maximum energy loss per unit distance the
electron's relative motion is certainly appreciably
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hotter than given by the one-oscil]. ator model at the
lattice temperature. Also, one can apply a strong
magnetic field to calculate Hall mobility and cyclo-
tron mass, and again one expects the harmonic in-
fluence functional to depend on the applied fields.
Finally, while the one-oscillator model is physical
for.the polaron problem where an energy threshold
exists for phonon emission, in order to deal with

acoustic phonons where phonons of any energy can
be emitted, it is clear one must have some proce-
dure to determine a more physical model interac-
tion. Moreover, little motivation for this can be
sought fl oID trying to minimize the fx'ee enex'gy.
For finite electric fields, enexgy loss is so impor-
tant that the real and imaginary parts of the self-
energy are comparable. For the drifting electron
problem, one must pass to imaginary velocity vari-
ables. We do not pursue such approaches here.

This paper presents a simple physical self-con-
sistent technique to calculate both linear and non-
linear transport properties of electron-phonon sys-
tems within the path-integral method. The expecta-
tion value of the rate of change of momentum opera-
tor equation is calculated for a general harmonic
influence functional. The influence functional is
then determined self-consistently by obtaining an
expression for the impedance of the particle from
both the rate equation and from an admittance equa-
tion. For example, consider the problem of finite
applied magnetic and electric fields. The electron
will acquire some steady-state expectation drift ve-
locity. Transforming the problem to this drifting
frame, one can now apply a small electric field to
determine the impulse responee of the electron un-
der these conditions. This impulse response also
ean be related directly to the trial influence func-
tlonRl. Thus the impulse 1 espoDse ls a functloDR1

of the influence functional, which is in turn a func-
tional of the impulse response. This then yields a
self-consistent relation for these functionals. Once
the influence functional is determined, the drift ve-
locity can be related to the strengths of the electric
arid magnetic fields, the desired solution.

We permit any number of phonon modes of any
character to interact with the electron, since modes
of different character but of comparable strength
cannot be treated separately. Since we are primar-
ily interested in the effect of the phonon scattering,
it is assumed that in the undeformed lattice the
electron would move as a free particle, possibly
with an altered mass tensor. W'hile it is possible
to treat the effects of the undeformed lattice on the

electron in this formalism, we make no claim that
such band-structure effects beyond an effective
mass tensor can be represented nearly as well as
the phonon-scattering effects. We are not inter-
ested in the problem of the electron weakly coupled
to the phonons. Our primary interest lies in those

problems where the amount of scattering by phonons
may exceed that due to the fixed lattice. That such .

is quite possible has been more fully discussed be-
fore.

We begin by stating the problem and deriving the
self-consistent set of equations. The integration
over electron paths is slightly more general than
before. We include the possibility of a finite uni-
form magnetic field and permit the cx'ystal to be
oriented arbitrarily with respect to this field. The
influence functional and impedance are then tensors
rather than gcalars Rs before. This, however, re-
quires little additional effort over the previous
treatment. A'e then consider the self-consistent
influence functional for the impedance problem of
FHIP and find that the Feynman one-oscillator
xnodel approximates R distribution of oselllRtol'8 ln
the same way that a simple pole approximates a cut
from threshold to infinity in scattering theory. e
also comment on Hall mobility, cyclotron mass,
and magnetoresistance for the Frohlich polaron in
perpendicular electric Rnd magnetic fields. Final-
ly, two limitations of this general approach are
noted and discussed briefly.

II. FORMULATION OF TRANSPORT PROBLEM IN TERMS

OF ELECTRON COORDINATES ALONE

The I'elevRnt HRmlltonlRQ fol traJlsport problemsp
which describes the interaction of the electron with

the applied time-invariant electric and magnetic
fields E and H= V&X, a sniall oscillatory electric
field e„and all varieties of phonons n, may be
written

H = —,
'

(p —qA/e) ~ (I/ m ) ~ (p —qA/c)

-qE x- qe, x +~„~„»Sz»„„a~,„~,„

+ Ci „a~t „exp(-ik x)),

~here I/m is the (symmetric) reciprocal effective-
mass tensor, V is the volume of the system, and

Cg „ is the amplitude for an electron to absorb a
phonon of type n and wave vector k. With this II we
can calculate expectation values of any operator 0
at time t as follow&8:

(0)g= Tr(Opg)/Trpb p

where p, is the density matrix given by

p, =exp(-i f' If,ds/I) p„exp(+i f, a,', ds'/I). (3)
&1

In (3) the standard Feynman ordered-operator con-
vention applies.
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We are interested in two expectation quantities
here. We. shall determine the linear impulse re-
sponse, the quantity calculated in FHIP, and the
rate of change of momentum, the quantity calculated
in Thornber and Feynman (TF), z with two important
differences. First, the full impulse-response ten-
sor is calculated in the drifting frame to zero or-
der, the influence functional being sufficiently ac-
curate that the first-order calculation of FHIP is
not necessary. Second, the rate of change of mo-
mentum will contain both a dc and an ac part. The
dc part is similar to the calculation of TF, while
the ac part is taken together with the impulse re-
sponse to form the self-consistent set of equations
which determine the approximate influence func-
tional. For zero applied E and H, the self-consistent
set reduces to that derivable from the self-consistent
set of equations which minimize the free energy at
finite temperature (Appendix A). At zero tempera-
ture the self-consistency requirement reduces to
that derived in FHIP from the minimization condi-
tion of the self-energy.

The expression for the rate of change of kinetic
momentum m x,

~0

Ax=i/tz[H, m x]= qE+qe, +(q/c)x&&H-Q kR„„,
n-, Q

where

As in TF, R-„„is the operator for the net rate of
phonon emission (emission less absorption). '

As the first steps in evaluating the expectation
value of (4), we eliminate the phonon coordinates
exactly, cast the problem into the path-integral
method, transform to a frame of reference drifting
with the expectation value of the electron's velocity
v in the absence of e„and set q, c, I, and V equal
to unity. The result is

0 ~

E+vxH+e, +(y), xH-m (y), =gk(R"„,„)z,

(Ga)

where (y), and (y), are the expectation values of
the velocity and acceleration of the linear response
to e„and where

~x= (i/tz)[H, x] = (I/m)(p —qA/c),

is given by
(Gb)

I /'tP
dt[2 yz m y, + (E+vx H) ' yz+ ez ~ yz+ z y ~ Hxyz]

+ f" dt[ ,'y&+m . y', +(-E+vxH)y'z+e, ~ y, +-,'y', . Hxy', ]

+ iQ Cr „ f dt f' dt' [&)„. (t - t') e &"'~z " z
)''

„g '"
tg tj ~)7,n

+ g (t tl) e&)I & jz-&)z ) ~ (t p)eA &)zz-) i),g (t t&)e&l«f'z-fz )).
+R', n t«)k, n (Gc)

&)„(r)=T„z (~)e ' '
(Gd)

e'"i, nV 8
T~)t ( ) I 5 j~ + QQl)& + I (Ge)

and

exp[-i(«)i, „-k ~ v)(tz —t)] exp[zk (y„-y,)] exp[i(«)&& „-k ~ v)(tz- t)] exp[- z%' (yz. -yz)]
-e '"&" 1

ty

exp[i(&u);, „-k ~ v)(tz —t)] exp[ —ik ~ (y„-y', )] exp[- i(a&);,„-R v) (tz —t)] exp[ik ~ (y~z- y', )]
$ —e ~~)f.,n &R,n ] (Gf)

In (6) some simplification has been achieved by noting that A= ——,'xxH. It should also be stressed that
terms of order II have not been neglected. They do not exist in the Lagrangian formalism. For the Ham-
iltonian as given, this (nonrelativistic) expression is exact and applicable for arbitrary applied E and H.
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Next, we do two things: If we set e, = 0, then (y), and (y), are zero and (6) gives a nonlinear relation be-
tween v and E and H from which, for example, exact formal expressions for Hall and drift mobility can be
easily obtained, etc. If we next permit e, to serve as a small probe signal, we can determine the "differ-
ential" impedance as a function of frequency of the particle in its drifting state. Before carrying this out
and also calculating the impulse response directly using (2), it is necessary to approximate the influence
functional (6c), so that the two path integrals over the electronic coordinates in (6b) can be performed.
This we perform in Sec. III.

III. METHOD OF APPROXIMATION AND SELF-CONSISTENCY

As written the influence functional (6c) expresses the dependence of the motion of the electron at time t
on its position at all times t' where t'& t. In order to simulate this interaction and yet use a harmonic in-
fluence functional so that the path integral may be performed, ere approximate 4,' by 40:

p j fP g « ~ ««« I « '««jt'2 I «p «I I «p ~ «I
@0 f dt (2 y, m y, + ez yz+ z yz H&&yz) —f dt(2 yz ~ y&+ ez yz+ .yz-»&yz)

t1

if" d-t f'dt'[(y', -y', , ) G (t —t') ~ (y', y', )—+(y, —y, ) G (t —t') (yz-yz)
tg

—(yz-yz) G (t —t') (yz-yz) —(yz-yz) G (t —t') (yz-yz)]. (7)

If we express G(t —t') as

G (t —t') = f" dQ G(Q) e '""",
then, apart from the tensor nature of G(Q) and m

and the presence of the magnetic field H, (7) is es-
sentially identical to the 4 discussed in Appendix
B of TF. As shown in TF this is the most general
harmonic form one can expect to have to represent
4,'. The tensor nature of (7) partially simulates the
anisotropy induced by crystal structure and applied
fields. Since G(Q) represents a distribution of

oscillators, it is a real function of O. Since the
argument of the double integral in (7) is a quadratic
form, G can without loss of generality be taken to
be symmetric. As discussed in TF, there can be
no linear driving forces in the moving frame (apart
from the auxiliary e, ~ y, terms). In fact, if one

were to expand each term of the form
exp[-zk. (y', —y', .)] in (6c) as

gl-zk (yI-yz) --'[& (y'z-y'z)]')

y„(~)= d(t, —t, ) e'"" 'z'
a OQ

J g~ Jyg( -3'gg( &~ 0& yg D yt

(oa)

= f dte'"zz[I, „(t) r„*,(t)]- (ob)

dg eicos] ~ e f&t

(oc)

(od)

The path integral with (7) as the influence func-

tional is easily evaluated as outlined in Appendix B.
Using this result it is straightforward to calculate
the admittance, the Fourier transform of the linear

impulse response function:

xexp[- k ~ L(t —t') ~ R],

where the additional factor exp [] is analogous to the

Debye-Wailer factor, and where L is yet to be de-
fined, one would find that terms of order 1 cancel
trivially, terms of order y, and y', separately cancel
the (E+ v&H) terms using (6a) with e, = 0, a further
internal consistency, and the terms of order y„
etc. , give (7) complete with the same V(Q) we shall
find self-consistently below.

Thus the Z„which we defined in Appendix B and

which is a functional of G(Q) is simply the differen-
tial impedance, the inverse of the differential ad-
mittance. Notice that impedance and admittance
here refer to position response rather than velocity
response as in FHIP,

« = Y e, e =Z
We now derive our second expression for Z„ from

the linear (in e,) terms of (6a), using of course (7)
in place of (6c) for the influence functional and (Od)

for the admittance. The result is
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Z„=-m~'-i~eH+ f dt(1 —e'"') Im[ f($)],

(10)

S(t)„=&
~

C„-„j'uf,2r„. (()e '" "'e "-"'"-'"

(10')

E is defined by A E ~ B C=~,.&,»B&C„=A ~ B~C
and

ly. Equation (12) relates the expectation value of
the steady-state velocity of the electron to the ap-
plied static electric and magnetic fields E and H.

Equation (10")may be cast into a somewhat dif-
ferent form from which comparison with the FHIP
result for zero temperature E and H may be readily
made. By changing the contour of the $ integration
in (11') from the real axis $ to $ + 2i p, it is then
apparent that

G(n) =e""e,(n), (13a)

4vid( v) -=—,; (1 —e " ).~

~dp ™1 . 1
-- 2mi Z, Z,,

'

(10")
The L($) is defined in (89). To obtain (10")we
have used (89), (812), (814), and (815).

Now if L($) were simply a functional of Y„, then
we would have a self-consistent relation at this
point for Z„. However, L (() contains G(n) as
well. %e proceed as follows. It is straightfor-
ward to verify that

where

By(n) = —', Z jc), „j kk —e ' +)"'
n, k ~ yo

cos(n k ' v)$ cos(dj I) $ j, z, ~ &g), j
slnhz P&)),))

It follows at once from (814)-(816) that

i4vG(- v) =Z*(v) —Z (v)

dt(1 —e'"')Im[S($)]= —4(o dn —G(n)
0 0

x —
z . ~, (11)

1
n' —(+ +i~ )'

=[e'"e;( )e '(- ) —I] ' |Z„'-Z,), (13c)

and similarly that

i4vQ(v) = Z*, (v) —Z, (v)

where = [1-8-' 5y(- v) e (v)] ' (Y„*—Z„) . (13d)

If we assume v = 0 (no applied static electric field
E), then By(v) = e„-(- v) and (10")becomes

X T (t. ) 8 &k yg -Ir ~ L(4)
"u, n

E+vxH=Zkjcf „~'J A &„. (&)
n, k t

II& w- fk Vg -k ~ Q(f) ~ kx 8 (12)

where now L($) can be determined self-consistent-

By (9d) and (812) this G(n) must be the same func-
tion as our trial oscillator distribution (8), and

hence the same symbol is used. Thus (10) and

(11) give Z„ in terms of G(n), (11') gives G(n)
in terms of L($), and (10")gives L($) in terms of

G(n) and Z„. The set of equations [(10), (11),
(ll'), and (10")]thus forms a self-consistent rela-
tionship from which G, L, andY may be deter-
mined for arbitrary magnetic field H, translational
velocity v, reciprocal-lattice temperature P, and
electron-phonon interaction j Ck „j . Furthermore,
returning to (Ga) and now setting e, =0 (and of
course, replacing 4I, by C'y), we find for the gener-
alization of the basic result of TF:

—() j I () )))-

dv 1 1 —e 1 1 —e
2vi g 1 —e~ Z e"—1V V

(10I I I)

If the magnetic field is zero, then Z„=Z„and we
have

I (~) = .—— + „(10"")
2''2 z 1 —e e —1

Equations (10), (10'), and (10"")with v= 0=H= E
are the finite-temperature generalization of the
self-consistent set of equations for Z„derived in
FHIP by minimizing the polaron self-energy at
zero temperature. They are derived -here at finite
temperature in Appendix A.

One would have obtained (10'")for v4 0 if in the
approximate influence functional ('7), one had as-
sumed that the electron-lattice interaction could
be simulated by terms of the form
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&&~(t-t') -~A(C-t ~)

G(A) —
qo + /&„--, OSQ&~

1 —& 8 —1

rather than by the more general form

Q(g) eto&t t'&- Gt, ((o) =Cd((u —
t&&) =-,'to(v'-t&&') 5(&v-t&&), (16)

relating the trial oscillator distribution G(&L&) to the
absorption. Let us compare this relation with the
examples given in FHIP, Figs. 1-3. FHIP assumed
a very simple physical oscillator distribution

The deviation of the thermal factor in (13c) and

(1M) from the Planck factor simulates the relative
heating of the lattice in the vicinity of the electron
owing to the loss of energy from the electron to the

lattice at finite steady-state drift velocity v. Thus
the temperature char'acterizing the relative motion
of the electron now acquires a dependence on the
drift velocity v, and this dependence arises both

from the velocity dependence of Y„and from the

internally consistent deviation from a Planck dis-
tribution of the occupation of the trial oscillators.

Using Eqs. (10) and (11) for H = 0, it follows that

ImZ„= —2&&[ G((u) —G(-~)] .

This establishes a very simple, almost intuitive
relation between the absorptive part of the imped-
ance and the trial distribution of oscillators which
absorb the energy. For v=0 it follows from (13a)
and (13b) that

ImZ„= —2&&G((o) (1 —e '"), (11"')

an expression which we shall use extensively in

Sec. IV.

IV. APPROXIMATE SELF-CONSISTENT SOLUTION

(14a)

In this section we examine an approximate self-
consistent solution to the Frohlich" model of the
polaron in the absence of the applied electric and

magnetic fields E and H. In the Frohlich model the

electron is assumed to interact only with the longi-
tudinal optic modes of the lattice in a, very simple
isotropic way. The energy of these modes p is a.

constant ~0 and

o&L&~~/~ 1 sinh~Pv
(27&m)'/ 3 sinh~P&uo

cosv(cos+0$
[gi (~)]3/3

(1Va)

dQ —ImZo/0Z„= —m(v+ie)' —(v+ie)
7& fl — v+ ie

(1Vb)

where C, the electron-oscillator interaction, and

I, the oscillator frequency, were calculated by
minimizing the self-energy of the electron at zero
temperature. Using this oscillator distribution in
Eqs. (10)-(10")with H and v set equal to zero
and with P =100, they calculated —ImZ, which in
their paper is referred to as Imx„. For low tem-
perature, a self-consistent solution would require
Gt, (&o) =CO(~ —

t&&) =Imp„/2t&. By contrast the &r = 3
and cv = 5 results show that Imp„ is relatively
smooth in &, whereas for n = '7, relatively sharp
peaks occur at z~nv+1, n=0, 1, 2, . . . . ' If we
were to use this ImX„as a new trial distribution,
then, as discussed below, a series of peaks at
~=nv+m ~ 1 would arise in ImX„. For n=0 these
correspond to the absorption of quanta. by the polar-
on and the subsequent emission of m optical pho-
nons, the polaron remaining in the ground state.
For n =1, the series might represent the polaron
excited in addition to the emission of m phonons,
etc. Of course, the coupling would have to exceed

q = 7 for this structure to be resolved. For n = 3
structure in Imp„ is probably too broadened to be
greatly affected by fine tuning G(+).

Let us now return to our self-consistent set of
Eqs. (10), (ll), (ll ), and (10") and write them
in scalar form for the Frohlich polaron E=H=0:

where

o =(I/eo-I/e, ) (m/2(oo)'/~. (14b)

dv —ImZ„cosh ,'Pv —cos —v$

(Z„~3 sinh —,'Pv (1Vc)

The &, is the static dielectric constant of the ma-

terial and &o the optical dielectric constant. Using

this model it is possible to greatly simplify the
self-consistent equations deriv'ed in Sec. III.

For an isotropic interaction Eq. (11"")assumes
the simple form

If, as a starting point, one were to assume

K q ($) = ($ + 4 P C' )/2m* P

essentially an effective-mass approximation, then
for low temperature (large P), —ImZ„would acquire
a piece of structure of the form
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The E& is the modified Bessel function of the second
kind, n = 1. [C' = 1+4R/P, R = (v' —8)/uPv, in the
FHIP one-oscillator model. ] Explicitly, one would
find

sinh-,' pv p'

x[lv-~olz' (p(~c')lv-~ol /2}

+
I v+(dol x((p(~~')

I
v+ o&ol /2)],

M,m*/~ "C"'iZ(vol' to be 20. Althoughstartingwith
an effective-mass approximation is quite unrealistic
if one is interested in Z„ for v much in excess of
~o = 1, a one-oscillator model already introduces
structure of physical interest.

The above considerations suggest the following
ansatz for the imaginary part of the impedance at
low temperature (large p):

-ImZ„=M, sinh-', pv Z (C„p"'[1" (-', (5n —8)+-', )] '

where
x(sinh-', po&o) X(v, n, , po v'C')], (18a)

M =( —'n(d )(m+/m) (m+/v'C') .

This is illustrated in Fig. 1, curve AA, for &0= 1,
P = 100, and 8 = 4. Taking this expression for
—Im Z„and inserting it into (1Vc) we obtain, in addi-
tion to the term corresponding to the effective-mass
approximation, a term of the form exp(--,' p(do)

&(cos(v$)/[(-', P/C')'+ $'.]'/' for K~(g). When this sec-
ond K(&($) is substituted into (1Va), a series of
structures represented by K~5 3)/p Bessel functions
of higher order centered about ncoo arises. ' This
is shown in curve BBBof Fig. 1, where we havetaken

1.0

5—

where

&)
I I

(Ga o&/o

xf~(5n-o&/2(o P /C ' I" &&(ool }

+
I
v+&&(dol"" ' lf(o -s&/o(o p~c '

Iv+»(gaol }

and where C ' is defined below somewhat more
generally than as used'in FHIP or in TF. By in-
serting (18a) into (17c) and then calculating (17a},
one can by matching like powers of X(v, n, p-', v'C '}
obtain a recursion relation for the coefficients C„.
The other factors multiplying X normalize the mag-
nitude of (sinhPv) X(v, n, , P-', v'C ') at its local maxi-
mum. Thus C„/C„gives the ratio of —ImZ„ /
-ImZ„„, where v„ is the local maximum of (sinhPv)
x X(v, m, p —,

'
v C ') in the vicinity of m(do. 'o If we

choose C& = 1, then

M, = ( —,
'

n(u )(m ~/m)" (m*/VC '),
.2

.IO

as given above.
The form of (18a) is not exact. There are ap-

proximations which must be made in deriving the
recursion series for the C„, and these must be made
perfectly clear. If we start with Eq. (17a), then we
know that for very small v we have

,05
ReZ„= m*v, m*= L„oRe Z„/v- (19a}

.02

.01

Im Z„= —bv,

where

b=O(e o"o) . (19b)

FIG. 1. —Im&„/M~ is plotted vs frequency 1~v&5 for
P = 100. Curve ~ is the absorption in the effective-mass
approximation. Curve BBBis the absorption vrhen curve~ is used for the trial oscillator distribution G(v)
= —ImZ„/2vt (1—e "). Further iteration modifies the
relative magnitude of the structure.

In (19a) m* is the low-frequency effective mass of
the polaron (zero net drift velocity), and in (19b) f&

represents the very small probability that the elec-
tron can be scattered by phonon absorption in a cold
lattice. Thus in the region 0& v& exp(- P(oo), the
integrand is of the order of eo"o: Hence -ImZ„/IZ„I
may be treated as a 5 function. The result of this
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is that

K,(~)=2, (-,' p2C'+~2)
2m+P

where

dv - Im Z„cosv)
)Z„l~ sinh-,' ]Hv

'

C'=-1+(4/P)B,

dv —Im Z„coshv)
R —2m

IZ ~' inh-'p

(20a)

(20b)

It is apparent from (19a), (17b), and (20b) that m*
and R are obtained from gross averages of —Im Z„.

We now insert —ImZ„(18a) into the integral in
(20a). In principle, we would also have to calculate
Re Z„ from (17b) and insert this into (20b) as well.
For low temperature, however, this is not neces-
sary. In the vicinity of n&u(), —Im Z„/sinh-, 'Pv be-
haves like X(v, n, P2'vC' ), which is a very sharply
peaked exp(--Plv —n(d() I) at n(d(). By contrast
IZ„! is relatively smooth' in intervals of the order
of 4 v= 1/P. Using this approximation, K2($) may
be readily evaluated from (20a):

2 i 2 1 1 (3n-3V2 COSn&ua5K (()a=Sma ( —
r) C a( ) —™rQ C(l)/a)

(
. n-'(rn )" ~Z )a

(( ~C') "
r( +( (r~&)a)ra, sa n ) ~-

nVp

(20c)

This expression for K2($) may be inserted into (17a) to obtain -ImZ„. To perform this most expediently
we use a trick from FHIP, page 1011. For large P the nth term in the summation in (20c) is of the order of
exp(- 2 Pn(dp) If we treat this sum as being small, then we may expand [K2($)] in terms of this summa-
tion. A typical term in the integrand of (17a) will then be cosv$ cos&oo)(cosn(d()$ ) . A phase match will

occur for numerous integral multiples of (do, but only for v = + (I+nm)co() will the sinh2Pv factor in —ImZ„
offset. (sinh-, p&u())

'"""' to yield a contribution to —ImZ, which is not exponentially small in the limit of low

temperature. One then obtains an expansion for —ImZ„of the same form as the ansatz (18):

I
(30

—ImZ„=M, sinh-', Pv P'~2[1'(-', (5 ~ 1 —3)+-,')] '(sinh2'P(d()) 'X(v, 1, P-, ~c')+Z (M,m*/41'~2C~4)

3x 5 ~ ~ ~ (2m+ 1)
" "

1

ffgQ p
]Z (2 P f.F [ (5(431+' ' '+43 +1) 3)+ ]]'

ffm~p

n(sin)r-', r)n, )
'""""'"X(a, n ~ +n„+i, (r , ar ')- (21)

C(=1,
m+ 1

2 3 1(~)C3/4 ~Z ~2 1 i

m* 1
2(~)C3~4 )Z

1—3C2~ M' etc—C (~) g M, t (22)

Of course, m*, C ', and Z„„must still be de-
termined from —Im Z„;

Thus self-consistently we obtain the physically
appealing result that Im Z„contains definite stiuc-
ture at the threshold for the emission of successive-
ly one, two, three, etc. , phonons, however buried

E(luating coefficients of like powers of X(v, n, P'2vC')

in (18) and (21), we find
this structure may be due to the enveloping sinh-,' pv
factor. For low temperatures at least this struc-
ture should be included in the trial oscillator dis-
tribution G(Q). Whether the C„are enhanced in the
neighborhood of v =nv+1, the location of the struc-
ture in Im X„ in the Feynman one-oscillator model,
has not been checked. For low temperatures ImZ„
is small for —cup& v&(t)p aJld finite for lv t & ~p. Thus
the self-consistent oscillator distribution G(v) ap-
proximates cuts along the real axis for I v l & Np and
the Feynman one-oscillator model is a single-pole
approximation of this cut.

V. FROHLICH POI;ARON IN ELECTRIC AND MAGNETIC
FIELDS

In this section we briefly examine the motion of
the Frohlich polaron in applied electric and magnet-
ic fields. We shall calculate the cyclotron mass,
the Hall mobility, and the magnetoresistivity. Not

surprisingly the cyclotron mass is found to have
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essentially the same value as the polaron effective
mass. In this theory the Hall mobility (small mag-
netic field) is found to be the same as the drift mo-
bility. However, the longitudinal magnetoresistivity
is found to be exactly one-half the transverse re-
sult. At first glance, such a result may seem un-
physical since the electron is drifting parallel to the
magnetic field and ordinarily would not be affected
by it. It must be remembered, however, that the
electron is scattered in all directions, and hence it
can be acted upon by the magnetic field to an extent
comparable to an electron drifting transverse to the
field.

To determine the above transport properties we
return to Eq. (12). If we assume we have a cubic
crystal with the magnetic field H parallel to the z
axis and expand the right-hand side of (12) to lowest
order in v, the steady-state expectation velocity,
then we obtain

S+ v x SS = -,
' dZ h v

~ C„„~

dependence of G,(Q), which goes as H for small H.
Apart from this dependence, the cyclotron mass
corresponds to the same physical quantity as the
polaron effective mass in this theory.

Except for terms in H, the same equality holds
between drift and Hall mobilities in this theory.
Suppose v is taken to be in the x direction. Then
from (23a) it follows that l E, I = v„H = E„Hije, where
p& is the drift mobility; hence p,0 = ILL~. That one
is not evaluating the expectation value of the scat-
tering operator in these two cases with different
weighting functions is a difficulty with this approach
in its present form. This is discussed in Sec. VI.

To determine the magnetoresistivity, the effect
of the magnetic field on the mobility of electrons
parallel and perpendicular to the field, we must as-

-----sume some phonon model. As indicated at the be-
ginning of this section, we shall use the Frohlich
model (14a) and (14b). Inserting this l C-„)2 into
(23a), we find for the parallel and perpendicular
mobilities

x exp(--', (k„+k2) [K '(k)+K.'($) ]]e "dr 0«&
(1/p(, p n&oo" cos(op)
~ I /p& 4 (h'2wm)„sinh~ a&0 p

where now'~

(23a) 2

x d& h(1 3) [K(tv p, )]", (25a)—, 1-LU.

dv 1 cosh-dv —cosvd)
0(v) smh-,' pv

(23b)

Z, ($) = -m(v+ie) +(v+ie) H —4(v+iE)

Q2 —(v+ ie)
(23c)

Z, (v) = -m*v'+ vH . (24)

This is zero for v =H/m*, the effective mass m*
being given by (19a), except for the magnetic field

Zo(v) = —m(v+ic) —4(v+ie) dQQ Q8 . 2 ~

G, (Q)
Q Q —v+zf

(2M)

In going from (13) to (23a) the variable g has been
changed to $ +-,' ip. Because of the high symmetry
in the x-y plane, G(Q) is quite generally diagonal
and G, (Q) = G (Q) [see Eq. (11 ")]. The effect of the
magnetic field is contained in the quadratic argu-
ment Df the exponent and will clearly play a similar
role whether v is perpendicular or parallel to H.

The cyclotron mass follows easily from (23c).
The cyclotron frequency will, in general, be much
less than the threshold for the emission of optical
phonons. Hence, in the low-frequency limit we have

where p, = cos8 and where

K((, p, )=KO(g) (I+(I —p, ')

[l( .'(h)+ '(k)) — '($)]/ o'(t) j (2 b)

Since the factor of (1 —p, ) in (25b) will be of the or-
der of H, we may expand K($, p, )~~ to first order,
obtaining the standard path-integral result for the
mobility from the H term and the magnetoresistivity
from the H term. Call r„ the magnetoresistivity
parallel to the magnetic field and x~ that perpendic-
ular tothefield(1/p„= 1/po+Y~, H ' I/p, :I/ilo+y, HE)
Performing the angular integral in (25a), we obtain

(26)

For the Frohlich polaron this result is quite gen-
eral: it is independent of having a self-consistent
or even a best possible oscillator distribution G (Q)
for the given field. However, (26) is only true for
very small applied magnetic fields. For fields suf-
ficiently large that the current vs magnetic field

'

deviates from a quadratic, one must, of course,
perform (25a) as it stands. If the electric field is
also strong, the general result (12) must be used.

A word of clarification is in order regarding (26).
This is a result concerning (the curvature in H of)
resistivities, whereas in actual practice it is mag-
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netoconductivities which are measured. The dif-
ference is best seen by writing E = p .v as

(27a)

and v= 0' ~ E as

p,,/[l + (H p, )'] - H p,,'/[l + (H p,)'] O

-Hp~/[1+(Hp, )3] p, /[l+(H p, ,)'
0, 0 PI~

general expression of the nature of (88) (from which
all physical properties of the electron can be cal-
culated), but one which is not purely quadratic.

The second difficulty relates to the use of the
equation for the conservation of energy [TF (30)]
rather than that for momentum (6a) used here. The
two are not equivalent; however, being able to de-
rive the self-consistericy by minimizing the free
energy at finite temperature ( E = H= 0) lends a
strong preference for the conservation-of-momen-
tum approach. Nonetheless the difficulty remains.

where pi and pg are functions of H given by (25a).
Clearly, p„„contains only the effect of the change in
the scattering rate due to the presence of the mag-
netic field, whereas O,„contains both this effect and
the classical kinematic effect of [l+(Hr)'] '. Ex-
perimentally, it 'is this kinematic effect which is
observed, the change in the scattering rate being
apparently much less important. " Nonetheless, it
is important to realize that the magnetic field can
affect the motion of an electron whose mean drift
velocity lies along the field, and that this effect is
already built into the present formalism.

VI. CONCLUSIONS

In this paper we have derived a self-consistent
procedure to determine the influence functional to
use in path-integral treatments of linear and non-.

linear transport properties of electron-phonon sys-
tems. It is based on the simple idea of hopping on

the frame of reference of the drifting electron and

measuring with a small probe signal the response
tensor at all frequencies. Besides eliminating the
ambiguity concerning which influence functional one
should use in the path-integral formalism, little has
been done here to rectify two fundamental difficul-
ties of this method. If one calculates the velocity
distribution of the electron in an electric field

It is a pleasure to acknowledge several encourag-
ing and stimulating discussions with R. P. Feynman
in the earlier stages of this work and with P. M.
Platzman in the latter stages, as well as for a
critical readi. ng of the manuscript. I thank J. R.
Brews for calling to my attention several points
necessitating further clarification.

APPENDIX A

In this Appendix we show that the trial oscillator
distribution 6 (0) which produces the self-consis-
tent impedance Z „also minimizes the free energy
of the system at arbitrary temperature in the ab-
sence of applied electric and magnetic fields E and
H. In FHIP this was carried out for zero tempera-
ture, but the generalization to finite temperature
was not investigated.

First, define Z(-i(v+i ))eZ„, w=here Z is defined
in Appendix B in terms of G(D). [For simplicity
we regard G(Q), Z„, etc. , as scalars rather than
as tensors, as elsewhere in this paper. j Then using
Feynman's minimization principle at finite tem-
perature, we readily obtain the following constraint
on the exact free energy I', :

C

3 p Z((di) 2 p l —lÃ&di

P i i m(di P i i Z(Cdi)

8/P.

0 n~ 1 —8 ~&n g~ t n

(Al)

where

one finds a displaced but undistorted ellipsoid. This
is built into the method by its quadratic nature. But
one knows from approaches using the Boltzmann
equation that the distribution is distorted as well
as displaced. Thus, it is not unexpected that the
mobility obtained from the Boltzmann approach dif-
fers from that obtained from the path-integral ap-
proach used here. ' What is badly needed is a

and &d, -=2iil/p, f an integer.
Now note that we may write Z(ii) as
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" d~ 1 1 —e"" 1 —e""
~(»))= 2. Z 1 -a + s

~ eo

This follows from the fact that 1/Z has no stngu
larities in the upper half-plane and that 1/(1 —e ~")

and 1/(e~" —1) have simple poles at »d = 2»»il/P,

where l is an integer.
Minimizing (Al) with respect to Z(&„), we obtain

Writing 2(l —cos»d, q) as (1 —e'"»")+ (1 —e '"»"), we
note that the argument of the g integration for the
first of these is analytic in the semi-infinite strip
»)+i/, 0&»i& P, 0& ('& ~, and for the second it is
analytic ln FJ —»g» 0& »i P» 0 —$ &»»0. Thus» chang-
ing the path of integration from 0 & q s- —,

'
p, $ = 0 to

0& $ & ~, ») = 0 and») = —,
'

p, it follows at once that

Z(»»»»).= B»&»
O/2

dq(l —cos»d»»1)Z
i

C„-,„i'
Z(»d»)=m&o'»+ j"dt'(1 —e "»')

t») ~~ 'g ~~K, n

(At this point the extension to tensorial Z is clear. )

(A6)

E»luation (10) for v = 0 is obtained by replacing»»», by
—g QP.

APPENDIX 8

In this Appendix we evaluate

f fe"D(y») D(yI),

wher'e

oo

4» = dt( —,'y, .m y»+f» y»+ ~y» 6 ~ H y») — df(2 y» m ~ y»+f»' ~ y»+g y»
~ e ~ H y', )

»f «-f„«f„«'l(y'»-y») G(@ . (y»' y'»)e'"" "+(y-»-y») G(fl) (y, -y, )e *

—(y» —y») G(fl) (y —y')e'"" "—(y' —y )'G(&). (y' —y )e '"" "].

The derivation is very similar to that done in TF
except that some attention must- be given to the
magnetic field terms and to the tensorial nature
of G (0). & is the third-rank totally antisymmetric
tensor. The expression A ~ c ~ B ~ C is defined in
perfect analogy to A ~ B~ C =A;&;» ~; C&.

As in TF, we express y„y,', i„and f,' by their
Fourier transform;

dp
($»» f +fg t t»»», f.' f »t »»1

40

+$»» ' ( Z~ —Z + Ev&' H)''

-g'* ~ ( —Z* —Z*+ive H)

-~v~ etcP r t 2+ p~ r
J

Then since f„y„etc., are real, f „=f*„,etc. ,
and we convert all integrations over —~ & v & ~ to
integrations over 0& p& ~, using the symmetry of
m and 6 and the asymmetry of @ ~ H, The result
is

(B4)

» 0
Z (v) = —~mv' —4v' „„P G(n)

fl (0 —i~)' —v'

G(D)Z, (v) = ——,mv —4v»fg
J

'

P (fl —ic)' —v
0

(B7)



The integration over $, $', $*, $'* is quickly
done, and after some matrix manipulation, Nre

find for (84)
which follows at once from (BQ) and the symmetry
of Z, (v). If as in TF we generalize Z„ to -~& v
~ oo bf wrlttlng Zv Rs

Z„= —m (v+ ie)~ —i(v+ ie)e ~ H

-4(v+is) dQ
& &

G (n)

a ee

~o

+ . —[ Z, (v)- Z,*(v)] e '"'
V

Z„= Z + and Z„= Z „, and {Bll)becomes

Z„= Z,(v)+ Z "(v)-ivy H

~o dV
L{v)—i. *(r)=

2mi Z. Z.
w lO

(813)
as desired.

In the text vge also need the following relationship
easily obtainable from (86), (87), and (810):

if v~ 0. (810)

To pass from (Qb) to {Qc) in the text we must cal-
culate

Z,~(v) —Z, (v) = Z,~(v) —Z.(v) = i4 V(v), (814)

Z*(v) —Z (v)= Z (v) — Z (v)=i4w G( —v), (816)

Z„'- Z„=Y„- Z „=i4m[G(v) — G(-v)]. (816)
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the free-electron mass, and on the right-hand side an
additional term —&U, where U is the fixed-lattice poten-
tial. It is doubtful, however, that lattice effects can be
appropriately included by merely maki. ng the straight-
forerard modifications in what follows to include this term.
We have not investigated this point, however.
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~Since 6(~) «0, (15) implies ImS„~0 for {d~0. The

fact that the imaginary part of the impedance is negative,
results from the choice of using e"'"' for the time de-
pendence of the driving force rather than e~"~, as used in

FHIP. Thus referring to FHIP Kq. (41) it follows that
—ImZ„ in this paper is the same as Imx„ in FHIP.

'3The n =0 peak is not shown but is of comparable mag-
nitude and similar shape. FHIP set &0-—1.

~4In Ref. 2, p. 1011, this is discussed in great detail.
Even the sinh &Peso in the denominator is compensated
by the sinh @Pv preceding the integral in (17a). Hence,
each term in the expansion of IE&(()j 3~2 contributes
even at low temperature.

Strictly speaking the magnitude of sinhPvX(v, n, P2&C')
at the maximum has an additional factor of 8
where ~c™1—2R/P, and in FHIP 8 = (e2 —uP)/yae2. This
algebraic dependence is relatively much weaker than the
other factors, and is insensitive to temperature changes
at low temperature.

"One may argue that whae —ImZ„=X(v, n, P-,'~C')
x sinh&Pvdecaysas e" { ""0~for v &nero, implyinga rela-
tively smooth variation in z„; for v & neo, Imzv decays as
exp [—(P+~) (n~o- v) j, a rapid variation indeed. How-
ever', several things must be kept in mind. The most
important is that at v=nfdo, X(v, n, p2vT') sinhzpv is
below its value at its local maximum by a factor of
P ~" ~f2~. This accounts for the relatively smooth struc-
ture seen in Imp„ for & =3 and +=5 in FHIP, Even for
o. =7 it is clear that for peaks spaced each unit of v,
ImZv and hence HeZv will be relatively smo'oth. The most
critical region is v = 1 ~0, because here ImZ„does drop
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exponentially rapidly, this being the emission threshold.
Even here, however, the real part. is relatively smooth.
For weak coupling, the mv term in BeZ„dominates; for
stronger coupling, ReZ„ /Im&„~P, v=~o. Thus

I Z„) 2 can be taken to be relatively smooth compared to

X{v, n, Pi22').
2~{v) here is to be disthiguished from Z~{v) in Appen-

dix B. No confusion should arise fr'Om this.
f8J % Hodby, J. A. Borders, and I'. C. Brown, J.

Phys. C 3, 335 {19'70).
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Magnetoresistance of Very Pure Polycrystalline Aluminum

F. R. Fickett
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The behavior of the resistance of polycrysta11ine a1uminum wires as a function of magnetic field
and purity at temperatures of 4, 15, and 19.6 K is reported. Both 1ongit&inai and transverse
configurations were measured. The residual resistance ratios of the specimens varied from
1600 to 31000. The measured magnetoresistance {~/R0) is separated into a saturatirig and
a linear part. The value of the saturating component is high at 19.6 K but is showri to be less
than 6, even in the 1imit of infinite specimen purity. The linear component varies with both
temperature and purity. Possible sources for the large saturatirig magnetoresistance values
and for the variations observed in the linear portion are discussed. An analysis scheme is
presented which allows prediction of the saturating component from zex'o-field resistance
values. A deviation from Matthiessen's rule observed here, and by several other experimen-
ters, is presented and discussed.

I. INTRODUCTION

The magnetoresistance of aluminum has been
studied extensively. ' Both single- and polycrys-
talline specimens have been measured. Most of
the measurements were made only at 4 K on speci-
mens of relatively low purity. Frequently, the
specimens used were very small in at least one
dimension, leading to the possibility of size effects.
Several experiments, however, have been per-
formed on large high-purity specimens and at tem-
peratures up to 20 K. ~'~ These measurements in-
dicate that the magnetoresistance (M/R~} rises
dramatically with temperature, reaching as much
as four times the value measured at 4 K.

The experiment reported here was designed to
cover a range both of temperature (4-20 K), and
of specimen purity [residual resistance ratio
(RRR) = 1000 —30 000]. Magnetoresistance mea-
surements were made both in the transverse and
longitudinal configurations. We hoped, by this
technique, to arrive at a phenomenology which
would characterize the magnetoresistance of alumi-
num, at least in the form of polycrystalline wires,
over this range.

It has become almost axiomatic that the more
simple metals, in the free-electron sense, exhibit
magnetoresistance effects which are at odds with
theory. Aluminum, ' indium, potassium, ' and
sodium' all show a. linear magnetoresistance at
high fields. A typical curve for aluminum is shown
in Fig. 1. Furthermore, no simple metal which

has been investigated over 5, Ride range of purity
and temperature has been observed to obey Kohler's
rule. This indicates that the relative effects of dif-
ferent scattering mechariisms are more complex
than the rule anticipates. More recent theoretical
treatments such as those by' Young, "' and Pip-
pard, "although promising some Success in par-
ticular cases, have not yet shown wide applicability.

The Fermi surface of aluminum is well known
and theoretical calculations of the major features
have been adequately confirmed by de Haas-van
Alphen and other experiments. ' In one instance,
transverse-magnetoresistance rotation diagrams
for several crystal orientations were calculated,
based on early models of the surface; however,
agreement with available experimental data was
not good. "

Recently, a, good deal of discussion has taken
place as to the presence or absence of magnetic
breakdown effects which could lead to extended or-
bits on the Fermi surface. ' ' ' The situation
is still not totally clear, but it seerris that magnetic
breakdown may mell occur in aluminum with the
field along the (100) direction.

An extended orbit configuratiov, Whatever its
cause, would be expected to lead to a significant
anisotropy of single-crystal transverse-magneto-
resistance rotation diagrams. Eal'iy experiments
showed no such large anisotropy, Whereas more
recent work on higher-purity' aluminum does show
a considerable effect.

Finally, the creation of i sigriificant linear mag-


