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Effects of Correlation on the Structure of Impurity Bands
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The effects of electron-electron interaction on the electronic density of states has been con-
sidered for a dilute system of scattering centers distributed randomly in an electron gas of
moderate density. Using as a starting point an independent-electron t-matrix method, a modi-
fied t matrix in the presence of the electron-electron interaction is obtained. To illustrate
the effects of correlation, the formalism has been applied to the simple case of a linear chain
of attractive (5-function potentials distributed randomly. The electrons are assumed to inter-
act via a repulsive &-function potential. The density of states in the impurity band is evalu-
atedand comparedwith the results for independent electrons. It is found that the inclusion of
electron-electron interaction produces a significant broadening and downward energy shift of
the impurity band.

INTRODUCTION

Many papers have appeared dealing with the elec-
tronic structure of disordered systems. Because
of the difficulty of the subject, for which there
exists no general one-electron theory, these treat-
ments have, for the most part, considered the elec-
trons as noninteracting. Wolff' has treated the
modification of a free-electron band in the presence
of both the electron-impurity and the electron-
electron interactions. However, he considers the
case of very high impurity and electron densities
(relative to the effective Bohr radius of the im-
purity), so that no localized states arising from
single-impurity bound states can occur. The trans-
port properties of interacting electrons in a system
of random impurities have also been treated exten-
sively by Langer, Betbeder-Matibet and Nozieres, '
and more recently by Sigel and Argyres and Sigel. '
Here we describe a calculation of the effect of par-
ticle-particle interaction on the density of single-
particle states in the band which arises from a
bound state of an isolated impurity. To describe
the impurity band without many-particle effects the
t-matrix approach of des Cloizeaux is used. This
is based on infinite-order perturbation theory and

consequently many-body effects can be included
in a straightforward way using standard propagator
formalism.

CALCULATION

We start by writing the Hamiltonian for a system
of fixed volume 0 at T =0 containing N, particles
interacting with N, impurities distributed at random.
We assume the impurities to be infinitely massive.
Then

H=p; T, ++ V, (r,.)+ — Z v. (r; —rg)
2j, f=1; f&f
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where

(2)

is the kinetic-energy operator for the ith particle
and

V. (r,)=gv, (r, —R,)

is the potential energy of the ith particle due to the
interactions v, (r, -R,) between the ith particle and
the impurities distributed among the sites II„. All
physical quantities are to be averaged over the
(random) distribution of the 1I,. We consider the
system as being "neotral, " i. e. , assume that there
are potential sources which compensate for the po-
tential energy of a particle in the average potential
fields Vp, of the impurities and Vp, of the particle
gas. The perturbation calculation is carried out

using the second-quantized form of H:

Nff
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kgkgQ Q 1
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where
IEk=Ek- VP,

Ef=a' k /2m, .
The effect of the constant term —Vo, in Eq. (1) is to
remove the diagonal elements (ki u, ik) from the

particle-particle portion of II. Hence k4 k in Eq.
(1). The constant term —Vo, in Eq. (1) simply shifts
the scale of single-particle energies:
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D(E)~~1™+G(k,E), E&E~

= —v'™@G(k,E), E&E~ (4)

(Unless otherwise indicated, the index k includes
implicitly the spin quantum number o=+-', ~ } First,
we consider the case without particle-particle in-
teraction (n, = 0). The Hamiltonian becomes a sum

of N, independent one-particle Hamiltonians H& = T&

+ V, (r;) an'd it is sufficient to obtain G(k, &u) for the
system of one-particle plus impurities. The prop-
agator can be written as a summation of an infinite
series of multiple-scattering diagrams involving
the free-particle propagator Go(k, &u). Denoting
G(k, ~) by the diagram of Fig. 1(a) and Go(k, v} by
that of Fig. 1(b) we have the summation shown in
Fig. 1(c). We proceed by replacing the potential
v, by the particle-impurity ™"r'X',(v), which
is the sum of all multiple scatterings of the particle
by the impurity n [Fig. 2(a)].

des Cloizeaux has introduced the notion of artic-
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FIG. 1. I'a) Diagrammatic representation of the single-
particle propagator G (k, co); (b) diagram of the propa-
gator p (k ~) for a free particle; (c) perturbation ex-
pansion of 6 in terms of G'0.

E =E'+ I'O. =E'+N. (kl ~.lk&,

where E is the energy referred to the unshifted
energy scale. (However, when v, is long ranged,
e.g. , Coulombic, this energy shift is divergent-
V~ has to be included implicitly by removing the
diagonal elements from the particle-impurity inter-
action. )

We wish to obtain the single-particle propagator
G(k, &) for the system. The density of single-par-
ticle states will then be given by
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FIG. 2. (a) Definitionof the particle-impurity tmatrix
t„(b) matrix element (k2l S(k, ~) I k&) of the self-propa-
gator S {k,~); (c) expansion of G in terms of S.

ulation points in these diagrams. By definition
an articulation point is associated with an inter-
action of the pa, rticle with the impurity n if all
scattering centers P (P'n} encountered by the
particle before this interaction are different from
all scattering centers y (y 4 n) encountered after
this interaction. As a consequence of the averaging
process each diagram can then be reduced into a
product of irreducible parts by cutting the prop-
agator lines connected to each articulation point
in the diagram. Propagation between articulation
points can be described by a "self-propagator"
S(k, &), with matrix element (km IS(k, ~) Ik,), and,
upon associating the operator p,t, (e) =—(NJ'Q)t, (e)
with each articulation point denoted by 0, the dia-
grammatic expansion of G(k, &u) can be redrawn as
shown in Fig. 2(c), leading to

G(k, (u) =GO(k, &u)+Go(k, &u)

&&&klp, t, ((u)[l-p,s(k, u&)t, ((o)] ' lk) . (5)

The self-propagator S can in turn be expanded in
powers of the impurity density with the leading
term, of order p„containing the contribution of
scattering by pairs of impurities.

In considering the effects of electron-electron
interaction we are particularly interested in the
broadening and shift of the impurity band at mod-
erate-to-high electron densities. Consequently we
look at the effect on a particle of a single impurity
in the presence of all the other particles. This
approach leads to a modification of the particle-
impurity t matrix while neglecting correlation
effects on the scattering of the particle between



different impurities. To each "skeleton" particle-
particle scattering diagram contributing to the prop-
agator in the absence of this impurity, we obtain
the corresponding diagram in its presence by re-
placing everywhere the free-particle propagator
with the "dressed" propagator appropriate to the
system of a particle plus one impurity [Fig. 3(a)] .

Let us consider irreducib1e diagrams, i.6. ,
those which cannot be cut into two otheI's by cutting
a dressed propagator line. We denote by Z(k, k', ~o)

the sum of all irreducible diagrams, taking the
parti. cle from state k to state k, with energy k(d

[»g. 3(b)]. Because the presence of the impurity
disrupts the homogeneity of the particle gas, the
term Z(k, k, ~) differs from the usual self-energy
by being nondiagonal. For this reason Dyson'8
e((nation for the modified propagator G . (k, k R)
fox' the systeIQ of pRrtic16 gRS plus ODe impurity
cannot be summed into closed form [Fig. 3(c)].
The effective t matrix t,"' is defined in Fig. 4
in terms of G, , and the propagator G, (k, ru) in the
px'esence of the pRrtic16 gRs oDly. To obtain t,
we must know Z. To make the situation tractable
let us in fact approximate Z by 5-„,f Z', (k, &), where
Z, is the (diagonal) self-energy without the im-
purity. The resulting expression, for G, , is shown

in Fig. 5(a). This can be resummed in terms of

G, . as in Fig. 5(b).
The propagatox' 6, can be expanded in terms of

Go and Z, as in Fig. 6, the closed-form expression
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~~0, 4, Definition of the effective particle-Impurity t
matrix in terms of G~~ and the propagator G~ (double
straight line) for the pur'e particle gas.

in atomic units (h = l, m, = -,", e /4m&0= 2). This
has a singularity at the bound-state energy
E,= —(eo/2)' of a yarticle in the field of one im-
purity. The fact that the matrix element of t, is
independent of initial and finRl moIQenta simplifies
matter8 conslderaMy since the expI'esslon in Fig.
5(b) for G, ,(k, k', &u), the propagator for the sys-
teIQ of particles plus one impurity, cRD be SUIQIQed

into closed forIQ:

G. (k, ~) = Go(k, ~)/ [l —Z,(k„~)G, (k, ur)] .
Let us now consider the simple case of a dis-

ordered linear chain of attractive 5-function poten-
tials. In this case we have
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FIG, 3. (a) Definitionof the dressed propagator for a
particle in the presence of a single impurity; (b) defini-
tion of the self-energy Z in the presence of one impurity
and the particle gas; (c) expansion of the propagator

Ge~ (double wiggly line) for the system of particle gas
plus One impurity.
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FIG. 5. (a}ExpanaionforG~~(k, 'K', &o}when'(k, k", &o}

is approximated by 6& ~ Z~ (k, (A)); (b) resummation of the
series in (a) in terms of G~ (k, e).
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G,~(k, k', ar) = G,(k, &o)&)),, +C,(k', )o)t, (&u)C, (k, )u)

+ G,(k', (u)t, ((o)(Z [G,(kg, (o) —G0(k(, (u)]}f,((o)c,(k, (o) +

=G.(k, )~,„..c.(k, )(Zt.""( )I"( )}G,(k, )
n=o

= G, (k, )o)5„,.+ G,(k', (o)f,((o) [1--f,{(o)g(&o)] 'G, (k, &o),

w hex'e

s ()o) =Z [c,(k„)o)—Go(k„(o)]

c,(k„)z,{k„)c,(k„)
1 —Z, (k„(o)c,(k„(u)

and f ()u) has been written for (kit, (v) lk') ~

Fig. 4 we see that

t;«(~) = [l-z, (k', ~)c,(k', ~)] 't, (~)

x[1 f,(„)S( )]-'[1-Z,{»~)co(»~)]'

and is dependent upon k' and k. To facilitate com-
parison with the results using the bare t matrix,
this dependence is ignored:

f,"'(~)= t.((o)[1-t.(tu)S(&o)]
' .

The quantity 3(~) has been evaluated when the
particles or "electrons" interact via a repulsive
5 function:

e, (x, —x, ) = e;5 (x, —x,) .
The self-energy was calculated in the ladder ap-
proximation; to lowest order (Fig. 7) in the parti-
cle-particle f matrix t, (q, l') we have

o

z, (k, ~) =-—' x2 Z @[&k f, (q, g) k)
«oo

-(k~e, ~k)]c,(q-k, g-~)+—

x Z dye-k~f, (q, c)~ k)c,(q-k, g-~} . {11)
«+0

In this case (k I f, (q, f) ik' ) depends only on q and
g and ean be obtained in closed form as

f.(q, g) =~
~ I-~ ~ iim Z [C-k'-(q-k)'+@] '

)) -0 a & ))p
lq-Al & kg

G(k, )o) =6,(%, )o) + G,'(k, )o)

~{k~p.f."'(~)[l-p.S(f, o)f:"(~)]'~%). (»)
This equation reduces to the correct limit when
either v, or v, vanishes. Upon computing 6,
from Eq. (6) and f ~' from Eq. (9), the resulting
density of states (per unit length) obtained for
negative energies is shown in Fig. 8, together
with the result fox' independent electrons. IQ

both cases we have used vo-2 Ry-ao and p, —3~,
while in the former ease we have taken vo= v0

and p, = 1go . The lowest-order expansion in p,
of the self-propagator was used. 8 Also shown
is a machine calculation for independent electrons,
reported in Ref. 6. %e see that the effect of
particle-particle interaction on the impurity band
is to displace it to lower energies as well as to
broaden it. For the parameter values used here
the full width at half-maximum with particle inter-
action (- 0.42 Ry) is comparable to that occurring
in the machine ealeulation for independent particles
(-0.30 Ry). To estimate the shift of the impurity
band with respect to the Fermi level, the follow-
ing approximate relation for a filled band (p, & 2p, )
was used in obtaining E&.

f "fl '[D(Z)-D, (E)]dE-2p, (14a)

or

J 'n 'D, (Z)dz-p, -2p. , (14b)

where D, (E) is the contribution to the state density
from the first term in Eq. (13). Equation (14a) is
a good approximation in the independent-particle
theory, for which fo„Q 'D(Z)dE=2p, . In general

Z [C-k'-(q-k)'-@] '
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MSCUSSION

The expression which results, when the free-
particle propagator Go(k, ~) appearing in Eq. (5)
is replaced by G, {k,~) and the bare particle-im-
p ityt t t byt, '
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FIG. 6. Expansion of G~ in terms of 60 and Z~, leading
t.o Eq. (6).
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FfQ. 7. Diagrammatic expression for the particle self-
energy to lowest order in the particle-particle t matrix
t, Gadder approximation).
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we would expect it to be applicable in the tight-
binding limit (p, small relative to the bound-state
radius of an isolated impurity) for v, small com-
pared to v, . Using Ect. (14b) we obtain E~-0. 27,
E~- -0.03 Ry, so that the shift is

I

-4

Energy, E, Ry

/
I

2

(Ea —Er ) —(Ea —Er )- —0. 49 Ry.

The integrated-state density up to F. = F~ is

~

~ ~

~

~

ga states0 D(E) dE=0. 74 & p,ao

Thus Erl. (14a) underestimates the shifted Fermi
level E~ in this case (v, = v, ),

The above results indicate that while broadening
of the impurity and conduction bands due to inter-
particle interaction increases their overlap, there
is a net downward shift of the center of the im-
purity band with respect to the Fermi level.

In three dimensions we anticipate the effect df
particle-particle interaction on an impurity band
to be more pronounced than in one dimension. This
is so because in three dimensions it is known that
strong screening of an impurity at high electron
densities can cause it to ionize completely, where-
as a one-dimensional potential well always pos-

FlG. 8. Single-particle density of states, per unit length,
in the impurity band for a linear chain of random scat-
terers. Scatterer density p, =3 ao, particle density p~

i= 1ap ~

sesses at least one bound state. We feel that the
over-all results of this calculation are reasonable.
In treating a more realistic (e.g. , three-dimen-
sional) case, however, the computational problem
becomes rather formidable. An accurate deter-
mination of Z, (k, ru) for the Coulomb interaction
for a wide range of ~, for example, is difficult
at intermediate-to-low electron density, where
correlations are important. Such a calculation
would be of interest in any situation where one
probes the state density arising from tightly
bound outer electron states of impurities and/or
atoms of a disordered host.
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The self-propagator S (k, cu) consists of the sum of
two terms &(~)+B(k,~) and, to lowest order in p„only
the first term has been retained as giving, in this partic-
ular case, the dominant contribution to D (E) in the neigh-
borhood of the maximum in the impurity band. (See Ref.
6.)


