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The lattice dynamics of a solid containing small density-of-line defects has been discussed in
the lattice model of Montroll and Potts. The lattice is assumed to be simple cubic. Changes in
the mass and force constants along and perpendicular to the line defect are considered. The
line-defect symmetry has been exploited for simplifying the phonon-scattering T matrix. The
symmetry configuration in which the line defect moves gives rise to different types of local and

resonance modes in two host-line-defect systems. In systems of type I, e- ( = 0, where ~ and

$ denote the relative changes in mass and force constants along the line defect, respectively.
In such systems, incomplete bands of acoustic localized modt:s and scattering resonances occur.
The lowest localized mode lies at zero frequency, whereas the lowest resonance mode occurs
at a higher frequency depending upon the perturbation parameters. The widths of these incom-
plete bands depend upon the strength of the perturbation. At low temperatures, resonance modes
might not influence the usual phonon scattering. In a more general type of solid (systems of
type II), the perturbation on the line, e —$, does not vanish. Complete bands of localized and

resonance acoustic mode& appear in these systems. The lowest localized or resonance mode
occurs at zero frequency. Resonance phonon scattering will be observed in type-II systems.
The contribution of the phonon-resonance scattering by line defects in a solid is about 20/0 at
temperatures of the order of 10- e, if there exists resonance scattering due to dislocation mo-
tion of the kind treated by Granato. Direct observation of resonance scattering by line defects
is possible in bcc metals because there is no dislocation motion in these solids. The specific
heat of a solid containing a small density of dislocations has been calculated. It consists of two

terms: one linear and one cubic in the temperature. The linear term dominates at quite low

temperatures (T ( 0. 2'K), whereas the cubic term is accessible to observation only in highly
deformed solids.

I. INTRODUCTION

The problem of the scattering of phonons or elec-
trons by line defects, e. g. , dislocations in solids,
has drawn the a'.tention of a number of workers. ' 7

The existence of phonon-bound (or, localized) states
associated with a line or plane defect of isotopes
was shown by Kobori' using Green's-function method.
A number of theories put forward to determine the
contribution of the dislocations to the resistivity
(thermal or electrical) use the first-order pertur-
bation theory —i. e. , the Born approximation. For
a review of the earlier attempts the reader is re-
ferred to the articles by Brown. ' The problem of
the scattering of lattice waves by the long-range
static-strain field of dislocations has been treated
by Ohashi using a Green's-function method. He ob-
tained magnitudes of phonon scattering which were
in better agreement with the experimental results
than were those calculated by Klemens' and Car-
ruthers. ' However, in his treatment he used the
Born approximation, in which the possibility of the
occurrence of resonance modes is ruled out.

The existence of the phonon and electron-bound
states and the scattering resonances has been
shown, in general, by Brown for the case of'line
defects, He has also discussed the resonance scat-
tering due to a screw dislocation, assuming a 5-
function perturbation for the defect. The large

magnitude of the dislocation thermal resistivity ob-
served in a number of systems, such as impurities
in alkali halides or Cu-Al alloys' can be accounted
for very well by the resonance scattering mecha-
nism. The observation of a much smaller contri-
bution of dislocations to the thermal resistivity of
some systems, such as Cu-Zn alloys"'6 or Cu=As

alloys, "was explained by Brown on the assumption
that the scattering resonances in such systems fall,
for some reason, fairly well into the subbands, and

thus do not influence the energies of interest at low
temperatures. The present investigations were
carried out to see if there was any possibility of
the existence of such high-energy scattering reso-
nances in some particular systems.

In the present paper, the lattice dynamics of a
solid having simple-cubic structure and containing
a small density of parallel line defects (see Sec.
II) is investigated in detail. The lattice-dynamical
model of Montroll and Potts has been used in order
to consider the problem. The realistic and phys-
ical nature of the results obtained on the basis of
this lattice model in an analogous case of point de-
fects has already been established in an earlier
paper. '~ The perturbation due to a screw disloca-
tion is approximated by a line defect which has.a
D4 point-group symmetry. The changes in the
mass and force constants along and perpendicular
to the line defect are considered in writing the per-
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turbation matrix. A very special case (i. e. , P =0,
where P denotes the relative change in the force
constant normal to the line defect) has been con-
sidered by Litzman and Cely' for determining the
occurrence of the localized modes. We have ob-
tained explicit expressions for determining the lo-
calized modes and scattering resonances for vari-
ous irreducible representations. The Debye ap-
proximation, which is suitable for treating the long-
wavelength phonons, has been used for the numeri-
cal evaluation of the Green's functions.

The possibility of the occurrence of two types of pho-
non scattering in I', irreducible representation which
involves the motion of the line defect is seen. In Sec.
IIIA, systems of type linwhiche —$ =0, where e and

( are the relative changes in mass and force constants,
respectively, along the line def ect are discussed.
Some incomplete bands of acoustic localized and
resonance modes may appear in such systems. The
incomplete band of the localized modes has its bot-
tom at zero frequency and its width depends upon
the perturbation determined by the parameters c
and P. The bottom of the incomplete band of the
scattering resonances does not lie near zero fre-
quency but instead lies at high frequency determined
by e and P. At low temperatures these resonances
are not likely to be excited, and the magnitude of
phonon scattering in systems of type I willbe small.
In Sec. Ill 8, systems of type II in which e —$ a 0
are discussed. In this case, complete bands of
acoustic localized modes and scattering resonances
occur. The bottoms of these bands lie at zero fre-
quency and therefore resonance-phonon scattering
will be observed in general. This case has been
discussed by Brown. ' The relaxation times have
been determined for the two types of phonon scat-
tering in Secs. IVA and IV B, respectively. The re-
laxation rate has a ar' dependence (&d is the phonon

frequency) in the case of ordinary phonon scattering
and a v"' dependence for the resonance scattering.
The expressions for the specific heat of a solid con-
taining small density-of-line defects have been ob-
tained for both types of systems as is shown in
Secs. IV A and IVB, respectively. The specific
heat consists of two terms. The first term is lin-
ear in temperature, while the second term is cubic.
The linear term is accessible to observation only
at quite low temperatures (T & 0. 5 'K). The ex-
pressions for the specific heat in the systems of
types I and II are similar in nature. In Sec. V,
the general applicability of the line-defect model
to the dislocations is discussed. A detailed com-
parison between the predictions of the line-defect
model and the fluttering model of Granato" has
been made. Favorable conditions for observing the
contributions of line defects to the thermal resis-
tivity and specific heat have been envisaged. Com-

ment is made upon the limitations of the scalar model.

where 4 = 4, +P, and 4, is the mass-reduced dy-
namical matrix of the perfect solid and P is the
mass-reduced perturbation matrix due to the defect.
U is the atomic displacement vector of the imper-
fect lattice. The eigenvectors of the matrix 4'0 are
the plane waves with dispersion relation

~t
g P &it it

where g is the mass-reduced force constant be-
tween two nearest-neighbor atoms of mass M, the
n denotes the lattice position of the atom, Z is the
number of nearest neighbors of an atom, and k is
the wave vector of the plane wave. At low frequen-
cies we have, in the Debye approximation,

(d2 g ~2kB = v2k2 (3)

where vo is the velocity of the long-wavelength pho-
'nons.

In the case of a line defect along the z axis the
translational symmetry of the solid is retajned
along this direction and, therefore, one may obtain
Fourier transforms with respect to z axis. The
solutions of Eq. (1) may, thus, be labeled by k„
the z component of the wave vector k. One may
write k =k+ +k3, where k~ denotes the wave vector
in the k, kz plane. The solutions of Eq. (1) are

U "3(n) =v '(n, )e"3'3, (4)

where n =n& +n3.
The outgoing-wave solutions of Eq. (1) may be

written as

v 3= v03-G' Av "3

W

where v~03 is the vector for the pure lattice. G' is
the asymptotic value of the Fourier-transformed
Green's-function matrix G whose elements are giv-
en by

where Q~ is the area of the unit cell in the k+ plane
and z =+~+iO=+~'. The integration is over the sub-

II. LATTICE DYNAMICS

The details of the lattice dynamics of a crystal
in the lattice model of Montroll and Potts can be
found in an earlier paper. '~ For a lattice containing
a defect, the time-independent equation of motion
is given by
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band k3, whose bottom lies at the squared frequency
&~ and whose width is 8q.

The matrix elements of the Fourier transform of
the perturbation matrix A are given by

Using Eqs. (10), (11), (13), and (14), Eq. (8) may
be rewritten as

(2v)'e""
v '(n )=vo (n~)—

A(n n') = ~ P(n n' n —n')e-'f&'~&-~t'
it3~ 13

xQ & q I
T„ Ik &

-'
~,

~ (15)

Equation (5) may be rewritten as

v 3=vo3-G Tvofr. + f3 (8)

The scattering amplitude may thus be expressed
as

where the phonon scattering T matrix is defined by

T=A(I+GA) i .

f(q„k~ ) =Z.f, (q~, k~ ),

where the contribution of the vth irreducible repre-
sentation is given by

For a line defect possessing some symmetry, the
appropriate symmetry coordinates pertaining to the
point group of the perturbation may be used to sim-
plify the T matrix as

(10)

xQ C„,(kq, n~) C„,(q~, nq),

where Q„~ ~ ~, z. are the elements of the matrix Q
defined by

T, =(1/D, )Q. . (12)

The C„,(k~, n„) are the symmetrized combinations
of the plane waves belonging to the ith row of the
vth irreducible representation and are given by

1/2

C„,(k~, n~ ) = p U(v„n~ )e'"+ 's*, (13)
Kg

where the sum is over all the irreducible represen-
tations v, k+ and q+ denote, respectively, the wave
vectors of the incident and scattered plane waves in
a, plane normal to the line defect. T„, the projected
T matrix in the vth irreducible representation, is
determined by

&q IT„Ik,&
= — ~ A„, , .q„, ,~s ~ I'sy 1 ~ g ~ g ~ g ~

(2v)3/2 e'er/4f.(q, , k, ) = 2„kv

jl /4 +~

f(e) = (,~, g e" sin5 e'"',
m

(18)

where 5 is the phase shift of the mth partial radial
wave, and 8 is the angle between the wave vector
of the incoming wave and a vector to the point of
observation.

III. LINE-DEFECT MODEL

A simple-cubic lattice having a line defect along
the z axis is now considered. The line defect is
made up of atoms of masses (M+AM) which inter-
act with their nearest neighbors with a set of
changed force constants as shown in Fig. 1. The
matrix elements of the perturbation matrix are
given by

A(0, 0) = —e~a+4o. +2y(1 —cosk~a) = 6,

y

5 the problem is discussed in teems of the phase
shifts of the partial waves, the scattering amplitude
of a plane wave of wave vector k~, scattered by a
cylindrically symmetric potential, is given by

where U(v&,
'

n~) are the coefficients of the plane wave
at lattice site n+ in the symmetrized combination
corresponding to the ith row of the vth irreducible
representation.

The asymptotic value of the Green's function for
n~ »n~ is given by (see Appendix)

j
0- x.~ 1 -(9+&g)

6

FIG. 1. Line-defect
model.

e jv/4 jhow ng -jgg ~ it gG'(n -n') =
2r/ (2vk~s~ )

(14) Q-tinparrVy ion
O-host I~Hice Ion
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The projected elements of the T matrix are, thus,
given by

where

Z„=(+l, o) a d Z, =(o, ~1);

s= b, M//M, n = hg/M, y = At)'/M.

The g
' and g are the changes in the force constants

in directions along and perpendicular to the line de-
fect,

The point-group symmetry of the line defect is
D4. The symmetry coordinates belonging to the var-
ious irreducible representations occurring in the
problem are presented in Table I,

The projected matrix elements are

1
t) -4n p(A —l)G, —2n(1+ p G, )

—2n() ~ pG, ) a(1+ pGg) )
(22a)

Dr, =(1+P)-[(e-P)(o'+(P -$)(o-' ]Go

—P[(1+e)(o —(1+$)(o~ ]G„ (22b)

&r, jT(s)j r, ) =n[1+ n(G —G, )] ', (22c)

where the resonance denominator Dr, is explicitly
given by

(r, (A(ro')(r, & =( 2 ),
and

&r, jT(z) r &
= n[1+ n(G +G —2G, )] '. (22d)

.(r, I
A((o ')

I
r, &

= n,

(r, A((o')I r, & =n.

(2o) Here

p = —e (o + 4y sin k3 2 a = —e(o + $(o-;

The projected matrix elements of the Green's-func-
tion matrix are

=4g sin k3 ~a,
k3

l =yln =&a'/n;

A = ((o-„' —(of )/4n. (22e)

«slG(s) Irs&= c.—G,

«, IG(s) r, &
= c,+c,—2G, ,

where

(21)

For simplifying the projected matrix elements of
the 1", irreducible representation the relations be-
tween different Green's-function matrix elements
obtained from the equation of motion of the perfect
lattice have been used. For the details, see an

earlier paper. For this particular problem these
relations are

G, =4(1-A)c,

G()=G(00), G, =G(10), G2=G(20), G3=G(11),

G, = Go+ G3+ 263 .

and

G, =(l —A)G()- (4g)-' . (23)

TABLE I. Normalized symmetry coordinates cor-
responding to the various irreducible representations.

It may be easily shown" that

G(n )=G(0)+B(n ),

where B(n~ ) is always a finite quantity.

(24)

Partial wave

0

A. Localized States

The localized or bound modes of the symmetry
motion v, corresponding to the subband k3, are de-
termined by

ReD„((o ) = 0 .

For the I', and 13 irreducible representations, the

resonance denominators Dr, and D~, involve the
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following combinations of the Green's-function ele-
ments:

(Go G2) in the I'z irr. rep.

(Gp+ G2 2Gg) in the I'~ irr. rep.

The real value of the Green's-function matrix ele-
ment Go diverges at the boundaries of the subband
(see Appendix), but the real values of the above
combinations of the Green's-function elements are
always finite due to a property of the Green's-func-
tion elements given by Eq. (24). As a result, the
occurrence of the localized modes in the irreducible
representations I', and 13 depends upon the strength
of the perturbation denoted by o[ (force-constant
change normal to the line defect). This behavior
is similar to the case of point-defect scattering.

The equation for the determination of the acous-
tic localized modes in I, irreducible representa-
tion may be written as

(I+I)+ (P/4 0)[(e'—h)~, —(I+e)~)

1+ (s/v)(~/4q) In(t /4q) = 0 . (29)

The second term of this equation tends to zero as
6 - O'. Consequently, infinitely small 4 will not
satisfy the above condition and local acoustic modes
will not appear very near to the lower boundary of
a subband.

In order to see the appearance of finite solutions
of Eq. (28), an example was considered. Suppose
there was interest in the solutions lying at a depth
g below the bottom of a subband, then the relation
should hold

This equation may be solved numerically for a given
set of parameters s and p. The positive solutions
of 4, if they exist, will give rise to localized modes.
The equation will not admit infinitely small solution
as is clear from the following considerations: For
example, if it is assumed that there exist solutions
of Eq. (28) such that d -0', then these solutions
must satisfy the following approximate condition:

1+ +

1+0. 75P = 0. 5(P + 0. 3)s . (30)

Q2
x [(e —() td,', —e s] —()

I
ReG, (td')= 0, (I)

where ~ =(d~ —~~ denotes the depth of the localized
3

mode below the bottom of the subband k, . If the
analytical value of Go evaluated in the Debye approx-
imation is used (see Appendix), the equation may
be rewritten as

(I+I)+ —[(e —t)&a —(1+e)~~
4q

[ 2

(I+P)(e -t)(d~ + P(e $)-
4gm k3 4g

Q2—e(1+p) 4 —p(1+ e) Ink/(8[7 —6) = 0 .
4g

(27)

The coefficient of the logarithmic term within the
curly brackets consists of three terms: The first
is independent of 4, while the remaining two are
dependent on 4. Now, two different types of defect-
host systems shall be considered.

Systems of type I. If it happens that e —$ =0,
Eq. (27) is further simplified to

Since the lowest physical value of P is —1, the left-
hand side of Eq. (30) is always positive. This leads
to the choice of two sets of perturbation parameters

s&0, P& —0. 3

or

s&0, P& —0.3.
A few sets of parameters which satisfy Eq, (30) are
shown in Table II. It is observed that, in real sol-
ids, the local acoustic mode of a subband will occur
at b, = [7, for positive values of s and p only.

R is obvious that the solutions of Eq. (28) are true
for any of the subbands. Also, t, here is only one
bound state for each subband. The lowest local
mode at zero frequency occurs for a subband whose
bottom lies at b,,(A, &4[7), which is the existing so-
lution of Eq. (28). The uppermost local mode ap-
pears due to a subband whose lower boundary lies
at 4g. Thus, in systems of type I, an incomplete
band of local acoustic modes appears, The lower
and upper boundaries of this band lie at co = 0, and

TABLE II. Values of the. perturbation parameters c
and. P which lead to the occurrence of acoustj. c localized
modes at a depth g below the bottom of a subband, in
terms of the frequency (squared),

(1+p) —p(1+@)—+m ' (1 P) ++Pe(1+@)i—
(a
(4g

8g -6 (28)

-0. 8
-0.5
-0. 2

1, 0
1, 7

- 1.6
6, 0

-17.0
3.0
2. 3
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at a& =O'Il —g, as shown in Fig. 2. It may be noted
that this band lies within the original band of the
pure solid. The frequency spectrum in this band
is similar to that for.a one-dimensional, chain of
atoms.

Systems of tyPe II. For these systems, e —$

does not vanish. As a result, a term independent
of 4, e. g. , (e —5)vf, ,

' is always present as a coef-
ficient of the Green's function Go(b, ). The real part
of Go(d) diverges as b - 0' and, consequently, an
infinitely small solution of Eq. (26) always appears
for a set of realistic values of s, (, and p. A local
mode appears very near to the lower boundary of
each subband k,. Thus, the existence of a complete
band of local acoustic modes whose lower and upper
boundaries lie at co2= 0 and 4g, respectively, is ob-
served. This is shown in Fig. 3 and is similar to
that for a linear chain of atoms. It should be noted
that the solutions of Eq. (26) now depend on the sub-
band, in contrast to that for the systems of type I.
For a particular case, P =0, Litzman and Cely~

have predicted the occurrence of a complete band
of local acoustic modes and an incomplete band of
local optical modes.

B. Resonance Modes

The arguments similar to that of the case of lo-
calized modes hold good for the appearance of the
acoustic resonance modes of I", and I'3 irreducible
r'epresentations. The scattering resonances appear
orily for a certain strength of the perturbation pa-
rameter n. In the case of I', irreducible represen-
tation, the acoustic resonance modes are deter-
mined by

+ (1+ P)(~~' &~', )-
4gn' 3

—[p(e —$)&u', —e(I+ p)] n

FIG. 3, Complete band of the localized or resonance
acoustic modes, which appear in systems of type II,

scattering resonance +R above the bottom of the
subband k, .

The half-width of the scattering resonance is
- determined by

F d—= imar, (z), Rear (z)
-"z

where

ImD, ,(z) = —((I+ p)(~ —&)~',

and

+ [&(I + p) —p(~ —()~@/4n]& p(1+ e)—~'/4q}

(32a)

2 ReD (&) = p(1+ &) + & '
& (I+ p) —p(& —5)1

-2p(I+~) —ln +~ ' (1+p)(e-$)~'„Sr]- ~ 3

+~ e(1+p)- p(~ —t) ' ~- p(1+~)—3 Sg

4q, (8q-~) '

(32b)

Now two cases similar to that of the localized
modes may be discussed.

For systems of type I, where (e —$)&u, =0, Eq.
(31) is reduced to a simple form

Q2
—P(1+ e)—ln =0

. Bg —6 (31)
(1+P)+P(1+~)—+v-' ~(i+P) —P(1+~)—

4'0 4n

where, ~= co~~-co2„, and it denotes the height of the

Again, due to the presence of the logarithmic term

(a/4q) ln [a/(8q —a)],

FIG. 2. Incomplete band of localized acoustic modes
appearing in systems of type I; D~ is the positive solu-
tion of Eq. (28).

which diverges as 6 0, scattering resonances will
not appear very near the bottom of the subband.
For the case of resonances appearing at a distance
g from the bottom of the subband, the parameters
& and P should satisfy the condition
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1+f p «—/2m+ p«/8=0

or

p= —8(1 —«/2v)/(Io+ «) . (84)

For a physical value of «& 2m, a negative p will give
rise to these resonances. A few values of the pa-
rameters «, P together with the corresponding line-
widths (at half maximum) of the scattering reso-
nances which are at a height q above the bottom of
the subband, are presented in Table III. It may be
noted that the widths of the scattering resonances
are small for low values of & but are large for high
values of &. For realistic values of &, the half-
width of the scattering resonance is of the order of
0. 5g, which is half of its distance from the bottom.
Further, we note that the half-widths have positive
values and, therefore, these appear in systems of
type-I as resonances, in contrast to the systems
of type 11 where antiresonances appear.

Thus, it may be concluded that in the systems
of type I, the scattering resonances do not appear
very close to the bottom of the subband. An in-
complete band of acoustic resonance modes appears,
whose bottom lies at high frequencies 42, which
are determined by the parameters «and p. The
width of these resonances are of the order of their
frequencies. This incomplete band is shown in
Fig. 4.

For the systems of type II, where (« —$) v~ & 0,
similar to that of the case of localized modes, the
scattering resonances lie very close to the bottom
of the subband and a complete band of the acoustic-
resonance modes will appear irrespective of the
strength of the perturbation. This case is shown in
Fig. 3. The half-widths of these scattering reso-
nances are given by

These values are negative and, therefore, the
scattering resonances are, in fact, antiresonances.

IV. SCATTERING AMPLITUDE AND SPECIFIC
HEAT

In Sec. III, two types of the host-defect-line sys-
tems were discussed. In the systems of type I,

FIG. 4. Incomplete band of scattering resonance
states appearing in systems of type I; 42 is the solution
of Eq. (31).

where « —$ = 0, incomplete bands of localized modes
and scattering resonances appear. These reso-
nances occur at high frequencies and their widths
are not an appreciable fraction of the total width,

Sg, of a subband. The scattering resoriances, thus,
do not influence the scattering of the long-wave-
length phonons which are predominant at low tem-
peratures. The resonance scattering mechanism
will not be observed in such systems. In the sys-
tems of type II, resonance scattering occurs. The
transport and thermodynamic properties of these
systems are expected to be different owing to the
difference in the nature of the phonon scattering
which occurs in the system, and each will be
treated separately.

In order to calculate the scattering amplitude and
changes in the density of states, a, phase shift 5„
for the vth irreducible representation is defined,

tan6 „=—ImD„/ReD„. (88)

ImDr = —(1+P)« —,
1

The symmetrized contributions of the plane waves
belonging to the irreducible representations I'„ I'3,
and I', correspond to the s, P, and d partial radial
waves, respectively. The expressions for the phase
shifts for these waves may easily be written down
after using Eqs. (22).

A. Systems of Type I

In the absence of resonance scattering, which is
likely to occur in the systems of type I, it is safe
to limit ourselves to the first order of the wave
vector in order to determine the small phase shifts.

For the s-type I', irreducible representation, to
first order in k,

TABLE III. Values of the parameters e and P and the
corresponding half-widths which lead to the occurrence
of acoustic scattering resonances at a height g above the
bottom of a subband.

p —,'r

b,
ReDr =(1+P) 1+——ln—

1 m 4'0 8R

In the limit 6-0,
-0.8
-0.6
-0.3

0

0. 2g
0.45'

3n 1 qg2 y2
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In the case of p-type T'~ irreducible representation,
we have

ImD~ =4Pa k

and

2. Specific Heat

The change in the density of states, i. e. , the
fraction of the states lying between the frequencies
6 and 6+dh in the vth irreducible representation,
for a subband is determined by

ReDr =1+ nRe(Go —G~)
gv tv gv d

N m db, pNv~dk
(43)

where

= 1+KP (say), where N~ is the total number of states lying in the
subband k3.

The total change in the density of states due to a
density of dislocations o is given by

K= g [Re(GO —Gz)]~ 0

is a numerical constant. For simple-cubic lattice,
the value of K has been evaluated numerically in the
Debye approximation and is seen to be 0. 3. The
phase shift of the P type is given by

0'a d2

5N= 2 2 (6, +26p)
mvo dk~

(44)

5„=5~ = Pn k„/4(1+KP) .

The phase shift of the d-type T', irreducible repre-
sentation is seen to be of the order of k4 and it is
ignored in a first-order calculation.

1. Relaxation Time

To first order in k~, the total scattering ampli-
tude is given by

6N=on No[& —2P/(1+KP)] . (45)

The total density of states in a subband is, thus,
given by

Since the density of states in the subband of the pure
lattice is given by No = (4m') ', the total change in
the density of states may be rewritten as

f(8) = [2e"~ /(2nk„)' ] (5, +25~ cos8) .
N =No (1+ on [e —2P/(1+KP)]] . (46)

The differential scattering cross section is de-
termined by

The total scattering width Q is, thus, given by

dO'
Q = —(1 —cos8) d8

dA

It may be noted that the density of states in a sub-
band of the imperfect lattice is independent of the
location of the subband and, therefore, one may
easily calculate the specific heat of the solid con-
taining dislocations by adding the contributions of
all subbands whose bottoms lie between the squared
frequencies 0 and 4p. Thus, it may be written for
the specific heat

c„(v) = Z N(a)= c,(0) 1+tra r —
)al 1 Subbagds 1+KP

.'a' 'k[(~+ 82(/1-+pK))' +e].

The relaxation rate may be written as

(4o)

~-'(k, )=v, L '=cv, q/n', (41)

r '(k„) = —,'voo [(e +2P/(1+KP)) +e ]k (42)

This relaxation rate has an expected v' dependence.

where c is the concentration of the parallel disloca-
tions and is equal to a o for unit volume of the solid.
The 0 denotes the density of the line defects. Thus,
for the relaxation time we have

(47)

In addition to the specific heat given by the Eq.
(47), there is an extra contribution due to the in-
complete acoustic band of the localized modes, if
it exists. The density of these localized modes is
similar to that of the density of states of phonons of
a one-dimensional lattice. Therefore, the contri-
bution of these localized modes has a linear tem-
perature dependence and has a negligible magnitude~
as compared to the T3-dependent specific heat of
a solid at moderately low temperatures (T & 1 'K).
However, at very low temperatures (T & 0. 5 'K),
the linear term has an appreciable contribution and
it may dominate over the cubic term (see Sec. V).
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B. Systems of Type II

In general, for these systems we see an appear-

ance of the scattering resonances in I', irreducible
representation. The phase shifts in this irreducible
representatiori are large, and they are given by

(1+C) (~ —()(~&/4~)
(1+p) + P(e —$)((u,',/4q) + (1+ P) (e —$)((u„' /4q) ln (b/8n)

'

tan5, =-F/2(~- ~,),

where —,'I', the half-width of the scattering reso-
nance, is given by Eq. (35). Thus,

1pl
(& —~0) +(2F) (50)

If the resonance occurs at b, = b~, Eq. (48) may be
written in the form

This relaxation rate has a ~ ' dependence.
Brown' has shown that in the case of alkali halides

the experrimental values of the relaxation rateS give
rise to those values of sin'6 which are quite close
to unity. In the case of Cu-Zn and Cu=As alloys th8
values of sin 5 are seed. to be small, which shovfs

the nonexistence of the resonance scattering in these
systems.

2. SPecific Heat

From Eq. (50), it is seen that as b - b~,

(51)

The Change in the density of states in l", irre-
ducible representation due to the occurrence of anti-
resonance at h~ is given by

Now, a scattering resonance occurs at a very
small value of b, (= 60) and the width of the reso-
nance, which is of the order of 2zho, is very small.
'Pherefore, a majority of the modes in a subband
will not be influenced by the scattering resonance
and will be normally scattered. For such modes
in the low-lying subbands, i.e. , for small values
of v„and 5,

5N, ,
= {r/2vfr, ) [(~—~,)'+-,'r'j ' .

In order to determine the'total change in the num-
ber of states due to the finite width of the antireso-
nance, the above expression should be integrated
between the limits 0 to 50+ —,'F. Thug, for finding
the change in the nuinber of'states it is necesSary
to evaluate

tan5, , =5, =(I/4n) [(~ -0~„',+«j .

The total scattering width Q is, thus, given by

@=4k~' . (54)

The relaxation rate has a simple form

For the case of I", irreducible representation, the
phase shift is similar to an expression as given by
Eq. (88).

1. Relaxation TAne

Since the magnitude of the resonance scattering
is much larger than the ordinary phonon scattering,
only the resonance scattering of T', irreducible
representation is considered for determining the
relaxation rate. The scattering amplitude for the
resonance scattering of the s partial wave may be
expressed as

f(8) = —2e" /(2vk )'

f" 5', dt =0 85r/~r.
~

= -0.35.

This value differs from unity, which was the value
obtained by Browii, who replaced the limits of in-
tegration by +~ in conformity to his assumption
that the integral converges fairly rapidly —which,
in fact, is not true, because of the slow convergence
of the integrand,

There is a net deca'ease of 0. 35 in the number of
states for each subband. The density of these sub-
bands is similar to that of a one-dimensional 18ttice
becauSe of the relation +~ =-4g siri k, —,'a. But a
complete band of acoustic localized modes is also
present and, therefore, there is a net irierease of
0. 65 in the number of states of the one-diinerisional
band. The contribution of this band to the specifsc
heat has a linear temperature dependence arid is
given by

v '(k~) =4o vok~ (55) C,= w'Ãke cP(kT/h(u)D), (58)
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where co» is the Debye frequency of a one-dimen-
sional lattice.

In addition to the above linear temperature-de-
pendent contribution of I', irreducible representa-
tion, there is another contribution to the specific
heat made by those low-lying modes of the subband,
which lie far away from the scattering resonance.
For these modes, to first order in squared fre-
quency, the phase shift is obtained by

l, ((o) = ((o/2v'Co) [ln(e/5T)]', (51)

lq((u) = 0. 4 (C(r) '(o . (52)

where C is the velocity of the Quttering modes and
e ls the Debye temperature. This mean free path
has a slowly, varying logarthimic temperature de-
pendence. For T =10 e, lz(ar) may be written as

5, = (1/4q)(e(u' —5 (o„',) .

The change in the number of states is given by

(50)
In case of the systems of type II, where one ob-
serves the resonance-phonon scattering, the mean
free path l, can be written as [see Eq. (55)]

oa~ d5, o &Pe
r& 4 3 d~a

l,(~) = (4v, (r) '(u, (53)

(50)

This expression is similar to that. of Mtr calculated
1

for the systems of type I. The density of states in
I'3 irreducible representation, which is not affected
by the scattering resonances of I', irreducible rep-
resentation, is similar to that of systems of type I.
Therefore, the total change in the number of states
of the subband is represented by an expression
which is exactly identical to the systems of type I.
The contribution of these states to the specific heat
is given by Eq. (47), which shows a T dependence
The linear temperature-dependent contribution ob-
tained above may be ignored in comparison to a
large T -dependent contribution to the specific heat
of a solid at moderately low temperatures (T & 1 'K).
But at low enough temperatures (T & 0. 2 K) the
linear term may dominate as has already been ob-
served by Granato' when he considered a similar
linear temperature-dependent contribution due to
the Guttering modes of a moving dislocation.

V. DISCUSSION

The general applicability of the line-defect model
to the dislocations in real solids is now considered.
Granato' has proposed a, model in which resonance-
phonon scattering from dislocations takes place.
He considers "fluttering" of a segment of a disloca-
tion line pinned at both ends and the resulting reso-
nance scattering of phonons from these fluttering
modes which are similar to the standing waves in
a stretched string. In the formulation, a continuum
elastic theory was used and the dislocation core
effects were completely Deglected. In considering
phonon scattering from the line defects, disloca-
tion core effects are treated, neglecting the effect
of the long-range strain field around the dislocation.

In the thermal conductivity measurements of the
real solids, a combined effect of the two different
resonance scattering mechanisms was observed as
mentioned above. In Granato's model, the mean
free path I& is, approximately, given by'

where no is the phonon velocity in the pure solid.
To compare the two mean free paths, it is noted
that for typical metals, P =@0/C = 2. 5. Thus, at
temperatures of the order of 10 8, the contribu-
tion of the line defects is about 20% of the total
scattering. At higher temperatures, the contribu-
tion will be still larger. The frequency dependence
is the same for both types of resonance scattering
but their magnitudes are different. In the usual
range of the measurements, the temperature de-
pendence of the thermal conductivity in the flutter-
ing model is T", where n lies between 3.3 and
3.5. The thermal conductivity depends on T in the
line-defect model. The detection of this small dif-
ference in the predictions of the two theories seems
to be difficult.

In the systems of type I, where the line-defect
model gives rise to the normal phonon scattering,
we may observe only the resonance scattering by
the dislocation motion, if it exists. In the systems
of type II, we expect a combined effect of the two
scattering mechanisms.

The resonance scattering of the phonons from the
fluttering modes occurs if the dislocations are free
to move in crystals. The dislocation motion has
been predicted in alkali halides and fcc metals after
measuring the changes in the elastic constants be-
cause of the dislocations. ' By measuring the
amplitude-dependent internal friction, Chambers '
has shown that the dislocations are free to move at
low temperatures in fcc metals like Al and Cu, but
not in bcc metals like Ta, Nb, Mo, and%'. Bauer
and Gordon, after measuring the changes in
Young's modulus have shown that the dislocations
are mobile in alkali halides and that they can be
pinned by x irradiation at low temperatures. The
thermal conductivity measurements on deformed
alkali halides have shown a large magnitude of pho-
non scattering. This fact supports the existence
of the resonance scattering from the dislocations.
On the other hand, a fcc metal like Cu should show
the resonance scattering, but the thermal-conduc-
tivity measurements made by Kemp et cl. and
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Lomer et el. 6 on Cu-Zn and Cu-As alloys do not
shew such an effect. However, Charsley and Sal-
ter have observed a high resistivity due to the
dislocations in Cu-Al alloys. Kusunoki and Suzukias

have postulated the existence of the resonance scat-
tering froxn the vibrating-edge dislocations in Cot-
treB atmosphere in order to explain the large lat-
tice thermal conductivity observed in Cu-Al aQoys
in the temperature range 1.6-4. 2 'K. Unfortunate-

ly, there are no experimental data available about
bcc crystals which might show the occurrence of
the resonance-phonon scattering from the line de-
fects because there is no dislocation motion in these
solids. A systematic experimental work is very
much needed to understand the general occurrence
of the resonance-phonon scattering in the solids.

The evidence for the temperature dependence of
the thermal conductivity predicted by the resonance
scattering is provided by some experimental mea-
surements on the superconductors. In the measure-
ments on superconducting lead below 1 'K by Felix
et al. ,

'4 a conductivity of the form AT~ "0' has
been observed, where the values of A for three
specimens lie between 0. 1 and 0. 2 for the tempera-
ture range 0.15-0.8'K. In superconducting indium,
Graham ' has observed a T -dependent conductivity

. in the temperature range 0.2-1'K. It may be noted
that there are no other mechanisms which predict
such a large temperature dependence and stiQ re-
quire a suitable dislocation density (-2x10 cm )
to produce the right order of magnitude of the pho-
non scattering. The frequency dependence of the
relaxation rates ranging from (d to + have been
observed in alkali halides or metals' ' ' 6 in
contrast to a ~ ' dependencepredicted by the reso-
nance scattering. A temperature-independent ther-
mal conductivity due to the dislocation dipoles in
alkali halides has been predicted by Gruner and

Bross. Again, more experimental measurements
are required to clarify the present situation of the
temperature dependence of the thermal conductivity
in solids.

In the absence of resonance scattering in solids,
the contributions made by the line-defect scattering
and also by the long-range static-strain field scat-
tering estimated earlier by a number of workerss' '
would be observed. The contribution of the co -de-
pendent scattering from the line defects will be ap-
preciable at high frequencies, and will not ordinarily
be observed at low temperatures. Thus, the ther-
mal conductivity of these solids will exhibit a T-
dependent thermal conductivity due to the static-
strain field of the dislocations. This has been ob-
served in a number of soli.'ds.

The contribution of the dislocations to the specific
heat of the solids will now be considered. In Gran-
ato's model of the dislocation motion, there appears
a linear temperature-dependent term given by

(64)

where Z is the number of atoms per unit cell of the
lattice. Assuming that for a typical solid, P =2. 6;
8 = 1 for a simple-cubic lattice, and 8 (=ha&, ~/0) is
the Debye temperature of one-dimensional lattice,
we observe that this contribution is nearly equal to
the linear term of the line-defect model given by
Eq. (68). In the systems of type II, where complete
bands of local modes appear, the contributions are
very nearly equal to each other. In the systems of
type I, there appears a difference in magnitudes be-
cause of the occurrence of the incomplete band.
The contribution of the linear term to the specific
heat will be appreciable at very low temperatures
(T 0. 1-0.2 'K) as has been shown by Granato. '8

At higher temperatures (T &1'K), the contribution
seems to be negligible.

In addition to the linear term, the line-defect
model predicts a T'-dependent contribution given
by Eq. (47). The contribution was estimated for a
metal containing a density of dislocations equal to
10'3 cm~, and it was found that its contribution to
the specific heat of a pure solid is 10%. Thus, the
contribution of the cubic term may be observed only
in highly deformed solids where the interaction be-
tween the dislocations is not appreciable.

In the present study of the phonon scattering from
the line defects, a number of assumptioris and sim-
plifications have been made which require explana-
tion and comment.

First, a simplified lattice model, i.e. , of Mont-
roll and Potts, has been used in the calculations.
But upon considering the applicability of these re-
sults to amore general lattice there is no disappoint-
ment. The occurrence of the scattering resonances
or local modes in the scalar model can easily be
generalized to a more realistic lattice. In Sec. III,
it has been observed that these modes occur in a
symmetry configuration which includes the motion
of the line defect, e. g. , I', irreducible representa-
tion in the scalar model. This happens because of
the presence of the Green's function Go in Eq. (26)
or (31), which determine the existence of the local
or resonance mode. The function Go(a) diverges
to + ~ as the incident phonon frequency approaches
the boundaries of a subband fromm either side. If
we consider a more realistic model of the lattice,
such as the one discussed below, it can be seen
easily that the Green' s function Go(h) always ap-
pears in the resonance denominator for that sym-
metry motion which contains the motion of the line
defect. For example, this symmetry motion is F.„
in the lattice considered below. It is analogous to
the case of the point-defect scattering where the
same thing is true for all the moriatomic~s or di-
atomic cubic cr'ystals '2 with nearest-neighbor in-
teractions. The two-dimensional Green's function
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Go(h) always diverges when the incident phonon fre-
quency approaches the boundaries of the subband.
The above arguments are also true for the case of
the vector model of the lattice.

Second, the behavior of the defect systems de-
pends upon the coefficient of Go(b, ) in the resonance
denominator of I', symmetry configuration, which
involves the motion of the line defect. (b, is the sep-
aration of the local or resonance mode from the bot-
tom of a subband). U in a more realistic lattice
the a-independent term in the coefficient of Go(a)
vanishes, then infinitely small solutions of Eq. (26) or
(31)will not exist because of the vanishing of the
term containing Go(b), as b, -0. Therefore, in

systems of type I, incomplete bands of the local or
the resonance acoustic mode will appear. On the
other hand, if the L-independent term does not van-
ish, then infinitely small solutions of Eq. (26) or
(31) always exist. Therefore, in systems of type
II, the complete bands of the local or the resonance
acoustic mode will appear. Consequently, the use
of a more realistic lattice model does not alter the
general features of the results obtained in t;he scal-
ar model. However, one difference between the be-
ha,'vior of the scalar and vector model should be
noted. In the scalar lattice model, we observe one
local or resonance acoustic mode for each subband,
which may not be true in the case of the vector
modql. The occurrence of these modes depends
upon the detailed behavior of Go(b, ). If there exists
certain maxima or minima of Go, inside or outside
a subband, more than one solution of Eq. (26) or
(31) may exist and, correspondingly, a large num-

ber of the local or resonance modes mill appear for
each sgbband. Further, if a one-band model such
ag hag been used here is Got used, more than og.e
local or resonance mode between the two given sub-
bandg might be expected.

Regardigg the numerical estimates made on the
basis of the Montroll-Potts mendel, reference is
made to an analogous case of the point-defect scat-
tering. For the case of substitutional point defects,
it has been observed that the results obtained on the
basis of the scalar model are not only qualitative
but a1.so semiquantitative. The frequency and the
linewidth of a low-lying resonance mode due to the
presence of an weakly interacting impurity have
been seen to be very realistic. An estimate of
the force™constant changes due to impurities in a
number of metals is found to be realistic. Fur-
ther, the calculated phono@ relax', tion rates ' due

to the monovalent impurities in solids are com-
parable to the corresponding estimates obtained in

a more realistic calculation. Therefore, one may
expect that the present estimates obtained in a
scalar model will not be too far from the realistic
values and wil1 be useful in finding the approximate
numex'ical values of various physical quantities

which are not readily available if one starts with
a more realistic model of the crystal lattice.

Finally, comment mill be made on the symmetry
motions which appear in the scalar model. The
symmetry motions involved in the scalar model are
totally different from those appearing in.a realistic
lattice. A comparison between them has never been
encouraging in an analogous case of the point-de-
fect scattering. In the present case, if a vector-lat-
tice model of displacements on the core and near-
est-neighbor atoms of a (100) line defect in a sim-
ple-cubic lattice is considered, a totally different
set of irreducible representations is present. The

symmetry configurations, in which the line defect
moves, are of odd parity A,„(1',) or E„(I',) motions
in contrast to the even parity T', symmetry motion
which appears in the scalar model. Thus, the sym-
metry motions present in the scalar model should
not be taken seriously. Their use is limited to the
qualitative and semiquantitative estimation of phys-
ical quantities.

The model of the line defect is nearer to a per-
turbation model of a screw dislocation in a solid.
The case of an edge dislocation, which has an anti-
symmetric perturbation, is not substantially dif-
ferent from that of a screw dislocation. ' Further,
the choice of a simple-cubic lattice does not re-
strict the validity of the present results, which
could easily be gener'alized to fcc or bcc lattices
analogous to the case of point-defect scattering. '

VI. CONCLUSIONS

The properties of two types of the host line-de-
fect systems have been investigated. In the sys-
tems of type I, the perturbation factor, e —$, van-

ishes, while in the systems of type II it does not.
For the systems of type I, the incomplete bands of
localized and resonance acoustic modes exist. The
bottom of the incomplete band of localized modes will
lie at the zero frequency and its width will depend
upon the strength of the perturbation. The lowest-
resonance mode does not appear at zero frequency
but appears at a higher frequency. At low tempera-
tures, when the dislocation contribution to the re-
sistivity is appreciable, these scattering resonances
due to the line defect may not be excited. No reso-
nance scattering will be observed in type-I sys-
tems, but the phonon scattering by the long-range
static-strain fieM wi11 dominate and wi11 give rise
to a T'~-dependent thermal conductivity.

In the systems of type II, the existence of com-
plete bands of the local or the resonance acoustic
mode will always be observed. The lower bound-
aries of these bands start from the lowest fre-
quency, i. e. , co =0. The resonance scattering will
be observed in the systems of type II. The contri-
bution of the resonance scattering due to the line
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defects has been estimated and is seen to be about
25/0 of the contribution, if it exists, of the reso-
nance scattering due to a, vibrating dislocation seg-
ment. The direct observation of the line-defect
resonance scattering will be possible in solids hav-
ing bcc crystal structure where the dislocation seg-
ments are not free to move.

The contribution of a small density of dislocations
to the specific heat consists of two terms. The
first term, which is linear in temperature, is simi-
lar to the specific heat of a linear chain of atoms.
At low temperatures (T & 1 'K), the linear term will
be negligible but it may dominate at quite low tem-
peratures (T& 0. 2 K). The second term, which is
cubic in temperature, has an appreciable contribu-
tion to the specific heat only in highly deformed
solids, where its effect might be masked by the
interaction of dislocations among themselves.
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APPENDIX

The Green's-function matrix element for a cubic
lattice is given by

where J„(t) is the Bessei function of the real argu-
ment of the mth order. The above integer'mls i@ay

be evaluated numerically. For the da.se of v~& (dk3,

the Green's functions are real and m+ be expressed
as the integrals of the Bessel functions Of the im-
aginary argument I (i). It msy be noted that these
Green' s-function matrix elements are independent
of the location of the subband if the frequencies are
measured with respect to the bottom of the subband,
which lies at co~ .

In order to have analytical values of the Or&en's3

functions, a Debye approximation may be used in
which +2f —&of~ = vok~~. Equation (A2) may be written
as

2 +I ylkgffg 0018

G(n, )=
2 k~ dk'~ d8

(dk (d
eg

a' ' '*~J(k~ n~) „dg+
0 k

if one uses the integral representation Of the zeroth-
order Bessel function. The imaginax'y par't is given
by

kmax

lmG(n, ) = i.—, , &,(k, ,) 5(e'. —k'. ) ~k~
2v 0 0

~t

G(n*) =(2 p s2F) QPk

(Al)
=i(4q) 'Z, (q, n, ),

For a simple-cubic lattice, we have

&o'- = ~-' +2q(2 —cosk, a —cosk, a),
kS

where

Where vm- vk voq~~ iS uaed. The real part Of

G(n, ) is given by

)
1. p 3 ljo(k~g) d g

g g QPg e

v'-=2g(1 —cosk, —,'a) .
k3

The Green's function has the explicit form

The value of this integral may easQy be evaluated
numerically. For n~ = (0, 0), the following analyti-
cal expressions are found:

Xf r /a ff/a & (ky l+kpm) a

dk, de,
p —iO —cosk, a —cosk~ a

-if /a -S'/a

(A2)

and

for

ImGO= i(4'g) ' for
kg

ReG, =~ (4qv) 'in{( ~(/(eg —(~ ()}

a=aP-+ &Oor &0.
3

where n~ ={I, m} and

p = 2+ (I/2n)(~;, —~')

For p& 0, we may write Eq. (A2) in the form

G(n~) = '(- i" "/2g) f e "'J, (i)Z„(i)d. t, (A2)

The upper sign in Eq. (AV) is applicable to s, fre-
quency within the ks subband and the lowei one to
a frequency below the lower boundary of the sub-
band. To first ordr in q,

ImG(n ) = (i/4q) [I -(-', q n~)'] . (A8)

The asymptotic value of the Green's fixnetion in the
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Debye approximation is determined by

For (n~ -n')-

xcos&k, ~n, -n'„~ --,'m&.

Thus, after replacing the upper limit by ~,

&t/4 raqn+

q(2&k n )iia (A9)

where n»n~, and q~=(k~/n~)n is a vector of
magnitude I k~ l in the direction of the radius vector
n .
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Electronic specific heats of Nb-V alloys were measured from 1.5 to 14'K and on the basis
of these measurements superconductivity parameters were calculated. Both the McMillan
and the Hopfield theories were used to try to understand the cause of the broad minimum in

T~ with alloying composition. The McMillan theory indicates that the cause is due to a
weakening of the electron-phonon interaction parameter. The Hopfield theory could not ad-

equately predict the existence of the minimum in these alloys.

I. INTRODUCTION

The superconducting behavior of Nb-V solid--solu-
tion alloys is unusual. Vfhereas the superconducting
transition temperatures of Nb and V are both rela-
'tively high, 9. 2 and 5. O'K, respectively, the varia-

tion of T, in the alloys goes through a pronounced
minimum at a composition of about Nbo 50V0,0. The
effect cannot be correlated w'ith Matthias's e/a
factor, since both Nb and V belong to group 5. This
minimum, furthermore, occurs in solid solutions
of compounds in which Nb and V are the principal


