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A new alternative expression for the third virial coefficient for fermions is derived. It is
used to deduce an expression for the high-temperature magnetic susceptibility of electrons

which interact according to the Hubbard Hamiltonian.
tion which considered only the second virial coefficient.

The work extends a previous calcula-
The results are compared with the

Stoner theory of the ferromagnetism of itinerant electrons. The inclusion of the third virial
coefficient modifies the usual expression for the susceptibility and indicates an increased

tendency toward ferromagnetism.

I. INTRODUCTION

In a previous calculation,! the virial-expansion
technique was used to examine the magnetic sus-
ceptibility of a system of interacting electrons de-
scribed by the single-band Hubbard Hamiltonian,
The virial-expansion technique is applicable to low-
density systems and gives an approach to the study
of such systems at temperatures higher than the
Curie temperature of a possible ferromagnetic
transition. The work mentioned above contained a
rigorous determination of the second virial coeffi-
cient using the methods of solid-state scattering
theory.® The spin susceptibility which was obtained
agreed with the high-temperature susceptibility in
the Stoner theory of the ferromagnetism of itinerant
electrons.* This enabled the establishment of a
relation between the paramagnetic Curie tempera-

ture of that theory and an element of the { matrix
for particle-particle scattering.

The object of this paper is to consider the third
virial coefficient for the same system. We are as
yet unable to calculate this exactly as was done for
the second virial coefficient, and our final result
still involves one significant approximation, the
nature of which will be specified subsequently.

Several authors have discussed the quantum theo-
ry of the third virial coefficient. 5-8 The derivation
of this quantity is considered in Sec. II of this paper.
The determination of the third virial coefficient b,
requires information concerning three-particle
scattering processes. We employ the Faddeev
equations® to obtain a concise expression for by
[Eq. (2.25)] which contains a free-particle part and
a term involving only connected diagrams for three
particles. This expression is rigorous, general,
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and, to the best of our knowledge, original. Fermi
statistics are used throughout.

In Sec. III, we consider the theory of the high-
temperature spin susceptibility of electrons in a
single band interacting according to the Hubbard
Hamiltonian. An external magnetic field is added
to the Hamiltonian, but only the interaction between
the spins and the field is considered. The Hubbard
Hamiltonian implies that a pair of electrons inter-
act only when they are in a relative singlet state;
and in the case of three particles, interaction oc-
curs only in a doublet state. The external field is
included in the virial expansion, and a formal ex-
pression for the susceptibility is obtained including
three-particle interactions [Eq. (3.14)].

The evaluation of this expression is considered
in Sec. IV. At this point, certain approximations
are made. The most important of these is that we
use a first-order approximation to the solution of
the three-particle Faddeev equations, which approx-
imates the # matrix for three particles as the sum
of the two-particle ¢ matrices for the different
pairs. In the case in which the temperature is
large compared to a possible Curie temperature
(and to the Fermi energy) but small compared to
the bandwidth (the low-density—high-temperature
limit), an explicit expression is obtained for the
susceptibility in terms of a certain element of the
two-body ¢ matrix, The corrections to the formula
previously obtained from the second virial coeffi-
cient are given, and are seen to favor the occur-
rence of ferromagnetism in the model.

II. THIRD VIRIAL COEFFICIENT

We will begin by recalling the procedures of the
virial expansion.!® This will establish the notations
employed in this paper. The partition function Z
of a many-body system may be written in terms of
the partition functions of clusters, e.g., Z,
= Tr, [exp(~ BH,)] in denoting the number of particles
in the cluster and Tr, denotes the trace over »
particle states of the proper symmetry; thus we find

2.1)
The virial coefficients b, are defined by the expres-
sion

InZ=Z,(e"+ by’ + by + - - +).

The b,’s may be expressed in terms of Z,’s by sub-
stitution of (2. 1) intothe left-hand side of (2. 2) and
equating like powers of e":

b= (2, = 323)/ 2y,

Z=1+4+2,6"+ 256"+ Z3e% 4+ - .

(2.2)

(2.3)
by=(Zy - 2,2, + +23)/Z,, etc.

The chemical potential u is related to v through
the relationship v=gu; B=1/ksT, where T
is the temperature of the system and kg is the
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Boltzmann constant. The quantity e” is determined
by the condition that the number of particles in the
system # is fixed:

LB

9y
In the low-density limit, e¢” can be determined as
a power series in n. Actually, the relevant small
parameter is essentially the number of particles in
a volume equal to the cube of a Debye length. Such
a procedure leads us to the well-known equation of
state

PV=kgTInZ

=nkpT[1—nby/Z, - 2n%(by — 2b3) /2%~ - - - 1.
(2.5)
By computing InZ in the presence of an external
magnetic field, one may evaluate the magnetic sus-
ceptibility of the system also in terms of the virial
coefficients. We shall examine this for a special
model problem in Sec. III. The possibility of deter-
mining these thermodynamic quantities makes the
virial series interesting and useful.
We now consider the actual evaluation of the

virial coefficients. The second virial coefficient
is related to the two-body scattering matrix; in
fact, quite generally, the virial coefficients are
related to the many-particle scattering matrix as
was recently shown by Dashen ef al.® We now fol-
low the method of Callaway and Edwards® and re-
late the third virial coefficient to the connected part
of the three-particle scattering matrix, thus ob-
taining an alternative new expression for b;. It
may be mentioned thatthe earlier work of Reiner®
and Baumgartl’ did not obtain the reduction pre-
sented here, nor does the recent elegant work of
Dashen et al.® We confine our attention to fermi-
ons, since the application we have in mind is to a
system of electrons in a solid. We first rewrite
Z3 and Z, in terms of three- and two-particle
Green’s functions, respectively, and reduce these
further in terms of “connected parts” involving
scattering matrices and the “interaction free”
parts. Let Z3, and Z,; be the three- and the two-
cluster partition functions when there is no inter-
action. Then we define (AZ;)= Z; - Zy, and (AZ,)
=Zy~Z,,. Now, using a well-known trick (see,
for example, Ref. 1), we obtain

d
(AZ,)=Tr, f —;—,e*“'[cz(z) - Gyo(2)],
. 2mi
where G,(z) is the two-particle Green’s function
which satisfies the equation
Gz(z) = G20 (Z) - Gzo (Z) Vsz (z)
= Gyo(2) = G2o(2) T(2)Gyo (2).

T,(z) is the two-particle ¢ matrix. The contour ¢
in (2.6) encloses all the poles of the integrand:

InZ=n=2,(e"+2e®b, +3e*by+---). (2.4)

(2.6)

2.7
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(Az,)=- Trzf d_z_ €8G9 (2) T2 (2) G0 (2)

Az oy (it | Ty(2) Uyfy)

_-"%:z A 2172 [z Eo(k1) Eo(kz)] (AZa)c.
(Ry>R) (2.8)

Here k,;’s are antisymmetric plane-wave states or
Bloch states, as the case may be. Also,

dz
Zy=Tr Py
20 2 fc o

>

ky ko

(&> k)

e-B‘ GZU (2)

exp {—B[Eo(k1)+E0(kz)]} . (2.9)

Let us define

s, = o BnEq (k)
Ry

(2.10)

Then,
S,=2,=2; e™Fotk)
Ry )

S§=82+2 E exp {—B[Eo(k1)+E0(ka)]} ’
Ry Ry
(k1>l¢z)
so that
Zy0=%(2%-8,) (2.12)

The expression (2. 8) contains all the interactions
in it and will be termed “connected” part:

Z,=(DZ,) +Z39=(AZ,),+ 5 (22~ S,) (2.13)
or equivalently,!
by=[(82,).- 35,1/2, (2.14)
A similar procedure leads to the expression
(AZ3)="Tr, fc %e 4G, (2) = Gy (2)]
(2.15)

But now,

G3(2)=Gyy(2) = Gyg (2) (2 V) Gy (2)

. Trsf S € [Gya (2) = Goo )]
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=Gy (2) = Gy (2) TGyol2) (2.16)

where J,, V, represents the sum of three pairwise
interaction potentials, namely, (Vi p+ Vas+ V),

a =1 signifying the pair (23), etc., and T the “for-
mal” T operator associated with },, V,. The Fad-
deev trick is to rewrite the T operator as a sum
%o T%, such that T* obeys the set of equations®

T=ty~1taGa(TP+T") , (2.17)

Here ¢, is the ¢ matrix for the oth pair when the
third particle is a spectator. In fact, the Green’s
function for the ath pair is

Gy (2)=Gyy(2) = Gag(2) V( Gy (2)
EGao(z)‘ Gao(z) ty (Z)Gso(z)
So, the combination

=20 Gy (2)+2Gyy(2)

a+B+7Y.

(2.18)

=[G;3(2) = Gy (2)] =23 [Gsq (2) = Gy (2)]
==20 Gy (2) (T~ t,) Gy (2)

= E Gso(z)ta(z)cso(z) T#

oB
(aB)

(2) Ggy(2)=G5 (2)

(2.19)

is the connected part of G;(z), denoted by G5 (z).
Thus, from (2.15) and (2. 19), we obtain

(AZ3)=Tr3f% e’ <G§(2)+E Gy (2) = 3Gy (z)>

=(AZ,), +Tr32f == €% [Gy,(2) - G4y (2)]

(2. 20)

We now use the equation for G, given by the second
line of expression (2.18) above in reducing further
the second term in (2. 20). We also make use of the
fact that in the three-particle frame, the Green’s
function for the two-particle system given above is
independent of the energy of the spectator particle.
In other words, #,[z+E' (£,)] is independent of
EQ()); so

(Rikoks|t, (2)|R koks)

Ly o &
31”1"23 o ¢ 2mi [

(unordered)

E(G) (k ) Ego) (ka) E(O) (k )F

- 31,,1,, f

(unorde red)

Noting that (&, kyks|te[y + EY (2,)] |k k) is in-
dependent of %, and E‘® (,) and the definition of
(aZ,), and Z,, we obtain

Rykokyty 'Y
 expl- 8Ly B} Sibglaltelg o B (] lhidsky

e [Gyq(2) - G4y (2)]

Z}Trsfd—z
o [, 2m
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=322 2,(8Z,),=Z,(AZ,), (2.21)
Hence, ’
(AZy)=(aZ;).+Z,(AZ)), (2.22)
Putting these together, we obtain
b3=[(8Z3)c+ 25~ 2,Z20+52}]/2, (2.23)

It may be verified that
$3=8,+3 Z; (exp{- B[Ey (k) + 2E, (& ,)]}
kl 2
(k1>k2)

+eXp{_ 6[2E0(k1)+Eo(kz)]})+6230 ’

where
Z = 2 exP{‘ﬁ[Eo (k1)+Eo(k2)+Eo(k3)]}
Ry by By
(R > Ry> k)
Also,

ZnZ =3 (Z?—Zl? exp[- B2E, (kz)]>
2

kzk; (exp{- B[E,(k,) + 2B, (k,)]}
(ki>:2)

-4(7-5.-

+exp{— B[ZE() (kl) +Eo (kz)]}) > ’

so that

Zy=%(2}+2S;-2Z,S,) (2.24)
Consequently,

Zy~Z,Z30+52Z1=5S; (2.25)
Finally, one obtains

by=[(AZy).+5S5]/2, (2. 26)

This is a new expression for b, in terms of (AZ;)..

In Sec. IV we shall derive the magnetic suscep-
tibility in terms of the connected parts (AZ,), and
(AZ,), for a model Hamiltonian,

III. HIGH-TEMPERATIVE MAGNETIC SUSCEPTIBILITY
OF ELECTRONS IN HUBBARD MODEL

We begin by first making a few brief remarks on
the Hubbard model. This model in its simplest
form proposes the twb—particle interaction to be
repulsive, independent of wave vector, and nonzero
only for the singlet spin state of any pair of elec-

J

InZ (H) = (2cosh Buz H) Z,[e” +b,(H)e® + by (H) ¥ + .

with

by (H)=[(AZ,), - 3 (2cosh 2Bup H)S,]/(2cosh Buz H) Z,

by (H)=[(AZ,),(2cosh Bug H) + 5 (2cosh 3Bu g H) S;] /(2cosh g H) Z,

CALLAWAY AND A. K. RAJAGOPAL

|eo

trons. Thus, it may be represented by
VHubbm-d(lz):"T’a(s) (Fl‘fz) (61'52"%) ,\(3-1)
where 0, is the spin vector for particle 1. For a

three-particle system the model postulates the
mutual interaction to be of the form

V(12)+V(23)+V(31) (3.2)

As a consequence of (3.1), the Hubbard model has
no interaction among three electrons if their spin
state is a quartet. There are two types of doublet
states for a three-electron system. The wave func-
tions associated with them will necessarily obey a
coupled set of equations.

The magnetic susceptibility of the system is com-
puted by evaluating first the partition function Z in
the presence of a small external magnetic field H.
The magretization of the system is then derived by
the formula

Mm=1 2 1z (3.3)

B 8H
The magnetic susceptibility per unit volume is de-
fined by

x=lim M/VH

H~0
We will now compute x for the Hubbard model.
Since the two-body interaction alone is in the sin-
glet state and the three-body interaction alone is in
the doublet state, enormous simplifications occur
in evaluating the various Z,’s in the presence of H:

Z,(H)=(2coshBugH) Z, ,

(3.4)

S,(H) =(2cosh2BugH) S, (3.5)
S;(H) =(2cosh3BugH) S,

Here, Ljp is the Bohr magneton. We have
(AZz)c (H):(Azz)c (3. 6)

independent of H (since it includes only singlets).
We also put

(AZ,), (H)=(2cosh B H) (AZy),

since (AZ,), involves only doublet states. It is
plausible that the entire H dependence is contained
in the factor cosh g H, but we have not proved
this rigorously. Should this conjecture be false,
the addition of terms is easily accommodated in
the following analysis. We now have

3.7

] (3.8a)

(3. 8b)

(3.8c)
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Hence,
InZ (H)=(2cosh Bug H) Z, e* +[(AZ,), - (cosh 2Buy H) S,] e®”
+[(AZ,),(2cosh Bug H) + 5 (2cosh 3Buz H) Szle™ +. . - (3.9)
The number of particles # is determined by the condition!
] H
n= (—1—115(—2) =(2coshBuyH)Z, e’ +2[(AZ,), - (cosh 2B H) S,) e
H
+3[(AZ;). (2cosh BugH) + $(2cosh 3Bz H) Sgle® + ... (3.10)
and the magnetization is given by
_1(sInz (H))_ ) ) o ( sinh 38y, H ) o ]
M= 5 (——aH = 2pupsinhBugH |Z, e’ ~ (2cosh Bug H) S,e? + (Azs)‘+__-sinh[3u311 Ssje¥ ...
(3.11)

We will not proceed as before to develop the low-density expansion by writing e” as a power series in n.
After some algebra, eliminating e in terms of # in the expression for M, we obtain

(AZ,),+S
i _ _T_LQ_L
M=njg tanhﬁﬂaH[l <zzlcoshzﬁliBH "

+((Azz)§+2 (AZ,).$,-85 _ (AZ,).S, L Sa=(azy), \ . (3.12)
2Zicosh® By H Zicosh®BugH * 2Z%cosh?Bu H :
The magnetic susceptibility is now given by
2 2_ o2

_ kg — ((Azj)c +sz) <(AZZ)c - Sy - (Aza)c - Sa) 2, :]

Isolating the connected part from the rest, we may rewrite this in the form
2 2
- pan [ (8Z,), ((Azz)c - (AZ3)C) 2 . 31
X=Xo* yp T [ 2z2 "t \azt Tz )"t . (3.14)

We have thus reduced the problem to one of find-
ing (AZ;), since (AZ,), is already computed in I,

We will make a few remarks about this aspect of
the problem and highlight the essential steps in-
volved in the process.

As stated in the beginning of this section, the
Hubbard model allows electrons to interact only in
doublet states of the three-electron system. In
computing (AZ,), from (2. 20), one needs only to
consider trace over the doublet states. But as
stated earlier, there are two types of doublet states
which are degenerate, and this complicates the ex-
plicit solution in a straightforward manner. Since
one has a nonzero overlap between the two types of
doublets, the degeneracy of the states is removed
by the model Hamiltonian, thus yielding a coupled
set of equations for the doublets. The Faddeev
method, therefore, requires certain modification
to handle this case. We have set up these equations
but have not solved them, however. It seems that
they may not be capable of an analytic solution, and
perhaps only a numerical analysis may be possible.
However, even in the absence of such answers,
some conclusions can be reached. These will be

f
indicated in Sec. IV.

IV. EVALUATION FOR A SIMPLE BAND

We will not obtain a more explicit form of the
susceptibility subject to certain approximations.
We begin by rewriting (3. 14) as

x=(ou%/kp T)A-F+G) (4.1)
where p=n/V, and
_nS nS, _ nS; ) 4.2)
F= zz% (“7{ Z.S, :
_ n(az,y), < _n(azy)\ _n*(azy),
C=—T9zz "7z 273 (4.3)

If G is neglected, the expression for x reduces to
the order considered to be that for noninteracting
particles. G contains all the effects of interaction,
and we wish to examine it more closely. As men-
tioned at the end of Sec. IIl, we are as yet unable
to evaluate this completely. The simplest approxi-
mation is achieved by retaining only the first-order
terms in the Faddeev equations (2, 17). In this case
(AZ,),=0.
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A simple result can then be obtained in the limit
of high temperature and low density in which k5T
is large compared to the Fermi energy but small
compared to the bandwidth, This is the situation
in which the virial expansion is most interesting
and is relevant to the case in which a small number
of electrons are present in a nearly empty band or
in which there are a small number of holes in a
nearly full band.

In this case, we may carry over the result of
Ref. 1for (AZ,),. From Eq. (83) of that paper,
we find that

n(AZ,), =_c(asg 2 ) ,

Z? Z> pkyT (4.4)

where c is the ratio of the number of particles to
the number of sites, and

to=V/(1+3VI) (4.5)

V is the interaction strength of the Hubbard Hamil-
tonian,

I=f g(E;ZdE ,

where g (E) is the density of states for the band.
The quantity ¢, is the two-body #-matrix element
for the Hubbard Hamiltonian in the limit E - 0.2
We introduce the additional simplifying assumption
that g (E)~ EY2for energies contributing signifi-
cantly to S, and S, (this need not be assumed to hold
for the entire band since we assume that the tem-

(4.8)
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perature is small compared to the bandwidth)., Then
852/8%=1 and
- ct (41
G ——Q—ZkBT (1 +———LkBT 4.7)

Deviations from the Curie-Weiss law arise as a
result of the second term in (4. 7) and also from the
temperature dependence of the free-particle part
F. Suppose for illustrative purposes that F can be
neglected, We try to write

1/x=kg(T-0)/np} (4.8)

Then
1-6/T=1/(1+G) (4.9)

We expand the right-hand side of (4.9), treating
cty/kpT as a small parameter, and find

k36=%ct0(1+ct0/2kBT+---) (4.10)

The temperature-independent term is the same

as obtained in Ref. 1; the corrections are such as
to cause the apparent Curie temperature to in-
crease with decreasing temperature. A graph of
1/x vs T will tend to curve toward the temperature
axis. Qualitatively, an effect of this type is re-
ported in susceptibility data for nickel!? and nickel-
copper alloys.!® In the analysis of experimental
results, it will presumably be necessary, however,
to include the temperature dependence of F. The
situation may also be too complex for the simple
one-band treatment presented here.
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