
192 D. MAHANTI AND C. M. VARMA

TABLE I. Ratio R of the self-polarization to RKKY
field for perfectly screened (R&) and unscreened N2)
exchange, as a function of n =2kzRf2.

a =2k')2
0. 4
0. 8
1.2
1.6
2. 0
2. 4
2, 8
3.2
3.6
4. 0

4
4. 8

R((Q.)

0. 1340
0. 1628
0. 2160
0. 2992
0.4217
0.6052
0.8938
1.3797
2 ~ 2915
4. 3478

11.2410
—1000.0000

R2(a)

0. 1326
0. 1543
0. 1846
0.2174
0, 2564
0, 3102
0.3768
0.4388
0.4848
0.5240
0. 5716
0.6412

8& is 1.75. Thus, we see that the self-polarization
effect may be quite important andmayhave a larger
contribution than the RKKY term itself.

For the case of Hartree-Fock unscreened ex-
change, the a dependence of the ratio R2, is rather
slow. For Prai, the self-polarization field is

nearly 46% of the RKKY molecular field. Although
its magnitude is smaller than that obtained by
using perfectly screened exchange, in both cases,
the effect is more important than the short-range
correlation effects pointed out by Cooper. This
latter correlation was estimated to be of the order
of 15-20% of the molecular-field term.

The sensitive dependence of R on the choice of
a particular form of exchange integral clearly in-
dicates that one has to be quite careful in any de-
tailed quantitative analysis of the susceptibility
and critical-exchange parameter. In conclusion,
we would like to emphasize that the self-polarization
effect, neglected in calculations until now, is ex-
pected to play an important role in the magnetic
properties of rare-earth group-V intermetallic
compounds with singlet ground states.
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A new band-structure calculation is reported for the ferromagnetic state of iron, in which
the exchange interaction is given particularly careful treatment. A variational procedure was
used with the wave functions expanded in terms of tight-binding functions and orthogonalized
plane waves. Hybridization and spin polarization of the wave functions were allowed. Corre-
lation corrections were incorporated. The energy bands are somewhat wider than those
previously published; comparison is made with photoemission and optical reflection and x-ray
emission data. The calculation leads self-consistently to the observed magnetic moment. The
roles of intra-atomic exchange and itinerancy in the origin of iron's ferromagnetism are dis-
cussed.

I. INTRODUCTION

It has long been clear from both experimental and
theoretical points of view that in the transition met-
als the conduction electrons consist of semilocalized



ELECTRON STATES IN FERROMAGNETIC IRON. I ~ ~ ~ 193

3d electrons and very diffuse 4s-4p- ~ electrons.
If this dichotomy could be applied strictly, the band
structures of these elements could be calculated
for the 3d electrons independently of those for the
4s- ~ ~ electrons. In particular, the simplicity of
the tight-binding (TB) method' could be exploited
for the former, and the orthogonalized-plane-wave
(OPW} method' would easily apply to the latter.
However, hybridization of otherwise overlapping
energy bands can occur in some regions of the
Brillouin zone (BZ), so the demands placed on the
band-structure problem become more severe. The
Green's-function and augmented-plane-wave (APW)
methods' have both been very successful in accom-
modating the conflicting requirements of compact
and diffuse wave functions, and from a single cal-
culation can produce both types of states, fully hy-
bridized where hybridization occurs. Unfortunately,
in the present formulation of these approaches, only
local potentials can be treated. For the case of
iron, the magnetic properties hinge on the nonlocal
exchange interaction, and to gain insight into these
properties it is desirable to avoid making localizing
approximations. The present consideration of iron
attempts an accurate treatment of exchange, while
satisfying the requirements on the spatial behavior
of the wave functions.

In this work attention was restricted to the con-
duction-electron states, and we will frequently refer
to these as 3d or 4s electrons or as 3d- or 4s-like,
but it is not intended that this description implies
that the wave functions of electrons so described
are characteristically atomlike. The method
chosen was a variational one in which the components
of the wave function have both localized and diffuse
character, and full hybridization is allowed at all
points at which energies are calculated. The con-
duction-electron wave functions are allowed to be
spin polarized even when they consist mostly of
tight-binding d wave functions. For exchange, the
exact Hartree-Fock expressions were used and
computed as accurately as possible, except where
theoretical considerations suggested a screened
exchange was more appropriate. Correlation ef-
fects are included explicitly through the screened-
exchange- Coulomb- hole approximation for 4s-like
states and the effective-exchange-interaction' for-
malism for the d-band states. This treatment of
the d-band correlation problem bears some resem-
blance to a recent pseudopotential calculation for
nickel. ' The computational aspects of this treat-
ment are described in Secs. II-V.

This calculation has been successful in describing
many of the static electronic properties of iron.
In Secs. VI-IX we describe those properties which
are related to the band structure. We defer to a
separate paper the discussion of properties related
to the electronic wave functions. ~

II. GUIDING PRINCIPLES

Several band structures for paramagnetic iron
have been reported. For these, ferromagnetism
is obtained by assuming a k-independent shift of the
minority-spin bands towards higher energies rel-
ative to the majority-spin bands. The amount of
shift required is adjusted to fit the known magnetic
moment. Three band structures have been reported
for ferromagnetic iron. " In each case ferro-
magnetism is obtained by artificial adjustments of
the Slater p'" exchange.

From all of these calculations a few features
have emerged as a consistent pattern and they are,
therefore, incorporated in the new band-structure
calculation:

(a) The wave functions of the d-like electrons are
slightly more diffuse in the metal than in the free
atom. Confirmation of this comes from the exper-
imental x-ray scattering form factors' which are
found to be about 4% lower in the metal than calcu-
lated for the atom.

(b) The 4s wave functions are extremely diffuse.
(c} The electron configuration differs from that

of the free atom, being closer to 3d 4s than to the
atomic conf iguration 3d 4s . Thus Callaway and
Stern' both found that the superposition of potentials
derived from the atomic 3d 4s configuration pro-
duced 3d bands lying entirely below the 4s band,
implying a configuration 3d in conflict with the
starting configuration. Because of (a), the x-ray
scattering form factor per electron is unknown, so
it gives no direct confirmation of the number of
electrons; however, the isomer shift has been in-
terpreted in fa.vor of the 3d 4s configuration (see
Ingals ).

(d) Hybridization is important.
(e) The Slater exchange potential p"' is unsatis-

factory as a means of incorporating exchange. Ar-
bitrary adjustments have to be made to it to fit, the
correct magnetic moment, which, for an under-
standing of magnetic properties, is an unsatisfac-
tory procedure. There is an additional important
consideration which necessitates avoiding it for this
calculation. Consider the difference between the
exchange potentials for the two spin states

1/3 i/3
pt

This always has the same sign as p, —p, , which is
the spin density. In iron, the spin density is every-
where positive except in some regions in which the
wave functions are small. " Hence, any expecta-
tion value

(4/~ p1/3 pl/3
~

4/)

is necessarily positive. By first-order perturba-
tion theory this requires the minority-spin bands
to be above the corresponding majority-spin bands
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for all k values. However, several lines of ex-
perimental evidence' ' seem to indicate that the
4s-like states are actually polarized negatively~7
with respect to the d states and therefore we must
not inject into the calculation an unwarranted pre-
disposition towards positive polarization.

In the band structure reported below, points (a),
(b), and (d) are satisfied by choosing a variational
method for finding wave functions and energies with
a careful choice fo the trial mave function. The
expression used was of the form

uu (r }+ ~ ) & uox w,

where X and p, ; are the expansion coefficients and

Qpp~ are OPW wave functions; the 19 OPW's cor-
respond to the 19 reciprocal lattice vectors out to
the second nearest neighbors

u, (r) =5 „e'"'a~ gg(r —R„},

y, (r}= [P,(r)/r] C;(e, y),

1 0C2=Iq,

C', = (I/M3)(&', + &,'),

c', = (- t/Mz)(y, '- y,'),

c', = (f/M3)(y,"y, '),

c,'= (- I//F )(&', —I', '),

F~ = usual spherical ha. rmonics.

The Ca are real functions which form bases for
some representations of the cubic group. The
choice of the function P,(r) is determined by point
(c). Since the final configuration is expected to
be near 3d'4s, it seems that a certain amount of
self-consistency is built in by choosing P,(r) to be
the radial part of the d-wave function for the free-
atom Sd 4s configuration. In making this choice,
no restriction is implicit that the final wave func-
t:ions have this particular radial behavior because
the additional terms uo p„(r) can easily alter the
radial character, and in fact must do so in a spin-
dependent fashion if the wave functions are to be
spin dependent. By choosing the d function to be
approximately correct, the demands placed on the
OPW expansion are less acute.

The function P„(r}and the core functions (Is-3p)
used in forming the OPW's were supplied for the
configuration 3d 4s in an analytic form' by Gilbert. '
The relevant parameters for P,(r) are given in
Table I and for comparison the corresponding pa-
rameters for the atomic 3d 4s configuration are
also listed. P,(r) for both cases are plotted in

TABLE I. Parameters for the analytic expansion of
the atomic 3d orbital. The wave function is g& (r}
=f&.& P&rte F [Y& (8, p)], where P& =(6!) ~ (2o.') ~tC&.

A C(3d 4s) C(3d6 4s )

4.095 42
11.500 00
6.004 05
2.616 91
1.448 80

0.25276
0.029 17
0.248 51
0.395 69
0.267 14

0.253 56
0.030 38
0.271 81
0.460 99
0.147 57

Fig. 1. It is seen that the 3d 4s function has a
smaller amplitude than the 3d 4s function up to a
radius of about 1.2 Bohr radii, and thereafter the
3d'4s function has the greater amplitude.

The presence of the OPW components in the trial
wave function serves three purposes. In the first
place, the wave functions of the s-like states, being
fairly diffuse, are mell approximated by OPW wave
functions. Second, the OPW wave function can con-
tain some d character and can contribute some com-
ponents to the d-wave function, making their radial
character fully state dependent. Third, hybridiza-
tion of d- and s-like states is built into the wave
function. If the X are large and the p, ; small, we

will have a purely d-like state. If p, ; are large and
are small, wave functions of 4s-4p- character

result. If both X and )L(,; are comparable, pure
states no longer occur, and the wave function is a
hybrid.

It should be noted that the basis functions in (1)
are not orthogonal to one another. Thus, the sec-
ular equations to be solved for the energies E and
wave functions are

!H Es( =o, - (3)

where S is a nondiagonal, but Hermitian, matrix of
the unit operator. H is the Hamiltonian matrix.

Points (c) and (e) are incorporated into the band
structure in the construction of H. Initially, as-
sumptions were made about the distribution of popu-
lation throughout the BZ to account for an approxi-
mate configuration 3d'4s. However, the problem
of greater magnitude was a realistic treatment of
exchange. It was decided that here the general
principle to be followed was to attempt to calculate
the exchange matrix elements from the Hartree-
Fock Hamiltonian as accurately as possible. In
particular, approximations in terms of the substi-
tution of some physical mode&. , such as the local
potential g'", for the terms in question were avoided.
Approximations of a mathematical nature, such as
the truncation of a series expression, or limitation
of multicenter integrals to two-center integrals,
mere made. One notable exception to this rule is
the use of screened exchange for some s-state in-
teractions, but this is dictated by the known diffi-
culties mith Hartree- Fock exchange for a system
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FIG. 1. Radial wave functions of d electrons in atomic
iron. Curve I is for the 3d' 4s configuration; curve II is
for the 3d 4s configuration.

III. BAND-STRUCTURE METHODOLOGY

of free electrons.
Because exchange was treated without making

localizing approximations, it is not possible to list
a local potential which gives rise to the band struc-
ture. Rather, the matrix elements of II were cal-
culated directly without the intermediary of a local
potential.

Since energies at general points in the BZ were
of interest to this problem as well as energies at
symmetry points, no attempt was made to use
group theory in the construction of the wave func-
tions, it being more convenient to have just one set
of computer programs that would handle all k points
on an equal footing.

The lattice spacing assumed for this calculation
was 2. 86 A.

It is clear that many types of integrals occur.
To establish the terminology used here, we state
that expression (4) is the exchange of the state l
or i with the state j. Subsequently, a summation
has to be made over the j states. The express
forms of the integrals are given in Secs. IIIA1-3.

1. Exchange saith d states

4, has the form of Eq. (5). In all cases dis-
cussed below, spherical symmetry was explicitly
invoked by assuming equal population of the states
(2) for electron j.

a. Exchange of d states with d states. Here, both
4'; and 4, have the form (2) and k, =%,. Using stan-
dard manipulations, the integrals may be expressed
as a sum of one- to four-center integrals. The ap-
proximation is made that integrals involving three
or more centers are negligible on the grounds that
two-center integrals are sufficiently small. Typical
values for the overlap integrals for first- to fourth-
nearest-neighbor overlaps are 0.02, 0. 015, 0. 001,
and 0. 0001.

In addition, certain two-center integrals were
neglected due to reasons described below. The
remaining terms were

r1 R r1
+12

x u ~*(r2)u '(r2) dv', dTs (one center),

—&. e 'I" ~ u '*(r, —R„)u &(r, )
12

x u & (r, )u &(r, ) dv, d~s (two center).

Terms rejected were of the form

A. Exchange Matrix Elements

The general form of the exchange matrix elements
is the negative of

f4',"(r, )@,(r, )( Ir/«)4,*(r )s4, (r, ) dT, d&s/f t4',
~

d~,

(4)
where 4' here has one of two forms, either a TB
function

4 = (I/iV'") & „e'"" u-„(r- R„) (5)

or an OPW

(I/y1/2) fit r 5 bf g1 (6)

where Q,' is a TB core-state wave function and 5„'-

is a constant chosen to make 4' orthogonal to the
core state.

In this section, the construction of the basic buiM-

ing blocks of the Hartree-Fock matrices is de-
scribed. The assembling of these component parts
into the final matrices is described in Sec. IV.

u ' (r, )u &(r,)—
n ~12

x u & (rs —R„)u 1(rs) d7, d&2,

-1j; R„-ik. R& m;+( )
m. (

n, P +12

xu ~™(r2—R~)u 1(rs —R„) d7'1d&2,

&Z e '~' "e '"&' ' (r, -R„) &{r,)
n, P +12

xu ' (r2 —R&)u ~(rs) dr1d7 , 2

u 1 (r, —R„)u ~(r, )
N „ +12

xu ~ (r2)u 1(r2 —R„) dT dT .12
It is seem that (8) and (9) are similar; the reason

one is retained and the other is not lies in the sig-
nificance of the subscripts i and j. The reason for
neglecting (9) is that to some extent it is canceled
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where

1
P,(r}f,(~k, +K~r) dr

~„k) — )+ (
+&

(13)

N is the normalization integral for the state of
angular symmetry C2, K is the reciprocal lattice
vector, and j~ is the spherical Bessel function of
order 2.

A convergence test was performed and it was
found that the series (13) was well converged when
summed over 141 shortest K vectors. This set of
vectors was then used for the computation of the
required matrix elements.

Expression (13) gives the matrix elements for
exchange with d state 4 ~. A practical scheme for
summing over the Avagadro's number of states +~
has to be found. In this case, the method employed
was to choose a set of 97 k vectors throughout the
BZ, as uniformly spaced as was conveniently pos-
sible, to be representative of all states. These
will be referred to as sample states. The matrix

by the terms arising from the binomial expansion
of the denominator term in (4). In addition, we
recall that a sum over j has to be performed, and
for small terms such as these, it should be rea-
sonable to take the full BZ result and scale it ac-
cording to the population. However, because the
integrals are k independent, the summation is pro-
portional to ge'~~s~ =-0. The summation argument
also applies to (10) and (ll), and in any case these
terms along with (12) are probably smaller by the
order of an overlap integral than the ones retained.
In addition, (9)-(12) can be interpreted in terms
of the exchange interaction causing a double elec-
tron excitation from one atomic site to another, an
effect which should be minimized by exchange
screening. ~o

The two-center integrals were reduced to one-
center form by expanding the wave function of the
electron on the second site (site 8) in a series of
functions centered on the first site (site A), using
a method based on an analytic expansions' of Lowdin's
"~ function" and standard forms of the rotation
matrices~3 for spherical harmonics. Two- center
integrals out to fourth nearest neighbors were in-
cluded, although the contributions from third and
fourth neighbors were negligible.

b. Exchange of OPW states with d states. For
the parts of the exchange involving two plane waves,
one each from 4, and @„ the potential e /r, 2 was
Fourier analyzed and lattice summations and angu-
lar integrals performed analytically, the final ex-
pression being

4m'5
- ——S rP„r j~ k& —kr+Rq+K r dr

elements (13) were calculated for each of the R

vectors, and each multiplied by a weighting factor
assigned to the k vector. The weighting factors
were assigned on the basis of the volume of an el-
ement of the BZ allocated to and containing the k
point in question. Further population factors were
assigned to each R point as discussed in Sec. VI,
and the final matrix elements found by adding the
contributions from each sample state. This meth-
od has been used before by Phillips and Kleinman. 4

The constant o' in the denominator of (13) has
the mathematically important role of eliminating
a divergence which would otherwise occur in the
neighborhood of %, = k, + K. Physically it corres-
ponds to a static wave-number-independent screen-
ing factor. That is, the Coulomb potential I/r, s
is replaced with the screened potential e /r, s
While a dielectric treatment can be adequate for
fairly free electrons, ' ' such as the conduction
electrons in a metal, it is not an adequate process
for d-like states. Unfortunately, no treatment of
the correlation of the d states with the 4s states
has been given, but it seems that the screened Cou-
lomb potential would have limited applicability.
Accordingly, it was determined that o. should be a
small quantity chosen only to avoid the divergence.
A sphere of volume equal to a typical elementa1.
volume associated with a sample f vector was con-
sidered. Suppose its radius is qo Then n is chosen
so that

dq &&qo~ =4&qo =
q Q

(14)

That is, at a potential divergence, the same re-
sult is obtained for the Fourier inversion integral
over the sphere by (i} moving the origin to the center
of the sphere and using the unscreened Coulomb
potential and (ii} selecting the center of the sphere
to be representative of all points in the sphere using
the screened potential. On this basis n = O. 1. Since
it is a small quantity, it was assumed that no vio-
lence is done by including it in expression (13} even
away from points of near divergence.

For the terms in which 4
&

contributes a plane
wave and @r contributes a core wave function u,(rs),
the small overlap of core functions on one site with
d functions on another site was invoked to restrict
the integral to the Fourier transform of a one-
center integral

u, (r, ) fu,*(r,}[ (ru, )/r„] d7, .
Standard techniques are available for this type of
integral and for the type of integral which occurs
when both OPW states contribute core terms. In
the latter case a simple atomlike one-center in-
tegral results.

c. Hybrid matrix elements of exchange zenith d
states. The generic form is (4) with O', =OPW and
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4, = TB function. As in Sec. IIIA 1a, any two cen-
teredness of 4, is rejected. The one-center con-
tribution involving a plane wave was handled in the
same way as terms involving a single core and
single plane wave mere treated in Sec. IIIA 1b.

The two-center part was again reduced to a form
similar to a one-center integral by expanding the
d function from 4', on site 8 about the site A using
the n-function technique. The plane wave was ex-
panded in terms of spherical Bessel functions and
spherical harmonics. Both expansions are, in
principle, infinite; but for computational purposes,
only components up to an angular momentum of 2

were taken. The reason for expecting this to be
adequate lies in the behavior of the &-functionexpan-
sion, particularly in the region where the d func-
tions overlap. For increasingly higher angular-
momentum components, the amplitude of the Q.'

functions decreases for radius values other than
those near the interatomic distance.

The same n-function expansion was used to cal-
culate terms such as

f u(* (r()u&(r()(1/r(k)uj(rk)u, (rk —R„)dr(drk,

where u& is a core-function component of 4'&. Two-
center contributions were taken only as far as sec-
ond nearest neighbors.

2. Exchange with OPW states

Here 4', has the form of (6).
a. Exchange of d states with OPW states. Both

)1(; and g(( have the form of (5). For those terms in
mhich 4

&
contributes one or two core terms, tech-

niques discussed in Sec. IIIA 1c mere applied. For
the case in which 4', contributes two plane waves,
the Coulomb potential ek/r, k was Fourier analyzed,
and, as before, lattice summations and angular
integrals were performed analytically. The re-
sulting expression is

4m~ 4m

ing constant is an oversimplification. However,
because of the exploratory nature of this problem,
it was decided to avoid excessive complication
which would be necessary to incorporate a more
realistic dielectric function. The value chosen for
n was that given by the Thomas-Fermi model, in
this case determined by a conduction (4s) electron
density of one electron per atom in accordance with
a configuration of 3d 4s. The value taken for n
was 1.0.

There are many types of terms. With no core
terms present the contribution is

4&

v (k, - f,)'+ n' (i8)

hs'g hck 4 S-) 5 1/fl' v '
g (k —f.+R)'+(k'

x dr1e" g'""1u'* r1 dr& e""~ "2u'; ~ ra,
(19)

4K (~ 1/0
V ) +K (k, —f, +R) +&

v
ei(k(+K) r) c 4(r ) dr e-i(k(+K) rk c'(r )

(2o)

Contributions from terms containing one core
reduce to the form

c -1
i ~ tk .P„,

~( f), k
e'( u, (r)dr

and
c -l,4& bp, S~ i (k&+k&-k~) r Ck)t/

(f( f )k ~2 e '

u, (r) dr

(18)

In these terms S~ is a normalization integral S~
= 1 —g, lb~ I'.

For the terms involving two core terms, the
contributions were approximated by the f~ = 0 values.
Terms so approximated had the following forms:

(frr. (r)j ( &i ~ r(1 )Crl'
1

f) —f(+ Ki (k+

4m 1/0
v ' - (f)-f, +R)'+n'

x dr e ' ( & (u(r1 1
e((k)-K) rkuc'k(r )

(21)

Again, the summation over reciprocal lattice
vectors was carried out over 141 reciprocal lattice
vectors. The set of sample states and weighting
factors, and the same value of a, were employed
as in Sec. IIIA1b.

b. Exchange of OPW states with OPW states. Here
)1(( and 4, have the form (6).

Again, a screened Coulomb potential is used, but
in this case with some more justification ' 5 than
for the cases previously discussed. It is recognized
that using a static wave-number-independent screen-

c 4& ) 1/0
v ' (f, -k,)'+ u'

dre"") &'"u';(r) u,' (r). (22)

Again summations over reciprocal lattice vectors
were taken to 141 terms. Terms involving three
or four core terms were ignored.

c. Hybrid matrix elements of exchange with QPW
states. Here we take 4; = TB function, 4', =OPW.

In the manner similar to that above, the relevant
forms are
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el&t&+R& r&
g1/2 d 1 1

4m, , I/II
V "g '

g (k, —R, +2) +o'

(23)

(24)

readily adapted to the evaluation of these terms.

B. Matrix Elements of Coulomb Interaction

Since, in the Hartree- Fock approximation, the
Coulomb terms are derived from a local potential,
the matrix elements are simpler to evaluate than
the exchange matrix elements. However, the basic
usefulness of the techniques of n-function expan-
sions for the d states and Fourier transformation
for the plane-wave states remains.

The basic expression is

f 4 +(r, ) 4,(r, )(I/ri2)
I
4';(rs)

I
d &i «2/ J I

4'~(r)
I

dr .

x dr~e l 1Qg rg

dr, e""~ ~'"2u,'(r, }

For these terms n was taken as 0. 5, i. e. , about
midway between 1.0 and 0. 1.

3. Exchange uith Coze States

Here 4',. is a TB function formed out of atomic
core states, It is always assumed that core states
on different atomic sites do not overlap.

a. Exchange of d states with coze states. The
formulas here are the same as expressions (7) and
(8) with u ~ being replaced by the appropriate core
functions.

5. Exchan ge of OPW state s zvi th coze state s. Since
core states were provided in a suitable analytic
form, a method due to Brinkman and Goodman
could be used for the parts involving two plane
waves. The characteristic features of this method
are the Fourier analysis of the Coulomb potential
I/r, cosupled with an explicit analytic summation
over the full BZ for the state 4, That is, the fact
that core states are fully occupied could be exploited
so that no sampling procedure had to be assumed,
and no screening constant need be inserted. Brink-
man and Goodman develop an analytic expression
for the exchange integral involving an expansion in
Legendre polynomials P, ( o cs)s, where 8 is the
angle between the wave vectors of the two plane-
wave states. A convergence test showed that only
l = 0 and l = 1 need be considered in the present prob-
lem. Computationally, the procedure was found to
be time consuming, so that it is not unattractive to
use a direct approach in which the plane waves are
expanded in terms of spherical harmonics and
spherical Bessel functions and the radial integrals
performed numerically in the usual way.

Terms in which the OPW states contribute one or
two core states were treated as in Sec. IIIAlb with
the appropriate change of d states to core states.

c. Hybrid matrix elements of exchange with core
states. Techniques discussed in Secs. IIIA la (for
no plane waves) and III A 1 b (one plane wave) were

The charge densities I4', I are easily constructed
for the core states, and consist of a spherically
symmetric distribution centered on the lattice sites.
The d-state charge density is also taken to be
spherically symmetric, but in this case the charge
distributions on each site can overlap slightly.
For reasons similar to those in Sec. III A1a, the
interference terms u,'(r) u,'(r —R„) are ignored.

The charge density of the 4s-like states was ob-
tained by assuming that it can be approximated by
the integrated charge density of single OPW states
occupying the interiors of two spherical Fermi
surfaces —one for each spin. The radii of the
spheres were chosen to match an assumed popula-
tion as discussed in Sec. IV. Initially the charge
density was calculated throughout a sphere equal
in volume to the unit cell and centered on the lat-
tice sites. Such spheres necessarily overlap, and
in the region of overlap the charge density is over-
emphasized. Conversely, there are some inter-
stitial regions to which no charge has been allocated.
To correct for this deficiency a correction potential
fII was calculated,

where Q, is the potential due to one proton at each
lattice site and a uniform distribution of electrons
corresponding to one electron per proton, Q2 is a
potential due to one proton at each lattice site sur-
rounded by a charge of one electron uniformly dis-
tributed throughout a sphere equal in volume to the
unit cell, and a represents a scaling factor to ac-
count for the actual population. The formulas are
taken from Gaspari

3 3 ~ erfc(Ir- R„I/Mg)
4gx, 10rs „ Ir

r~-2 iR 8-R /4rf

S AIto
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v(r)= ——+ 3 (3r,-r ), r~r,1 1
r 2r

=0

where r, is the radius of the Wigner-Seitz sphere.
The potentials Q, and ft)~ are independent of the
choice of the parameter q. It is chosen on the ba-
sis of giving rapid convergence. This potential

Q turned out to be very small compared to the
spherically symmetrical potential.

The matrix elements of the potentials due to the
core- and d-state charge distributions are calcu-
lated in a straightforward manner. For the matrix
elements of the s-state charge density some simple
special modifications were made to the standard
procedures. Consider contributions such as

f u(r~, )u„(r~ —R„)
~
eppgI(rg) /r»d~, d~, . (28)

For R„equal to a nearest-neighbor displacement,
the correction potential as calculated along a (1, 1, 1)
line was added to the spherically symmetric part of
the potential, since only the potential in the overlap
region, in this case the region around the (1, 1, 1)
line, should be important. Similarly, for p, „equal
to a second-nearest-neighbor displacement, the
correction potential along the (1, 0, 0) direction was
used. For matrix elements between plane waves,
the Fourier transform of Q is calculated analyt-
ically, and both P, and (t z are easily expressed as
superpositions of spherically symmetrical potentials,
which are then easily Fourier transformed.

The potential due to the nuclear charges was ad-
ded to the spherically symmetrical components
due to the electrons prior to the evaluation of the
matrix elements, In this way we sum over neutral
units and so a rapidly convergent expansion on
terms of multicenter integrals could be obtained
when 4; or +, were d states. In particular, con-
tributions from third and fourth nearest neighbors
were negligibly small. If the Coulomb potential
is represented as V(r), two types of two-center
terms occur and both were included:

fu,'*(r)V(r)u', (r R„)dT, —

fu', *(r R„)V(r—)u",(r R„)dT. —

The second of these represents the electrostatic
field in the neighborhood of one site due to all the
charges on other sites; that is, it is the "crystal-
field" term.

Because the Coulomb potential has been reduced
to a combination of local spherically symmetric
potentials, the calculation of hybrid matrix elements
presented no particular difficulty, being simple
adaptations of the techniques already discussed.

IV. ASSEMBLING HARTREE-FOCK HAMILTONIAN MATRIX

Ideally, for Coulomb and exchange contributions

to the Hartree-Fock Hamiltonian for a given state,
the wave functions of every (Avogadro's number)
occupied state should be known and the individual
contributions due to them totaled. Of course, this
is impractical, so a sampling technique has been
used. However, even though this method reduces
the number of individual calculations to something
tractable, prior to the actual band calculation the
wave functions are unknown, so assumptions about
them have to be made also.

From the outset, it has been recognized that
conduction-electron wave functions are mixtures
of both s and d character, the particular admixtures
having to be found from the calculation. Unfortu-
nately, this is still too complex a description to
incorporate into the calculation, so further sim-
plification is necessary. For the purposes of this
calculation the idea of hybridization is incorporated
in the following approximate fashion. Each elec-
tron state at each sample k point was subjectively
estimated to characterize, say, rr; d states and
n 4s states, where n:+n=1. Thus, the Coulomb
and exchange matrix elements due to these states
are calculated on the basis of pure d states or pure
single OPW states and these multiplied by the sub-
jectively obtained population factors n". and n. Of
course, the over-all weighting factors representing
the size of the volume element of the BZ associated
with the sample E point were also used.

The Appendix shows how the sample points were
chosen. The basis of the subjective estimates was
the band calculation of Wakoh and Yamashita. The
allocation for majority-spin d states was particu-
larly simple. There is one vacant state between
H and N and all other d states are present nearly
everywhere else on this line. Thus, the weighting
factor for point 5 (see the Appendix) is taken a,s
0. 8. All five d states are occupied at I', so a
weighting factor of 1.0 is allocated to point 1 and
similarly to points 2-4. The population for point
6 was chosen to bring the total number of majority-
spin d states to 4. 7, and reflects a small depopu-
lation between N and P.

The allocations for the minority-spin d states
were more difficult. For example, in deciding
the weighting factors for the 3 points, we assume
that they represent the points between 0. 4 and 0. 6
of the distance from I' to the BZ surface. In going
from I to N, two of the states which are triply
degenerate at F are present between 40 and 60/p
of the 1"N line, and the third is not. Neither of the
doubly degenerate states at I" is present. In going
from I to P, two of the triply degenerate states at
1" are occupied. The other leaves the Fermi sur-
face, but by virtue of hybridization with the OPW
states, the d character reappears below the Fermi
surface about 50% of the distance from I' to P.
Thus, this state is considered to be half present
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in the region from 40 to 60%%uo. In going from I' to
0, tmo of the three triply degenerate and one of the
doubly degenerate states at I' are taken as present
in the interval. The average number of states
present is —,'(2+ 2. 5+ 3) = 2. 5 for a weigh":ing factor
of 0. 5. Of course, this approach is quite approxi-
mate, so minor adjustments are made to the weight-
ing factors to produce the total population given by
Wakoh and Yamashita.

For the s-state populations, spherical Fermi
surfaces mere assumed. Starting from 1", states
mere filled mith a meighting factor of 1 until the
point was reached where a smaller weighting fac-
tor had to be assigned to keep the total from ex-
ceeding the predetermined population.

The weighting factors as determined by the above
method are listed in Table II. As discussed in Sec.
VI, the band shapes that result from the present
calculation differ from those of Wakoh and Yama-
shita, but the weighting factors as determined by
the above method would not change very signif icantly.
Hence, this calculation is essentially self- consistent,
with one minor exception. Since earlier work in-
dicated that there is the possibility of a negative
4s polarization, the 4s population mas taken as 0. 4
majority spins and 0. 5 minority spins. No evidence
mas found here for a negative spin polarization, but
this discrepancy should not be serious.

There are some parts of the Hamiltonian which
do not require the use of the sample states but which
require instead the total populations to be inserted.
Examples of this are the Coulomb potentials due to
both s and d states, and the exchange matrix ele-
ments of d states with d states. The total papula-
tions are as indicated in Table II.

V. CORRELATION CORRECTIONS

As is well known, the Hartree-Fock approxima-
tion replaces the (dynamic) Coulomb interaction
between electrons with the Coulomb potential of a
static averaged charge cloud. Any departures from
this picture that occur in reality are called correla-
tion effects, Several formal treatments of the many-
body problem have been given, and several of the
relevant papers are reproduced in the book by
Pines. A necessary distinction has to be made
between the treatment required for diffuse electrons
such as the 4s states and that required for highly
localized states such as the 3d electrons. For the
former, the method of Hedin' is used, and for the
latter a treatment by Hubbard~ is relevant.

'The role of correlation for the quasifree 4s elec-
trons is to screen the exchange~ ' '; this was in-
corporated into the calculations via a static wave-
nurnber-independent dielectric function. Hedin
showed that if a static approximation to the dielec-
tric function is made, then the screened exchange
must be augmented with a "Coulomb hole. " For

TABLE II. Population weighting factors assigned to
the points listed in the Append~.

Point Majority d Minority d Majority z Minority s

1
2
3
4
5
6

Total
No. of
states

1
1

1
1
0.8
0.954094 6

4. 7

0.6
0.57
0.53
0.5
0.38
0.5

2. 4

1.0
1.0
1.0
0.621 620 3

0
0

0.4

1.0
1.0
1.0
0.959 457 8
0
0

0 ~ 5

an electron gas of uniform density the Coulomb-
hole potential is a constant:

(29)

1 dq 3i - 1
2 (2 )3 d r v(q) — (- 0)

—1

&«"'""' 5(r-r') —Z 4'*(r') @ (r) 4', (r')
(30)

where 4', is a TB core function.
Mahanti has explored this approximation for

cesium metal and finds the k dependence of (30)
very feeble. Accordingly, (29) was used instead
of (30). The matrix elements of Vc„were added
to the Hartree-Fock Hamiltonian wherever the
screened exchange mas used, with the appropriate
values of the screening constant in each case.

The correlation correction for d states is based
on the conception that the dominant influence of cor-
relation is to introduce localization properties into
an otherwise itinerant picture, as discussed theo-
retically by Hubbard, Kanamori, and Gutzwiller.
Consider the one-center term in the expression for
the exchange of a d electron with other d electrons
in an itinerant picture:

u(~(1) u, (1) u,*(2) u;(1) d&q dr2
1 ~ 1

A r12
(31)

The summation over j goes over all electrons
other than the state of interest, i. e. , over N' —1
electrons, where N is of the order of Avagadro's
number. If the state is localized, the summation
goes over only the other electrons on the given site
and there is no factor I/N multiplying the expres-
sion; i. e. , the summation is over N —1 states,
where N is of the order of the number of electrons
per atom, =5 for majority spin, =3 for minority

where v(q) is the Fourier component of the Coulomb
potential e /r~2 For O. PW wave functions, some
k dependence is introduced and the approximate ex-
pression is

Vc„(r) g„.(r)
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spin. Neglecting the difference between N —1 and

S, we see that the itinerant model differs from the
local model by the inclusion of a self-exchange.

To illustrate the impact of this, consider the ap-
proximation used to create spherical symmetry for
the one-center exchange terms; the expression for
a half-filled atomic shell is used and scaled accord-
ing to the population. The expression for a filled
half-shell consists of two parts, a term identical
in magnitude to the self-Coulomb term, V„and
an expression identified as the exchange due to the
other states, Vo. On the itinerant model, the ex-
change terms are then

——,'n, (V, + Vo), (33)

[(n, —1) + n, ] V, ——,'(n, —1) Vo .
The difference between (33) and (34) is

(n, —5)(-,'V, -~ Vo)

(34)

(35)

and is zero for a filled half-shell n = 5. The energy
(35) would represent the correlation energy if cor-
relation effects were so strong that complete local-
ization occurs. The integral Vo is much smaller
than the integral V„so in the following Vo will be
disregarded.

The correct picture" is intermediate between
the extremes of full localization (zero bandwidth)
and full itinerancy (finite bandwidth). Hubbard
examined correlation effects in narrow s bands
and has given the following expression for the ef-
fective exchange integral:

1
4

eff c [(IV I +)2 L&oV ]1/2 (36)

where n, is the band population of states with a given
spin; n, is defined similarly for states with the op-
posite spin. The total Coulomb and exchange terms
are

(n, +n,)V, —s& (V + Vo) ~

For the fully localized model, the self-Coulomb
and self-exchange terms are first canceled and then
the exchange proportioned according to population

FIG. 2. Brillouin zone for the bcc lattice.

where 6 is the bandwidth and n =2(n, +n, ). Although

lacking in rigorous justification, it seems reason-
able that the generalization to d bands of (36) given
by putting n = To-(n, + n, ) should at least gauge the
correlation energy contribution, so this approach
is used here. Note that in the limit of zero band-
width, (36) reduces the effective self-exchange in-
tegral to zero in accordance with the localized pic-
ture discussed above, and in the limit of very large
4 we recover an effective exchange energy equal
to the self-exchange integral V, .

Starting from the fully localized picture of zero
self-exchange, the exchange inter action used here
was found by adding —5n, V.„to (33). It is recog-
nized that the disappearance of the self-exchange
interaction in going from itinerancy to locality is
accomplished at the expense of the Coulomb inter-
action, so that, in replacing part of the self-ex-
change, to be consistent, the corresponding part
of the Coulomb energy must be replaced, so a fur-
ther V,« is added to the total energy. The net form
of the one-center interaction is, therefore,

[(n, —1) + n, ] V, ——,'(n, —1) V + (1 ——,'n, ) V, , (37)

The contributions from multicenter integrals are
regarded as being intrinsically real manifestations
of itinerancy; that is, they represent genuine band
effects which remain as a residue of itinerancy
after the 1oca1.ization of correlation has been im-

0.6-
04—
0.2-

-02--

-0.6—
-08-
-1.0-
-1.2 =

FIG. 3. Band structure for
ferromagnetic iron in the FN,
NH, and HP directions. The
solid curves are for majority
spin and the dotted curves are
for minority spin. The ener-
gies are given in Ry, The
Fermi level is the horizontal
line at —0.314 Ry.
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0.6

0.4

0.2
0.0

-0.2
-0.4
-0.6
-0.8
—I.O
- l.2

FIG. 4. Band structure for
ferromagnetic iron in the NP,
Pl", and I'H directions. The
solid curves are for majority
spin and the dotted curves are
for minority spin. The ener-
gies are given in Ry. The
Fermi level is the horizontal
line at —Q. 314 Ry.

H

TABLE III. Results of a convergence test. Energies
were calculated using five d states and one OPW, five d
states and 13 OPW's, and five d states and 19 OPW's.
The six lowest energies (in Ry) are listed for each case.
Only the results for majority spin are listed.

5 d+ 1 OPW 5 d + 13OPW 5 d + 190PW

P

—0.397
—0.398
—0.630
—0.630
—0.630
—1.272

-0.178
—0.214
-0.379
—0.410
-0.771
—0.997

0.681
—0.266
—0.266
—0.266
—0.908
—0.954

0.372
—0.367
—0.367
—0.700
—0.700
—0.814

—0.432
—0.432
—0.690
-0.690
-0.690
—1.272

-0.234
—0.404
—0.433
—0.510
—0.852
—1.079

0. 268
—0.280-0.284
—0.284
—1.002
—1.026

0.346
—0.390
—0.390
—0.852
—0.852
-0.855

—0.457
—0.457
—0.690
—0.690
—0.690
—1o 272

—0.239
—0.424
—0.455
—0.510
—0.852
—1.083

0.268
—0.280
—0.290
—0.290
—1.034
—1.040

0.333
—0.404
—0.404
—0.855
—0.855
—0.863

posed. Accordingly, they are scaled with respect
to population in an analogous manner to Eq. (33).

For computational purposes, it is necessary to
assume a value of h to insert in Eq. (36). This
was initially taken by inspection of Wakoh and Ya-
mashita's bands to be 0. 4 Ry. Subsequent to a
first-band calculation, it was found that the present
calculation produced wider bands than Wakoh and
Yamashita, so the calculation was reiterated with
~=0. 55 Ry.

VI. SHAPES OF BANDS

The method described in the previous sections
was used to calculate energies and wave functions

at 110 inequivalent points in ~ of the BZ, including
46 points along the symmetry lines joining the
points I, N, H, and P (see Fig. 2). Two complete
band structures were calculated corresponding to
6=0.4 and 6=0. 55 Ry. The energy bands for the
case 4=0. 55 Ry are depicted in Figs. 3 and 4. A

convergence test was carried out at each point by
including in the wave function five d states and one,
thirteen, and nineteen OPW states successively.
Table III lists the results at some symmetry points.
It is seen that the convergence is generally excel-
lent, but at the points I' and H, states which should
be degenerate may differ in energy by up to 0. 01
Ry. The reason for this is that the same set of 19
reciprocal lattice vectors was used at all k points.
While the set may give the correct angular charac-
ter at I, at other points the set lacks some vectors
necessary to meet the proper symmetry conditions.
Fortunately, the deviation is small.

In some qualitative sense, there is general agree-
ment in the over-all shapes of the bands between
various calculations for iron. Hence, it is not
surprising that considerable similarity exists be-
tween the bands found here and those calculated by
previous workers, particularly those whose methods
allowed hybridization of s and d bands, such as
Wood's APW method and Wakoh and Yamashita's'
Green's-function method. Although no analysis of
the angular symmetry of the wave functions was
performed for the present calculation, the striking
resemblance of the bands to those of Vlood implies
that the allocation of the representations should be
the same as his. Wakoh and Yamashita differ sig-
nificantly at only one point: They connect one of
the I ». states to N, and thence to the H». . Wood
and the present calculation show the same state I'».
to be connected to the N, . state and thence to the H»
state.

By making quantitative comparisons, significant
differences between this calculation and those of
other workers emerge. Table IV lists some rel-
evant features. The most striking feature is the
disparity in widths of the d bands. The following
generalization appears to be valid: Those methods
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TABLE IV. Comparison of some band-structure features of this calculation with those of other authors (Refs. 7 and

8). All energies are in Ry. GF = Green's function; AP%'=augmented plane waves; TB= tight binding; MTB =modified

tight bindings; OPKV=orthogonalized plane wave.

Wakoh
and
ashita~

GF)
This Yam

calculation (

Splitting between doublet and triplet states

Wood

(APW)

Abate
and

Asdente
(TB)

Ingals
(MTB)

Steam
(M TB)

Callaway

(OPW)

At 1 majority spin 0. 23
minority spin 0.18

At 0 majority spin 0.75
minority spin 0.64

At P majority spin 0.45
minority spin 0.45

0.10
0.11

0.35
0.39

0.18
0. 22

0.12

0.44

0.25

0.60

0.76

0. 20

0. 12

0.44

0. 26

0.59

0.27

0.002

0.070

Difference in energy between center of gravity of majority-spin d states and center of gravity of minority-spin d states

At I'
At H
At P

0. 29
0.26
0. 26

0.13
0.12
0.11

Difference in energy between && state and center of gravity of d states at &

majority spin 0.67 0.44 0.58
minority spin 0.87 0.53

0.51 0.164

Spin splitting of I', states

0.10 0.034

Over-all width of lowest six states at N

majority spin 0.66
minority spin 0.63

0, 44
0.43

0.48 0.47 0.68" 0 llc

The results of De Cicco and Kitz are essentially identical to those of Wakoh and Yamashita.
"Since no s state was given, this is the spread of the lowest five states.
'The s state rises rapidly and no hybridization is included. This is, therefore, the spread of the lowest five states.

which explicitly utilize the overlap of d wave func-
tions on different sites (the present work, Abate
and Asdente, and Stern) tend to produce wider d
bands than those methods which expand the wave
functions in the interatomic region in terms of plane
waves (Wakoh and Yamashita, De Cicco and Kitz,
Wood, and Callaway). Even so, the present cal-
culation produces wider bands than heretofore found.
Noting that, here, the widths for majority-spin
bands are greater than those for minority-spin
bands, it is useful to try to separate out an exchange
contribution to the bandwidth. Using Wakoh and
Yamashita's estimation of the number of d electrons
in each spin, we try to fit the splitting y between
the triplet and doublet states by expressions of the
form

++Pn, , =y. . .

wider minority-spin than majority-spin bands. The
spin-independent parts found here agree with those
from the Green's-function calculation. The very
definite exchange contribution to width found here
is directly related to the inclusion of two-center
exchange matrix elements. Clearly, assumptions
made about the effectiveness of exchange screen-
ing for d electrons by the s electrons or the limita-
tion of the interatomic exchange by a localizing ef-
fect of cor relation can have important consequences
for the bandwidth.

Experimentally, photoelectric emission and re-
flectance studies ' ' have suggested the presence
of much wider d bands than had been predicted by

TABLE V. Analysis of doublet-triplet splitting at
some symmetry points.

where n is the nonexchange contribution to the
width, and P is the exchange contribution per spin.
Using this, we find the contributions to the doublet-
triplet splitting listed in Table V. Compared with
these, the Green's-function method gives slightly

r
H
P

0.12
0.53
0.45

Symmetry Nonexchange
point contribution

0.11
0.22
0

0.06
0.12
0

Exchange contribution
Majority spin Minority spin
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FIG. 5. Density-of-states histogram deduced for
majority-spin electrons. FIG. 7. Histogram of the total density of states.

previous theoretical band structures. Figures
5-7 depict, respectively, the density-of-states
curves for majority spin, minority spin, and total
electrons as found by the method described in Sec.
VII. Peaks in the total density of states occur at
about 0. 19, 0. 39, and 0. 54 Ry below the Fermi
level, and the occupied width of the d levels is
about 0. 8 Ry. The optical density of states as
measured by Blodgett and Spicer indicates three
peaks, one of which is now attributed to surface
contamination. " A second peak of small amplitude
appears just under the Fermi surface and has no
counterpart in the theoretical density of states pre-
sented here. The remaining experimental peak
coincides with the total density-of-states maxima
between —0.4 and —0. 6 Ry. Eastman, likewise,
shows a peak of about this width in his experimental
optical density of states, but his peak lies closer
to the Fermi surface than the present theory depicts.
However, some latitude exists for adjustment of
the theoretical position of the Fermi energy, as
discussed below.

50

K
IXI40-
K

An examination of the x-ray emission spectra of
iron also supports the picture of wide d bands.
Figure 8 represents schematically the results of
Tomboulian and Bedo (their Fig. 5, lM, emission
band). They assumed the bandwidth to be given by
the interval ED of Fig. 8, i. e. , about 8 eV. If we

accept at least part of the previously ignored spec-
tra, the bandwidth could be as large as 11 eV (A D
on Fig. 8). Moreover, if the kink at 8 is inter-
preted as a point of superposition of two curves,
one for spin-up d electrons and the other for spin-
down d electrons, the energy interval from A to 8
would give the magnetic splitting at the bottom of
the d band of about 5 eV, in good agreement with
our theoretical value of 4. 5 eV at the point II, which
also happens to be the point where the magnetic
splitting is largest. Further experimental clarifi-
cation of this is desirable.

VII. DENSITY OF STATES: FERMI ENERGY AND O'ORK
FUNCTIONS

The density of states for each spin was found by
the following method: Each of the 110 k vectors
at which energies were calculated was considered
to represent all points within a volume element al-
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0.0 A
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FIG. 6. Density-of-states histogram deduced for
minority-spin electrons.

FIG. 8. Schematic representation of x-ray emission
spectra given by Tomboulian and Bedo (Ref. 34).
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located to and containing the E vector such that all
of the volume elements filled the ~ BZ. A number
of equally spaced energies were chosen and each
was compared with the energy of every state at
every K. For those states with lower energy than
the test energy, a contribution equal to the associ-
ated volume element was added to a running total.
Then the grand total was multiplied by 48 (BZ vol-
ume). This gave a numerically tabulated curve of
total available states less than or equal to a given
energy. The number of states available in a given
energy interval is then simply the difference of the
tabulated values at neighboring energy values.

The Fermi energy was found by adding the total
available states curves for the two spin states and

choosing that energy which contained eight electron
states. The energy so found is —0. 314 Ry.

It is to be noted that, unlike some methods of
calculating band structures, the present method
does not have inserted in it an arbitrary zero of

energy. That is, Coulomb potentials were always
treated with the potential of free space as the zero
of energy. Thus, the value of the Fermi energy
should have some absolute significance. In this
case, the Fermi energy = —0. 314 Ry = —4. 27 eV is
just a little less than the negative of the work func-
tion of 4. 7-4. 8 eV. ' This should be regarded as
good agreement, since the mechanism of photo-
emission is more than just the raising of the elec-
tron's energy by an amount equal to the difference
between the Fermi energy and the potential of free
space. There will certainly be some collective
phenomena generated in the remaining electrons.
Then, complicating the issue is the profound effect
that surface dipole moments may have on the ab-
solute value of the Fermi energy. In this context,
it is relevant to point out that the method used in
the present calculation to cancel the potential of
the nuclear charges against the potential of the elec-
tron charges is tantamount to constructing a model
for the surface; i. e. , the crystal is a regu'ar ar-
ray of neutral cells, not only in the interior, but
also at the surface. The good agreement between
the work function and the Fermi energy may be
interpreted to mean that the charge distribution
near the surface does not differ greatly from the
charge distribution in the interior, and only small
electric polarization or dipole moments exist at
the surface.

VIII. MAGNETIC MOMENT AND ORIGIN OF
FERROMAGNETISM

In Secs. III and V the method of incorporating
exchange and correlation in the band calculation
was described. In particular, an effective one-
center exchange contribution was calculated on the
basis of a formula by Hubbard in which an assump-
tion about the d bandwidth had to be made. Two

band structures were calculated here, the first
with the value & =0. 4 Ry and the second with
4=0. 55 Ry. The second value of ~ seems more
appropriate to the wider d bands found here than
the smaller value. Of course, there exists the
problem of the exact meaning of 4. The over-all
width from the bottom of the majority-spin band

to the top of the minority-spin band does not seem
to be a reasonable interpretation. Even the ex-
tremes of lowest energy to highest energy within

a band of one spin may not be the best way to choose
4, since these extremes may represent only a
small proportion of states. It seems plausible to
use ~=0. 55 Ry, which is approximately the dis-
tance between the two prominent peaks on each of
the density-of-states curves in Figs. 5 and 6. In

any case, we have no guarantee that the effective
exchange formula is precise and, in fact, it is
probably not precise, but it should give a good es-
timate of the correlation effects.

The magnetic moment is readily obtained by
subtracting the total number of states under the
Fermi energy for the minority-spin bands from
the total number of states under the Fermi energy
for the majority-spin bands. In this way the mag-
netic moment for ~=0. 4 Ry was 2. 06 pa/atom and

that for a=0. 55 Ry was 2. 19 p /aato m Experi-
mentally, the magnetic moment is 2. 2 pa/atom.
Thus the model has given, within the limitations
involved in assuming Hubbard's formula, a first-
principles derivation of the magnetic moment.

To explore the role of correlation further, the
bandwidth ~ was regarded as an adjustable param-
eter and the corresponding values of the effective
exchange calculated. Using this to produce a rigid-
band shift of the spin states relative to one another,
an approximate estimate of the dependence of the
magnetic moment on 4 is found. The solid curve
of Fig. 9 is the magnetic moment which results
from given rigid-band displacements, and the dot-
ted curve graphs the rigid-band shift as a function
of D. The magnetic moment is characterized by a
steep rise to about 2. 16 pa/atom and then a broad
plateau to 2. 25 pa/atom followed by another steep
rise. The plateau is produced when both spin states
have minima of their density of states at the Fermi
surface, and conversely the steep sections are char-
acterized by a maximum of the density of states
of either spin (or maxima for both spine) at the
Fermi surface. The experimental value of the
magnetic moment is equal to the plateau value and
thus corresponds to the saturation of the prominent peak
in the density-of-states histogram. Over the pla-
teau region very large changes in 4 produce only
minor changes in the magnetic moment, so in this
range the choice of 6 or the accuracy of Hubbard's
formula is not critical. However, its dominant
role in producing the ferromagnetic moment is



206 K. J. DU F F AND T. P. DAS

2.4 o.s

& 2.3-Q

422-
z~2.I-'X
Q
X

-2.0-

5 l.9-

0.7 43

O- Q6

-OS h

O
-0.4 I

O

-Q3 ~~

revealed by the rapid decrease in moment for 4
less than about 0. 5 Ry. For ~ = 0, the magnetic
moment would be l. 3 ps/atom, implying that the
remaining 0. 9 p /aetom comes from itinerancy of
the d electrons. For large 4 corresponding to
increased itinerancy, the magnetic-moment curve
increases steeply, and finally represents minority
d states completely above all majority d states.

It is interesting to speculate on the outcome of
an attempt to iterate to self-consistency the band
with an assumed t/', « ——0 corresponding to 4 = 0.
For a start we would have to inject a polarization
of 1. 3 ps/atom instead of 2. 2 p / st aomandthe re-
sulting band magnetic moment would certainly be
lower than l. 3 ps/atom. It is possible that the mag-
netic moment would sink to zero and the iron would
be paramagnetic. If this happened, it would indi-
cate that the role of the itinerant contribution to
the magnetic moment has decisive importance. In
fact, without this contribution there is little phys-
ical mechanism for the spin at one site to become
coupled to that on another site.

The following mechanism for the origin of iron's
ferromagnetism is therefore suggested. Hund's
rule at a given site is initially responsible for po-
larizing the electrons at that site. This is am-
plified by some itinerant ferromagnetism of the d
states, and the itinerancy of the d electrons couples
the moments on the different sites. Without the
itinerancy, iron would not be ferromagnetic. The
formula given by Hubbard, while being partially
qualitative, appears quantitatively useful for prac-
tical computations based on this model. It will be
argued in a subsequent paper' that the indirect
coupling through the s states produced by the RKKY
mechanism actually opposes the tendency to ferro-
magnetism.

Figure 9 shows that there is some flexibility for

-0.08 -0.06 -0.04 -Q02 0.00 0.02 Q04 0.08 O.OS
RIGID BAND SHIFT (RYDBERGS)

pJG. 9. The solid line is a graph of the magnetic mo-
ment which would result from a rigid-band shift of the
minority-spin states with respect to the majority spin.
The dashed line gives the rigid-band shift resulting from
Hubbard's formula t.Eq. (36)] as a function of the assumed
bandwidth.

arbitrarily shifting the two density-of-states curves,
without altering the magnetic moment appreciably.
This means that the total density of states at the
Fermi surface can be adjusted over a wide range,
from a small value (= 5-10 electrons/atom Ry) on
the plateau to a large value (= 20-40 electrons/
atom Ry) on the steep section, without significantly
changing the magnetic moment. The corresponding
range of theoretical specific heats is 2-16~10
cal/mole 'K, where the experimental value" is
12 && 10 4 cal/mole 'K. Because it is possible to
vary the theoretical density of states at the Fermi
surface so widely, it is not possible to use the elec-
tronic specific heat or susceptibility as a gauge of
the merit of the band structure of this ferromag-
netic metal.

IX. FERMI SURFACE

No attempt has been made here to depict a Fermi
surface; however, it is possible to comment on one
minor point. Because their N, . representation for
the majority-spin band is well above the Fermi
level, Wakoh and Yamashita find tubular arms to
the Fermi surface surrounding the HNH line. This
implies the existence of a closed de Haas-van
Alphen orbit of small area equal to the tube's max-
imum cross-sectional area, but there has been no
experimental verification of the existence of this
orbit. ' The cause of the N, . state being so ener-
getic is the proximity of the d bands to the s bands.
In the present calculation, the I, level lies further
below the d bands and so, if the tubes exist at all
around H or around any part of the HN line, they
are pinched off before they reach ¹ The nonex-
istence of the orbit in question is then very indirect
evidence that the s bands are further below the d
bands than Wakoh and Yamashita have depicted
them. The relative depth of the I, point has been
considerably affected by the Coulomb-hole contri-
bution.

Recently Fivaz" has attempted to explain an
anomalous behavior of the spontaneous Hall effect
reported by Dheer on the basis of an assumed
degeneracy of the levels b., and 4, in the minority-
spin bands at the Fermi energy. In the present
calculation, the 42 and h2. bands of the minority
spin cross at the Fermi level, but these do not
explain the anomaly because a second criterion,
namely, the existence of a nonzero spin-orbit ma-
trix element between the otherwise degenerate
states, is not met by these two states.

X. CONCLUSION

In this paper we report a new band-structure
calculation for the ferromagnetic state of iron, in
which exchange and correlation effects have been
given a detailed treatment. Because of the inclu-
sion of two-center exchange integrals, the bands
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APPENDIX: SELECTION OF SAMPLE STATES

FIG. 10. Positions of the sample points used in the
calculation of matrix elements illustrated for ~12 BZ.

found here are wider than those published before.
Some support for the idea of wider bands has been
found in optical and x-ray experiments. The cal-
culation has verified the description of the band
electrons as being intermediate between fully lo-
calized and fully itinerant by demonstrating the
feasibility of calculating the magnetic moment in
an almost first-principles fashion. The calculated
Fermi energy is close to the negative of the work
function.
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These points are repeated in each of the 12 pyra-
minds, making a total of 97 sample points.

lt is clear that the BZ (Fig. 2} can be divided into
12 pyramids, each with a diamond-shaped base with
corners PKPH and apex I . The midpoint of the
HH line or PP line is N. Take the I'N line as the
Z axis and the length I'N = Zo. Let the HH line be
the X axis of length HH =Xp; the PP line is the Y
axis of length Yp. Then the sample points are as
depicted in Fig. 10 and listed below:
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Transitions involving the simultaneous creation of two excitons in MnF2 are reported. These
double excitons are combinations of the E1(18419.6 cm ') and E2 (18436.6 crn ') single ex-
citons. Line transition identified as E2+E2 (36789 cm ') and El +E2 (36917 cm ) were seen;
however, the transition to the E1 +E1 state was not observed. The identification was made
with the aid of uniaxial stress measurements; the energy shifts of the double excitons under
stress are simply related to those of the E1 and E2 excitons. It is shown on the basis of one-
electron molecular orbitals that for the E1 +E1 state the exchange interaction, and thus the
transition probability, is small. The observed polarization of the double exciton lines is ex-
plained in terms of the Mn pair symmetry. It has also been confirmed that the E1 exciton
transforms as the B& representation of the group D2&.

I. INTRODUCTION

The study of antiferromagnetic insulators in
recent years has led to the observation of double
excitations, such as magnon-magnon, '~ exciton-
magnon, "and exciton-exciton' transitions.
These two-center excitations provide information
about the magnon dispersion and density of states,
molecular fields, and the exchange interaction
between magnetic ions. In this paper we present
and discuss the observation of double-exciton
transitions in MnF2. These transitions are the
result of the absorption of a photon and the crea-
tion of two excitons in the lowest-energy 4T, state
of the Mn ' ion.

Exciton and exciton-magnon absorption mere
first seen in MnF~ by Greene et al. ' They ob-
served exciton transitions, which they labeled
El (18419.6 cm ') and E2 (18436.6 cm '), be-
tween the A, ground state and two states of the
'T, manifold of Mn '. Dietz, Misetich, and

Guggenheim' found, through uniaxial pressure
experiments, that El and E2 could be character-
ized by linear combinations of the (+1, —,) compo-
nents of the 'T, state. Because these two states
are only 17 cm ' apart, the effective spin- orbit
parameter for the 'T, state must be small. Some
calculations have been done on the energy split-
tings of the 4T, states, but with only limited suc-
cess in explaining the experimentally observed
splittings. Both Meltzer and Lohr and Washimiya
and Gondaira suggested that the smallness of the
spin-orbit coupling is due to vibronic interaction.
Exciton-magnon fluorescence has been studied
by Dietz and Misetich. ' Their results indicate
that the E1 and E2 excitons have no measurable
dispersion, although later Dietz et al. " found
a thermodynamic distinction between the zone-
center and zone-boundary exciton states. Thus,
for most purposes, the excitation can be consid-
ered as being localized on a particular ion.

Previously, exciton-exciton transitions were


