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The fact that we might not be in the asymptotic re-
gime would also manifest itself in higher-order terms
in the expression for K, that is, we could have

K= KoT (1+aT+b7' ' ' ')
If a and b were much greater than unity, then our values
for v obtained from a simple power law (a, b= 0) could be
grossly in error. With our present data we certainly

cannot distinguish between various analytic forms for K;

hence we must simply assume a simple power law for
the reduced temperature dependence until a detailed
theory dictates otherwise. It is perhaps worth com-
menting, however, that the pertinent parameter may
well be K itself rather than v' and in that case, it is
more likely that we are in the asymptotic regime.
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Existing first-order Green's-function theories of the Heisenberg ferromagnet all lead to
magnon energies for which the temperature renormalization is wave vector independent. Such
theories can describe phase transitions only at a temperature Tc for which all spin-wave ex-
citations have vanishingly small energy. It has become increasingly evident, particularly for
systems of low dimensionality, that such an approximation is quite unphysical, paramagnetic
magnons often being physically well defined over much of the Bril'louin zone to quite elevated
temperatures. This paper describes a rather general method for introducing wave-vector-
dependent magnon renormalization into the Green'8-function formalism, enabling approxi-
mations of obvious physical significance to be made directly in terms of the magnon disper-
sion relation. The theory is developed in detail for the simplest nontrivial approximation
and applied to the problem of the two-dimensional Heisenberg ferromagnet. A phase tran-
sition is found to a state of zero magnetization and infinite susceptibility. We also discuss
the weakly anisotropic two-dimensional ferromagnet, which supports long-range order at
low temperatures, and study the approach to the isotropic limit.

I. INTRODVCTION

Over the past several years, the technique of
double-time temperature-dependent Green' s func-
tions has been applied with some success by many
authors to a varied selection of statistical prob-
lems in ferro-, ferri-, and antiferromagnetism.
Formally, the method produces solutions for the
desired expectation values as functions of temper-
ature, but these solutions are in the form of an
infinite set of coupled first-order differential
equations, and the development of a tractable form-
alism makes necessary a decoupling approximation.

The majority of decoupling procedures devised
for Heisenberg systems, particularly in approxi-
mations applicable for general spin quantum num-
ber and aiming for validity over the entire tem-
perature range, are made at the earliest possible
stage of the calculation (i. e. , in the differential
equation involving the lowest-order Green's func-
tions). This is done almost from necessity rather
than choice, because of the enormous increase in
mathematical complexity which results from de-
laying the decoupling to a later stage, unless
further approximations restricting the tempera-
ture range of validity are also introduced. A short

list of publications, sufficient to give an indication
of the developing sophistication in first-order
Green's-function decoupling schemes, is given in
Refs. 2-10.

Regardless of their degree of sophistication,
these approximations all produce excitation energies
for which the scaling with temperature is wave
vector indePendent. That is, they all predict that
short-wavelength and long-wavelength spin waves
renormalize in the same way. A corollary is that
they can describe well-behaved phase transitions
only at the temperature for which all spin-wave-
like excitations have vanishingly small energy.
However, it is now well established experimentally
that real magnetic second-order phase transitions
are not at all like this but that the phase transition
@Beets significantly only long-wavelength excita-
tions. Both neutron diffraction " and Raman' '
".p~riments on magnetic systems reveal that

short-wavelength excitations undergo no .obvious
anomaly at a pha, se transition temperature T, but
continue to exist well into the para, magnetic phase
as propagating excitations. The phenomenon is
most marked in systems of low dimensionality,
where all but the very long-wavelength spin waves
are essentially temperature independent up to tem-
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peratures in excess of T„although the zone-center
(zero-wave-vector) magnons scale with temperature
closely like the magnetization (or sublattice mag-
netization for antiferromagnets) and have energies
going to zero at T,."

It seems clear that any approximation hoping to
describe this situation realistically, particularly
for systems of low dimensionality, must at the
very least introduce some wave-vector dependence
into the temperature variation of the associated
dispersion relationship. It is the purpose of the
present paper to demonstrate, within the Green'8-
function framework, a rather general method for
doing this; a method which effectively bypasses
the necessity for devising new and even more
mystical recipes for decoupling three-spin from
two-spin Green's functions and enables approxi-
mations of obvious physical significance to be made
directly in terms of the excitation spectrum for
mRgnons.

The theory is developed in detail for the simplest
nontrivial approximation and applied to the topical
problem concerning the possible existence of a
phase transition for two-dimensional Heisenberg
systems. ' We find that a phase with zero
magnetization and infinite susceptibility does exist
for the isotropic Heisenberg ferromagnet. We are
also able to investigate the reaction of this new

phase to the introduction of anisotropy and to
answer, within the present approximation, the
question of whether two phase transitions (one to
a zero- magnetization infinite- susceptibi. lity phase,
and a second to a spontaneously magnetized phase)
can exist in systems with finite but arbitrarily
small anisotropy. The question arises because the
ground state of the isotropic two-dimensional
Heisenberg system has a long-range order which

ls destl oyed by thel DlRl encl gy Rt Rny nonzel 0
temperature, formally at least pointing to T =O'K
as a second phase transition temperature for the
lsotrople llmlt, .

II. GREEN'S-FUNCTION APPROXIMATION

The application of double-time temperature-de-
pendent Green's functions to the statistical prob-
lems in magnetism has been discussed in great
detail many times before, and we may refer the
reader to the literature for background.

The retarded Green's function for Heisenberg
operators A. and 8 is defined as

in which square brackets denote a commutator,
angular brackets denote ensemble averages, Rnd

8(x) is the step function (equal to I for x & 0, 0
for x & 0). We have adopted units for which Planck
constant h= 2m. The equation of motion of the
Green's function so defined is

f
sf «&(f);z(f')»= &(f-f')&[&(f),z(f')])

-i E (t-t ') dg8 {2.3)

where «A;»&a is the Fourier transform of
«&{f);Z(f'))& with respect to f t'. —

To demonstrate the principle behind the present
method, let us consider initially a simple Heisen-
berg Hamiltonian for an isotropic ferromagnetic
system, of the form

—2Z y 8( ~ 8) (2. 4)

where the summation runs over all pairs of neigh-
bors i and j interacting via an exchange J,.&. The
equation of motion for a two-time Green's func-
tion «S~; (S'„)"S„&&a then follows quite formally
from (2. 2) and is

z((s,'; (s'„)"s-„))=—c,„

(2. 5)

where n is a positive integer, S'=8"+iS', and

z=&[si (sa)" si]& . (2. 8)

Making use of the translational invariance of the
system with respect tog —A, we may define
I"ourier transforms

(E) Q «S+. (Ss)nS-» e-iK ~ (g-h) (2

aK(z) = —Z ( 5 2Z,, (((S;S; S;S;); (—S'„)"S„))sf

xe'
in terms of which Eq. (2. 5) becomes

EG„"(E)=E/2m+ 4„(z) .

(2. S)

(2. 9)

The problem of linearization and the development
of a first-order Green's-function approximation
therefore consists of finding a relationship

s.„-(Z)= ~-„(Z)G„-(Z)+D„-(Z),

in terms of which Eq. (2. 5) is formally solvable
for GK(E) as follows:

)
E/2v +D„"(E)
z -m-„(z) (2. II)

where X is the system Hamiltonian —the final term
being, in general, a Green's function of higher
order. If (2. 2) can be linearized by a suitable de-
coupling approximation, the original Green's func-
tion can be evRluated and correlation functions
&B(t')A(t)) follow from the formula

(,(, ,)„()), - [«~;»&z„.—«~;»&a, .]
6 +0
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In all the previously cited decoupling approxima-
tions decoupling is performed in real space by re-
lating ((8 8/;(8&)" 8&))~ and ((8~8/', (8»)"S &))s di-
rectly to ((S~; (S„')"S„))s, although often in quite an
involved way which may not always be physically
transparent. The result, in general (the exception
being Tahir-Kheli's work~), is a more modest de-
coupling of form

~„-(E)=M-„Gg(E), (2. i2)

E(&(K)—= SE(&(K)=8 Z 2J/~[1 —e' ' " «'],
~ g

(2. 14)

where S is the spin quantum number and $(T)
=(S')/S. The more sophisticated decoupling
schemes include spin-pair correlations in $(T),
but are often tractable only for the nearest-neighbor
(nn) exchange restriction.

In view of the fact that GR(E) from Eq. (2. 11)
has poles at E=M&f (E), we recognize these poles
to be the elementary excitations (i.e. , magnons)
of the system. The approximations (2. 12) and

(2. 13) can now be seen to involve three basic as-
sumptions as follows:

(i) b,x (E) and G(((E) can be related through a
"mass operator" equation hR (E) =My (E)G&f(E),
where M&f (E) does not involve terms proportional
to the inverse of G&((E). This assumption, which
amounts to putting Dx(E) of Eq. (2. 10) equal to
zero, is valid for normal boson or fermion inter-
acting particle systems but not, in general, for
spin systems, where the more complex spin kine-
matics give rise to a mass operator of anomalous
form [with Dy(E) 0 0]. The associated restriction
is essentially to high spin quantum number; a
more detailed analysis of the appr'oximation in-
volved is available in the literature.

(ii) [E —M„(E)] has a simple pole on the real axis,
say, at E= Mg. This amounts to a neglect of mag-
non lifetime effects; an approximation which pro-
foundly affects the spin dynamics but which is near-
ly always assumed for calculation of equilibrium
properties.

(iii) Mg can be related t'o low-temperature mag-
non dispersion by a simple proportionality, i. e, ,
Eq. (2. 16).

It is only restriction (iii), implying that all mag-
nons renormalize in the same way with temperature,

where MK is real, independent of E, and related to
simple (unrenormalized) spin-wave energy Eo(K) by

(2. ia)

in which $(T) is a dimensionless temperature-de-
pendent but crave-vector-independent function which
differs from one decoupling scheme to another.
Thus, for example, with Hamiltonian (2. 4) and the
simplest random-phase decoupling approximation, '

we have

whichwillbe removedinthispaper. Thus, we shall
define a wave-vector-dependent renormalization
)R(7'), and, whatever criterion is used to ascertain
a physically reasonable form for it, it may be in-
corporated directly into (2. 11) to give

F/2v
G&( (E) E ] (T)EI(~) (2. 16)

where we have put DR (E) =0. Use of (2. 3) and (2. 7)
now lead to findings for spin correlations as fol-
lows:

e&K ~ (a- ~)

((Sh ) Sh Sg ) N
~ &g(2'&z&r(&b/~1'

(2. 16)

x(coth[)&((T)EO(K)/2kT] —1), (2 17)

2S+x (x +1)' "+(x—1) '"'
28 + i (x+1)"'-(x- 1)"" (2. 16)

where

x = (I/NZ&fcoth[)&I(T)EO(K)/2kT]. (2. 19)

Equation (2. 16) can also be written more succinctly
as

8/8 = J3~ x 28 coth &x (2. 20)

where B~ is the Brillouin function for spin S.
To determine the problem it now merely remains

to choose )r(T), At low temperatures, the evidence
from spin-wave theories points to a wave-vector-
independent renormalization proportional to
(S, 5,)'/', where a is a nn distance. In spite of
this, as remarked in the Introduction, it is now ex-
perimentally well established that outside the low-
temperature domain the dependence of spin-wave
energies on temperature can be very sensitive, in-
deed, to wavelength. " "

It is helpful to appeal to a physical picture. Con-
sider a system with well-developed short-range
order. Even above the Curie temperature there
is, in general, a finite-temperature-dependent
volume V and associated length L - V" (where d
is dimensionality) over which spins are closely
correlated in some sense. Let us refer to L as a
coherence length. Magnons with wavelength &(» L
have af requency small compared to the reciprocal re-
laxation time of the background disorder and can there-
fore be described to a first approximation as displace-

where k is Boltzmann's constant, X is the number
of spins in the lattice, and the summation runs over
the N allowed values in the first Brillouin zone of
the reciprocal lattice.

By the now quite standard procedures of first-
order Green's-function theory, ' ' equations for
magnetization S-=(S') and transverse two-spin cor-
relations follow directly from (2. 16) in the form

(S„8', ) = (S/N)Z&(cos[K ~ (g —h)]



1752 M. E. LINE S

ments from the time-averaged background. This
leads to renormalization of magnon energy accord-
ing to magnetization (i. e. , as S). Clearly, how-
ever, such an approximation is quite inappropriate
for short-wavelength spin waves with X «L. The
latter have a frequency large compared to the back-
ground reciprocal relaxation time and can there-
fore, to a first approximation, be described as
displacements from the instantaneous background.
To use an analogy first introduced by Keffer and
Loudon, the additional magnon excitations are
like ripples superimposed on the instantaneous
nonequilibrium position of the existing waves. For
nn exchange effects, this concept leads ' to a
magnon energy renormalization as ( S, S,)', where
S, and S, arenn, andis equivalent to describing
spin-wave motion as small deviations from the
ordered spin array in which each spin S; is given
a magnitude (50 S, ) ~ .

In a less phenomenological veir. it is useful to
relate the above to the more formal Green's-func-
tion decoupling language of Callen. ' If the Green's
function (( S;S,+Sy; 8 )) is decoupled inthe symmetric
form

«S,S;S;;a »,-„&S;S;)« S;; a »

+(S;S;) ((S;;a )), (2. 21a)

and similarly for (( S+S;Sy; 8 )), then the two re-
normalization schemes $"„(T}=S/S and )x (T)
=(80 8, ) ~ /S of the previous paragraphfollow, re-
spectively, by relating transverse spin operators
S~ and S~- to S 'by use of the identities

S;= 2 (Sz'S. —S.S') (2. 21b}

S;=S(S+1)—(S;)'-S-,S;, (2. 21c)

but (for S&2) neglecting the fluctuations in (S;) in

(2. 21c).
Decoupling on the basis of identity (2. 21b) treats

approximately the deviations of S, from zero,
whereas decoupling on the basis of identity (2. 21c)
treats approximately quantities which are small
when Sf -+S. Callen uses the former when (S*)
is small, and the latter when S —(S') is small, to
give, in each ease, a wave-vector-independent re-
normalization. The earlier physical arguments
suggest that a more appropriate criterion should
relate to the respective magnitudes of magnon fre-
quency and reciprocal relaxation time of the non-
equilibrium instantaneous background. For the
Heisenberg ferromagnet, in view of the simple
character of the magnon dispersion (with excitation
energy increasing monotonically with wave-vector
magnitude), this relaxation time is directly cor-
related to the short-range order allowing us to in-
troduce the concept of coherence length L.

Thus, we find the renormalization t'x (T}=S/S

when wavelength X»L and $„-(T}=&80.S, ) ~ /S
when &«L. Clearly, for intermediate wavelengths
the renormalization function should vary smoothly
between these extremes. Kuramoto has argued
in favor of a particular form which (he claims}
shows a general accord with the existing concepts
of dynamic scaling. Our immediate concern,
however, is tractability and, for computational
ease, we have decided initially to adopt the simplest
conceivable approximation in accord with the limits
above. We shall renormalize magnons in one of
only two ways; either as S/S (for long-wavelength
magnons with K & v/L = Kc ) or as (So ~ 8, )'~ /S (for
short wavelength magnons with K&v/L =Kc). Thus,
we expect L to define some sort of coherence
length for which magnons with K&m/L experience
much less damping and renormalization than do
magnons with K&v/L.

We take care to distinguish L from the correla-
tion length L„„since we shall later show them to
be quite distinct. In three dimensions L remains
microscopic in the critical region, while in two
dimensions (for the isotropic system) it becomes
macroscopic, but proportional to L„„,thereby
not violating the main principle of static scaling
theory. '

Qualitatively we shall associate the coherence
length L with the spin separation for which the cor-
relation ( So ~ S~& falls to some fixed fraction of its
near neighbor value. However, we require the cutoff
wave vector Kc = v/L to be a continuous variable (ap-
proaching the farthest reaches of the first Bril-
louin zone at extremes of high temperature). Cor-
relation (So S~), on the other hand, as evaluated
in a self-consistent fashion from the theory, only
has physical significance at the actual spin sites.
We wish to extend the concept of spin correlation
to interpolate smoothly between the physically sig-
nificant 8 values.

A function which is fairly adequate in this sense
is the self-consistent Green's-function result (2.17)
itself, evaluated in the first Brillouin zone as a
continuous function of A= Ig- hl. It is not ideal "
because of a developing oscillatory behavior at high
temperatures. We note from (2. 14) and (2. 17) that
these correlations are spherically symmetric (in a
cubic lattice) or circularly symmetric (square lattice)
for large R. For arbitrary R the deviations from
spherical or circular symmetry are small and
wi11, for mathematical simplicity, be neglected.
We assume, therefore, a spherical cutoff surface
in three dimensions with A = L, leading to a spheri-
cal cutoff surface K=Kc = v/L in reciprocal space.
The analogous two-dimensional situation is obvious.

Quantitatively we define L via the equation

&s, s, &=o&s, s„.&, (2. 22)

where @ is a numerical constant to be determined,
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8, 8. "'Z, K)+ Z ooo{K R) ooe
Ã &{{b

(2. 23,)

.where Kc = w/I, , K=-
I K I,

(Sa Si, ) /(8() 8,1gg) =@',

where

S/S=B, [2Scoth 'x], (2. 25)

(8{{'8,) i E{{(K)
2kT

(2. 26)

The equRtloDS siIQpllfy vely CODsldelRbly for R
paramagnetic phase and, as we shaH see, the de-

and where the right-hand side contains a lattice-de-
pendent parameter g which can be determined from
the condition that the theory must go over smoothly
to the random-phase (RPA) Green's-function approx-
imation in the high-temperature limit —i. e. , K
goes to a first-zone corner as T- ~. For a smooth
monotonic generalized spin correlation, (80 ~ Sa) -0
for arbitrary nonzero P as T- ~. By inspection
of (2. 22) it then follows that ii = 1/d'~2 (where d is
dimensionality) for the linear chain, quadratic-
layer, and simple-cubic lattices. For correlations
(2. IV), this simple form is not exact and 1) becomes
@ dependent. Hovrever, this @ dependence is small
for the lattice of direct concern below (quadratic
layer) and 1) = 1/d" is quite adequate in the present
context. At low temperatures me shall find that
L -~, for which case all magnons renormalized as
(80 ~ 8, )'~ and we recover the essence of interacting
spin-wave theory.

The theory is now determined except fox the sin-
gle adjustable parameter @ which will be chosen to
give the best agreement between the results of the
theory and those of high-temperature series ex-
pansions. For the single lattice which we have
computed in detail (the quadratic-layer or square
lattice) we find @=0.V4 for the ferromagnetic Hei-
senberg system. For this two-dimensional case we
find a phase transition for the isotropic system at
a finite temperature T~' supporting the series ex-
p i f' d' g fSt ly dKpl . W t
in pRssing that the present method ls not open to
the same criticisms~ leveled against the other
closed-form demonstrations of this effect. '0'33

Our final operating equations may now be sum-
IQRrlzed Rs

(SOS„') =—Z cos(K ~ R) coth ' — — —1
8 SEa(K)
& g&z AT

tailed form of the short-wavelength renormabzation
is Dot important for static parRmagnetic calcula-
tions. Consider, for example, the situation 8 0
in the absence of an applied field, i. e.„T-T~. In
such a limit, long-wavelength magnons (K& X,) have
energies which go to zero while short-wavelength
magnons have energies which (regardless of de-
tailed form) remain finite. It follows that, in this
limit, (2. 23) simplifies to

1 cos(K R)
(SOSa) =—~ 2~~c (-)+ K&Eg 0

(2. 27)

where we have made the isotropy assumption
((S') ) =({S")) =({S")) = —,'S(S+ 1). This equation
for Curie temperature, valid for any short-wave-
length magnon renormalization which allows for
+&Kg pRrRMRgnetic yx'opRgRtlng magnons~
diately reveals to us the qualitative nature of the
coherence length near the Curie temperature.
Thus, for three-dimensional systems„Eq. (2. 28)
predicts a noninfinite Curie temperatuxe only if the
coherence length at Tc is finite. For two-dimen-
sional isotropic Heisenberg systems, however, it
pi'edicts Tc = 0 (tile RPA 1'esult ) if co11ei'eilce
length J.( = v/Z, ) remains finite at r, but, possibly,
a finite Tc, if L diverges in this limit. The actual
sltuRtlon ls deterIQlned unequivocally» of coursep
by the simultaneous solution of (2.23) and (2. 24).
This solution, which is obtained numerically below
for the two-dimensional case, reveals that L does
diverge (and that Tc is therefore finite) for all val-
ues of parameter 4& 1, 4=1 being the HPA limit.

It seems evident that the greatest improvement
of. the pxesent theory over the existing first-order
Gx'een 8 functloD Rnd 1enormRllzed spin-wave Rp
ploximRtloDs will result fox' systeIQs ln wI1lcI1 pRX'R-

magnetic short-range ordex effects are most pro-
nounced, namely, spin 1attices of low dimensionality.
Such systems will support paramagnetic magnons
with long lifetimes over most of the Q.'rst Bxillouin
zone up to comparatively elevated temperatures,
and these effects are neglected entirely in all the
earlier Green' s-function approximations.

For this reason we have decided to compute the
theory in detail for the quadratic-layer (square)
lattice. Discussions concerning two-dimensional
magnetic systems have flourished in the literature
of late ' ' Most experimental information con-
cerns the quadratic-layer lattice. The question of
a possible phase txansition for the isotropic Heisen-
berg ferromagnet and antiferromagnet is of prime
academic interest. On the other hand, the reaction



1754 M. E. LINES

of such a system to the introduction of small anisot-
ropy and the stabilization of a truly ordered phase
for this case is of equal importance to experimental
understanding. Both questions will be discussed at
length.

III. TWO-DIMENSIONAL QUASI-HEISENBERG
FERROMAGNET

We now consider a Hamiltonian

E,(K) = 4J [ 2(1+&) —eos(K„a) —cos(K,a)]

+ /g/(So S, )'~~, K&Kc . (3.4)

Let us first look at the paramagnetic phase in the
limit h-Q. For this case we know physically that
S -0 but that nn correlation (So ~ S,) goes to zero
only in the limit of infinite temperature. It follows
that (2. 23) simplifies to

z'zc (3.3)

X= Q —u[S", S",+ S,'S;+(1+&)S',S', ] —aZ S', ,

(3 1)

where (in an obvious notation) we restrict exchange
interactions to nearest neighbors for computational
convenience, but where we allow for the presence
of small axial anisotropy & and also introduce an
applied-magnetic-field energy h= g pI,II, where II
is an external field applied in direction z.

Vhth this Hamiltonian the theoretical development
of Sec. II remains valid in its entirety but with
spin-wave energy Mx of (2. 13) replaced by a+ Mx
and where Mg = &g(T)E',(K), for the specific case
of a quadratic-layer lattice with Hamiltonian (3. 1),
18

MR = $„"(T)4JS[2(1+&) —cosK„a- cosK,a), (3.2)

where K„and K, are components of the wave vector
K along the square-lattice axes, i.e. , z is normal
to the plane. In particular, Eqs. (2. 23)-(2.26) re-
main valid if we put

E (K) = 48[2(l+ &) —cos(K„a) —cos(K,a) ]+ (k/S ),
—cos(K,a)+(4J1,) '1 ' . (3. 7)

Restricting our investigations to quasi-Heisenberg
systems (D«1) and, in particular, to the isotropic
limit itself, we neglect any small anisotropy of

(So ~ SR) in the paramagnetic phase to write (3. 5) as

(SOS') = 2kT —Z (~)
1 cosK H (3. 6)

E&Kg 0

with E,(K) given by/3. 3). For the case 8=0, Eq.
(3. 5) becomes

1
S(S+1)-{(S')')=2uT E—- (3.6)

K&Ice 0

For the limit S-O, h-0, we find ((S') ) = —,'S(S+1)
directly from the z = 1 form of Eq. (2. 16). This
result is rather dependent upon the form in which

anisotropy is included; it is not valid, in the
Green's-function approximation, for single-spin
crystal-field anisotropy, for example. ' Noting that
S/k= y/Eg2p~, where y is magnetic susceptibility,
we define a reduced susceptibility x, = S/h in terms
of which (3. 6) becomes

4 JS(S+ 1) 1 Z [2(l+ ~) —cos(K„a)& sc&rcC

4 J(SO ~ S~) 1 cos(K ~ R)
34T N „2(l+n) —cos(K„a) —cos(K, a) +(4ZXO)

(3. 6)

Defining the coherence length I. = m/Kc, we ean now express Eq. (2. 24) as

cos(K„I.) + cos(K„a/v 2 )

r&„1. 2(l+ 6) —cos(K„a) —cos(K, a)+ (4 JIio) '
r&„z, 2(1+6) —cos(K„a) —cos(K,'a) +(4 Jyo) ' ' (3. 9)

a=2~+(4@X,) '. (3. 10)

Before solving these equations numerically by com-
puter, there are one or two useful qualitative ob-

where, we recall, K= /I, vdefines a spherical cut-
off condition within the first Brillouin zone. To-
gether, Eqs. (3.7) and (3. 9) relate magnetic sus-
ceptibility yo and coherence length I. to temperature
T, for arbitrary values of the adjustable para. me-
ter 4. We note, in particular, that the susceptibil-
ity appears only in conjunction with anisotropy
parameter 4 in the form

servations which can be made. First, for L = a/W2,

Eq. (3. 9) has the general solution C = 1. For this
case, all spin wa.ves in the first Brillouin zone have

K&K~ and therefore renormalize like the magne-
tization. In other words, 4 =1 is just the RPA
Green' s-function approximation.

Also, consider the limit of infinite susceptibility
for the isotropic case, viz. , D-O. We shall find
below that the ratio L/a (= Q, say) becomes large
for small D in two-dimensional systems. Defining
8, =- K, L, (o, =x,y), Eq. (3. 9) then becomes, for an

infinite system
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for quantitative estimate of susceptibility. We must
therefore emphasize that the "exact series" results
at and below this temperature range are far from
exact, depending on the extrapolation procedures'
quite sensitively. They do, however, represent the
best approximation available and the discrepancy
between 4 = 0. 74 and the series results below v
= 1.27 is probably real since we have taken, if any-
thing, a high limit for Tot+/Tc' in the series. M

The computed results of theory in Figs. 1-3 have
so far been discussed only with reference to the iso-
tropic-layer system (6 = 0), primarily because the
high-temperature series coefficients are known only
for that case. However, from (3.10), we note that
the 4=0. 74 results in Figs. 1 and 2 canbe inter-
preted more widely. They are also valid for weakly
anisotropic systems if (XcZ) in the ordinates is
replaced by (ps J') '+86,. This allows us immedi-
ately to plot the susceptibility- vs-temperature
(paramagnetic) curves for the anisotropic cases,
noting that

(Xc~).'...= (Xc~),.'.—«. (3. 14)

In Particular we can calculate Tca& as a function of
anisotropy. The result is shown in Fig. 5. Taking

IO

T(2)
C

IO SERIES
4=0.74

l4—

12—

IO-
+
CO 8—
CO

Q
+~ 6-

I I I I I I

0 . I .2 .5 .4 .6 .6 7 .8 .9 I

e
FIG. 3. Variation of T&& with Green's-function param-

eter 4 (see text) calculated for the isotropic Heisenberg
quadratic-layer lattice using the theory of the present
paper. Note that T& ~ goes to zero in the RPA (4 =1)
Green's-function limit and that T& ~ is infinite for 4 (0.18
(no paramagnetic phase).

the Green's-function finding (3. 14) and assuming it
valid for the series-expansion susceptibility, we

may also calculate T~~' as a function of 4 for the
series approximation. This together with RPA
Green's-function and molecular-field estimates are
all shown in Fig. 5. The 4 =0. 74 and series-expan-
sion results differ only for systems with 4& 5x10
and even then by only a few percent.

A word about symbolism is necessary at this
juncture. We shall refer to the temperature for
which paramagnetic susceptibility diverges as T~ ',

and the temperature for which spontaneous mag-

IO
I.O—

0.8—

a
IO 06

U

I
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I- PO.4

I

—0.2U

I

O.I

I
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I

I
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I

l.4
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I.6 l.7

kT/JS (8+I)

FIG. 2. Expanded scale plot of Fig. 1 for tempera-
tures close to the high-temperature series TP& comparing
the "series" susceptibility with that of the "best-fit"
Green's-function curve 4 = 0.74. Also shown for com-
parison is the RPA Green's-function susceptibility in
this same restricted temperature range.

I/g

FIG. 4. Ratio of coefficients +~/aqaf f from high-tem-
perature susceptibility series (A1) are plotted as a func-.
tion of 1/l and extrapolated graphically (see Appendix) to
1/l =0, for which limit the ordinate equals the ratio of
TP» to the molecular-field Curie temperature Tc . The

filled circles are the exact-series coefficients for the
classical spin isotropic quadratic-layer lattice, taken
from Ref. 35.
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FIG. 5. Curie temperature Tc as a function of anisot-
ropy & (the ratio of anisotropy field to exchange field)
calculated for the weakly anisotropic quadratic-layer
lattice by Green's-function theory (BPA and 4=0.74).
Also shown is the molecular-field curve and (open circles)
the result of a calculation utilizing the high-temperature
series susceptibility (see text). The isotropic limits
Tg Tg ' are indicated by arrows.

netization goes to zero as T~ '. For three-dimen-
sional systems, all indications are that Tc'= T~",
so that we may always refer to a single phase tran-
sition temperature and call it the Curie temperature
T~. For isotropic Heisenberg systems in two di-
mensions, T~" =0, a rigorous result, ' while indi-
cations are that T~' may well be nonzero. For real
systems, anisotropy 6 is necessarily present and
we shall be concerned with the question "Are there
two phase transition temperatures T~"W T~' for
weakly anisotropic systems?" That is, for real
systems, is it conceivable to have three separate
phases: a ferromagnetic one, a paramagnetic one,
and a zero-magnetization infinite-susceptibility in-
termediate one? A similar question can be asked
for the antiferromagnetic analog.

For the ferromagnetic case already discussed,
the answer within the present Green's-function ap-
proximation is readily deduced from a comparison
of (3. 7) and (3.9) in the limit }to'-0 on the one hand
(which measures Tc'~') and (2. 24), (2. 2V), and (2. 28)
for the case k= 0 (which measures Tc' ') on the other.
It is clear that for any nonzero value of 4, the sets
of equations are identical, i.e. , T~"= T~'. For the
isotropic case the equation for T~" is indetermin-
ate. Thus, in this approximation at least, the iso-
tropic case alone requires us to differentiate be-
tween T~ ' and T~ ' and the zero-magnetization in-
finite-susceptibility phase can exist only for this
limit. Thus, To" moves discontinuously from To '

to zero at the isotropic limit. The manner in which
the magnetization curves approach the isotropic
limit will be discussed below [see, for example,
Fig. 12]. We can therefore refer unambiguously
to a Curie temperature T~ for the two-dimensional

For the isotropic (Heisenberg) quadratic-layer
ferromagnet we noted in Sec. III that coherence
length I.= Qa diverges as the susceptibility diverges
[T- TP'] in such a way that DQ remains finite
[where D, defined in (3. 10), is (4Jxo) for the iso-
tropic system]. The limiting value of DQ depends
on the parameter 4, and for the optimum value
C =0. 74 we find

lim DQ = 0. 0045 .
Q~ ao' D» 0

(4. 1)

It is of considerable interest to ascertain the tem-
perature dependence of susceptibility, coherence
length, and also correlation length L„„asfunc-
tions of t= T —Tc' in the vicinity of the singularity.
In Fig, 6 we plot reciprocal susceptibility against
t for @=0.74 to reveal that go~ t over quite an
extensive temperature range above T~'. In fact,

(}t Z) ' =1 45 (t/T'")' (4. 2)

is accurate (within the theory) to + 3' up to T- 2Tc '.
For t& 0. 4 T~~' the accurate coefficient in (4. 2) is
close to 1.43, which gives the remarkably simple
formula

(q, Z)-' = [kt/ZS(S+ 1)]', (4. 3)

accurate to within +1%. It follows from (4. 1}that

Q- 0.134JS(S+1)/kt = 0. 112To /t (4. 4}

as t-0. However, the temperature range over
which the coherence length varies linearly with 1/t
is quite small. The computed variation of a/L
= Q

' against temperature over a wider paramag-
netic range is shown in Fig. 7.

To compute the correlation length L„„,we note
that the Fourier transform (Sit S g) of the spin cor-
relation (So ~ Ss) can be written for wave-vector
magnitude K& w/L as

system in the presence of any nonzero anisotropy.
The Stanley-Kaplan formula (A2) indicates that

the proper dependence of T~ ' on spin quantum num-
ber is more complicated than the simple 8(S+I)
proportionality dictated by conventional effective-
mass theories and exemplified by the results plot-
ted in Fig. 5. For application to real (i.e. , aniso-
tropic) systems, and in order to produce the best
available theoretical results for two-dimensional
Curie temperature T~ = T~" = T~ ', it seems logical
to combine the spin dependence of (A2) with the
anisotropy dependence of Fig. 5. This is accom-
plished if the ordinate of Fig. 5 is replaced for» 2 by k Tc/Z[S (S+ I) ——,

' ]. A similar form may
possibly result if the present Green's-fu'nction
theory has 4 chosen separately for each S by fitting
paramagnetic susceptibility findings to nonclassical
series results.

IV. ISOTROPIC SYSTEM
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parison is the correlation length calculated from BPA
Green s-function theory.

isotropic system. We have chosen nn and next nn

along an axis (x or y) and the computed results a.re
given in Fig. 8 where we also show the RPA
Green' s-function result (4 = 1) for nn.

Sp
' S g) = 3kT/(yo'+4J [2 —cos(K„a) —cos(K, a)]] .

(4. 5)
In the limit K-O, this reduces to

(S& S -,) = (3uT/W)/[(ff. '.„+ff')a'],

.Opz
— / .ppp

=
~ (go ~J) (4. V)

We recognize the Ornstein-Zernike form of the re-
lationship. From ~4. 7,'( . &)knowing the temperature
dependence of susce tp ibility from our computations
above) we can now row relate correlation length directl

p, a ure. The result is sho ' F' 7
where it is contrasted wi. th the equivalent findin

Green s function and also with the
temperature variation of coherence length reported
above. From (4. 7) [using (4. 2)-(4. )] we can ob-
ain the behavior of L, as I-O.corr as ~ ' We fin

L...„/a- l. i8(r',"/f), f-0 (4 8

N +
'o e

, Ch
co .4

,J
I,z I,e 2.0 2,4

~corr lO 5 I y
(4 9

Also of intinterest, and readily computed from
(3.8) now thatat we know the temperature variation
yo, are the near-neighbor correl t'a lons (oo ~ Sg ) for the

I TzJs(s+I)

FIG. 8. TTemperature dependence of nn (8 = a) and
next-nearest axis neighbo (8 = 2n —,.- " ' ' r = a correlations (So' 8
as calculated by the theory of thry o e present paper for the
isotropi. c quadratic-layer ferromagnet. . Also shown for
comparison is the HPis .e HP Green's-function result for nn.
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Finally, fox this isotropic system in the limit of
zero applied field, let us consider what happens to
correlations at arbitrary distance B as T~' is ap-
proached from above. For any large but noninfinite
R, as T- T~', we shall pass through successive
situations 1.«B, I.-R, and L»B which, from our
defining equations g3. 7)-(3.9) correspond, re-
spectively, to(80 Sa) «0. V4S(s+1), (80 ~ 8s) -0.74
S(s+1), and (80 ~ Ss) S(S+1). Thus, in the limit
T- Tca', the correlation (80 8s) has its maximum
value S(S+1) for any finite R. On the other hand,
j.f we take the limit B-~ before the limit T- Tc',
then(80 8„)=0. In particular (80'8I ) =0. V48(s+1)
is always less than its maximum value, and for
R = L„„the correlation (80 ~ 8s) is always small
compared to 0. V48(8+1). In other words, the lim-
its R-~ and f-0[T- Tc'] are not commutative.
The low-temperature phase must be qualitatively
very similar to that found by Mubayi and Lange'
for their spin- —,

' wave-vector-independent decoupling
scheme, although the details are rather different,
e.g. , in Ref. 10 one finds T~" equal to the molecu-
lar-field Curie temperature, while the theory of the
present paper with 4 = Q. 74 gives T~' =0. 45 T&'.
Experimentally Miedema'7 finds Tc/Tc'- 0. 55 for
experimental S = —,

' ferromagnets which would make
the results of Fig. 5 for the weakly anisotropic fer-
romagnet fortuitously good for S = —,'. Stanley and
Kaplan' exclude spin —', from result (A2) because of
lack of "smoothness" of the known series coeffi-
cients. From Ref. 37, (A2) would seem to be quite
inappropriate for S=-,'.

V. &ONDENSED PHASE

In this section we shall consider the ordered
phase for the anisotropic system. We shall, in
particular, perform a quantitative calculation of
magnetization as a function of temperature for the
case b, =0.01 (a magnitude of anisotropy which is
fairly representative for quadratic-layer systems
containing magnetic ions. with orbitally nondegen-
erate ground states) and we shall also examine the
behavior of magnetization in the limit ~- 0, h- Q.

The first problem which manifests itself for the
ordered phase is that the Eqs. (2. 23)-(2. 26) are
not complete when the isotropy restriction (Sa Sa)
=(SOS*„) (used in the paramagnetic calculations) is
relaxed. We are confronted with the well-known
difficulty of evaluating longitudinal correlations in
the Green's-function context. ' ' The exact re-
lation between transverse and longitudinal correla-
tions expressed through the medium of Green's-
function theory is only immediately useful when
the exact Green's functions are known. For RPA
Green's functions in a ferromagnet it leads to a
violation of symmetry for the paramagnetic phase,
indicating quite unphysical antiferromagnetically
correlated (SoSR) for nn of equal magnitude but op-

posite sign to the transverse correlations. A sim-
ple physical criterion, which has some justification
within first-order effective-mass decoupling and
is quite accurate in the low-temperature spin-wave
region (although it also violates symmetry condi-
tions at the Curie temperature) is

(Szsg ) (St)2- (8 )2 (5. 1)

For reasons of simplicity, this is the approximation
which we shall now use in (2. 24), even though we recog-
nize that, at the expense of a considerable increase
in labor, a method could be developed ' ' which
would enable us to avo.id symmetry violation within
the simple decoupling scheme of the present paper.
Thus, using (5. 1), Eq. (2. 24) becomes for a two-
dimensional lattice (d = 2)

s'+ 2(s,"s",) =@(s'+2(s",s.*„,)), (5. 2)

where 4', for the quadratic-layer lattice at least,
is 0.74. The approximation (5. 1), as incorporated
into (5. 2), retains the necessary feature that as
S- 0 (i.e. , T- Tc for any finite anisotropy case) it
shows Tc(i) = Tc(2)

An additional simplifying feature which we have
adopted for the weakly anisotropic quadratic-layer
lattice is to make use of the fact that nn correla-
tions are so nearly complete at T~ that we can with-
out incurring great error assume that short-wave-
length magnons (K& m/L) are completely unrenor-
malized throughout the ordered phase. This fea-
ture of two-dimensional quasi-Heisenberg behavior
has already been observed experimentally" for the
antiferromagnet K2NiF, . This enables us to replace
short-wavelength magnon energies by simple spin-
wave energies in the ordered phase (an approxima-
tion which would be far less appropriate for three-
dimensional systems).

Thus, our operating equations will be (2. 23),
(2. 25), (2. 26), and (5. 2) but where (8, S,)'~a is re-
placed by spin quantum number S, and where Eo(K)
is given by (3.3) and (3.4), the latter also contain-
ing the (80'8,)'~a S substitution. In short, spin
waves with E& v/L are treated in RPA and those
with IC& v/L in simple spin-wave approximation with
coherence length L determined self-consistently
from (5. 2). In general, I. increases with decreasing
temperature and goes to infinity for some tempera-
ture T& Tc, belowwhich Eq. (5. 2) has no solution.
This has an obvious physical interpretation, the
spin correlations at infinity being then greater than
that used to define coherence length, i.e. , all spin
waves below this temperature are short-wave-
length spin waves and renormalize as (80 8,)'~ in
general (the usual interacting spin-wave approxi-
mationae) but are temperature independent in the ap-
proximation being used in the present section for
two-dimensional systems.

Solving our equations numerically for the case
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FIG. 9. Magnetization $ as a function of temperature
fox the anisotropic quadratic-layer ferromagnet, calcu-
lated for anisotropy parameter &=0.01 and spin =

2 .
The theory of the present paper (4=0.74) is compared
with other approximations, viz. , RPA Green's-function
theory, simple spin-wave theory, and unrenormalized
Green's-function theory (see text). The arrow signifies
the temperature for which 4 =0.74 theory begins to dif-
fer from the unrenormalized Green's -function and sim-
ple spin-wave approximations.

'

h=0, 4=0, 01 we obtain the magnetization curves
shown in Figs. 9 and 10 (for spin +z and 1, respec-
tively). Also shown in these figures are the re-
sults for three other very interesting approxima-
tions; one is simple spin-wave theory, the others
are the two Green's-function extremes C =1 (which
is RPA theory with all magnons renormalizing in
long-wavelength fashion according to S) and the un-
renormalized Green's-function approximation (in
which magnon energies are completely unrenormal-
ized at all temperatures) which, for the present
two-dimensional approximation for short-wave-
length magnons, corresponds to the limit L = ~.
The latter bvo theories are very useful, since they
always bound the 4 =0.74 theory and, being very
much simpler to analyze in the limit of k-0 and/
or 0, -0, give us valuable information concerning
the qualitative behavior of the constant-4 theories
as the Heisenberg limit is approached.

For spin 2 the 4 = 0.74 magnetization curve coin-
cides exactly with the unrenormalized Green's-func-
tion curve (and almost exactly with the simple spin-
wave curve) up to a temperature T/Tc = 0. 52. The
equivalent result for spin 1 is T/Tc =0.44. This
is io great contrast with RPA Green's-function mag-
netization which deviates from the spin-wave result
significantly at much lower temperatures. A whole
family of 4 curves can, of course, be readily com-
puted to lie between the RPA and unrenormalized
Green's-function curves. Vfe note that the Curie
temperature in the unrenormalized approximation
is infinite and that from Fig. 3 this is also true for
all theories with 4 & 0. 18.

I.O—

6=0.Ol

S=l

.2 .4 .6 .8 I.O I.2 I.4 I.6 I.8

kT/ JS(S+ I)

FIG. 10. As Fig. 9 but for spin quantum number $=1.

As anisotropy & is decreased, we know that T~
(RPA) tends towards zero (Fig. 5) while Tc (4 = 0. 74)
tends toward Tc ' = I. 19JS(S+I)/k. The former
trend is a very slow (logarithmic) one and in Fig. 11
we show the computed results for the relevant
theories in the case S=+~, h=0, and &=0.0001, an
anisotropy value already more than an order of mag-
nitude smaller than that which appears to occur
naturally in the least anisotropic experimental ex-
amples available to date. The qualitative behavior
of magnetization curves as we approach the isotrop-
ic limit now becomes apparent and is sketched in
Fig. 12.

From an academic standpoint, however, the iso-
tropic limit and the approach to it are of consider-
able importance. Algebraically the easiest ap-
proach is to estimate an upper bound on magnetiza-
tion as given by unrenormalized Green's-function
theory. In this approximation x of Eq. (2. 26) is
given by

Nx = Qx coth[SE, (K)/2kT], (5. 3)

where the summation is over the entire first Bril-
louin zone of the reciprocal lattice, and where

Eo(K) = 4J[2(l+ &) —cos(K„a) —cos(K,a)]+ (k/S) .
(5.4)

As ~ and h tend towards zero, the summation in
(5. 3) is dominated by long-wavelength contributions
and, replacing the sum by equivalent integral, we
find to lowest order

x= —(kT/4vJS) In[& + (k/4JS)]. (5. 5)

Since this value of x tends towards infinity as 4 and

h tend towards zero, the equation for S as a func-
tion of x [viz. , (2. 18)] may be replaced by its form
in this limit which is

S/S = 2(S+ 1)/3x, x (5. 8)

which, on substitution from (5. 5) gives

S 8mjS(S+ 1)
S 3kT in[2&+ (k/4JS)]

'
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6=0.000I
S=7/2

,8

.2

.2 .4 .6 .8 I.O I.2 I.4,I.6 I.8

k T/JS(S+I)

PIG, 11. As Fig. 9 but for ~=0.0001.

(SOS,")= 3S(S+1) . (5.S)

For arbitrary remote neighbors SQ and SR we find
~

'H
cK.

16v2JS J J —,'K2a + 2 n + (k/4 JS)
BZ

(5. 10)

where the integral f fez is over the first Brillouin
zone for the quadratic-layer lattice. We see that
for any finite value of R

lim (So S~) = —,'S(S+ 1), (5. 11)
Q ~Qo Q~Q

but that for any nonzero value of 6 or h

Here we have two results. In the absence of ap-
plied field, magnetization goes to zero in the iso-
tropic limit as [T In(1/n)] ' for any nonzero tem-
perature and also, for an isotropic system, mag-
netization goes to zero for vanishing applied field
k as [Tin(Z/k)] ~ for any nonzero temperature.
These we recall are upper bounds (the latter, in
particular, coincides with the finding of Mubayi
and Lange'o) and therefore demonstrate the absence
of long-range order for the isotropic system in the
absence of applied field and for any nonzero tem-
perature.

Also readily calculated explicitly within the un-
renormalized Green's-function theory for the
4 -0, h -0 limit are the transverse components of
two spin correlations. For nn we find

(SOS",) =(kTS/8vJS)in[26+(k/4JS)] ', (5.8)

which, using (5. 7) for S/S, reduces to

mation itself. One readily establishes that

3(SoS ) g cos(R a) p [E (g)]-
S(S + 1) & & rc Eo(&) Kcr

(5.13)

as 4-0 and h-0, i.e. , nn transverse correlations
(SOS,")-—,'S(S+1). Indeed, the spins will have this
maximum correlation for any spin separation
R «L (the coherence length). By definition, (SOS~)- —,'CS(S+1). As we approach the isotropic limit,
the coherence length diverges and, for the particu-
lar case 4 = 0.74 of the present paper DQ2- 0.0045

[Eq. (4. 1)], where Q=I /a and D= 2h+(4TXp)
Thus, for any finite spin separation R, the spins
will become fully correlated (SOSs)- -',S(S+1) in

the isotropic limit, but for a system with infini-
tesimal anisotropy or applied field the limiting
value of transverse correlations as R- ~ is zero.
When R is the coherence length the correlations are
—3CS(S+1) and when ft is the correlation lengthI, „„,
the transverse correlation will be small compared
to —',S(S+1).

We note from (4. 1) that when k=0 the coherence
length diverges in the isotropic limit closely as

L -a/(216'~ ), 6 0, k=0 . (5.14)

The calculation of magnetization in the constant-
4 approximation is not readily expressed in simple
algebraic form because of the temperature depen-
dence of coherence length as dictated by (5. 2).
Nevertheless, another simple approximation can be
used to give a lower bound to S as we approach the
isotropic limit. This can then be used in conjunc-
tion with the upper bound (5.7) from unrenormalized
Green's-function theory. The lower-bound approx-
imation replaces the coherence length at T & Tc by
its value at the Curie temperature. Using (2. 25),
(2. 26), (3.3), and (3.4) (but with (So S, )'~2 replaced

&I«~I+I

IO

lim (SOSR) =0 .
R-~

(5. 12)

Once again we find uncommutative limits; this time
for R- and the approach 6-0 and h-0 to the
isolated isotropic Heisenberg system.

Once we have established that S goes to zero for
the isotropic limit, we can obtain some algebra-
ically simple results for the constant-4 approxi-

0.5 I

T/Tq isotropic

I

I.S

FIG. 12. Qualitative sketch of the temperature depen-
dence of the magnetization as we approach the Heisenberg
limit &= 0 for a two-dimensional spin system.
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by 8, as explained above, for two-dimensional sys-
tems) we find, in the limit of small 6 and k

&1/Z, (K)),' —&1/Z, (K)), ' +(S/8)&1/Z, (K)),"
= 8(8+1)t/3kT', (s. ls)

T=1 =I
~ 1 0 y y ~ 4 ~ ~+ «z~&r)

' & z&E: (~)
(s. 15)

and where t -=Tz —T «Tc. Noting that the first two
terms in (5.15) make up a negative quantity for
T & To [Kc(T)decreases with decreasing tempera-
ture], we can write the inequality

(8/8) &1/Z, (K) &,
' 8(8.1)t/3kT', . (S.IV)

Consider first the case h= 0 and 6- 0. 'Meriting

&1/Zo(K)&,
' = &1/Zo(K) &

- &I/Zo(K) &,
', (5.18)

where the first term on the right-hand side involves
an average over the entire first Brillouin zone, and
noting that

&1/Z, (K)&, ' =8(8+ 1)/3kT, ,

Eq. (5. 1'I) beconi~

(5.19)

(s.20)

wher«=8m+8(8+1) /3kTC, which for the quadratic-
Iayer fer»magnet (4 = 0. t4) is almost exactly equal
to 7.0.

A similar calculation for the limit 6= 0, h 0
gives

&(t/Tc) &=0, h- 0 (s.as)

where Q=L (Tc)/s. But, in this same limit for the
quadr atic-layer lattice

kQ~/(8) =0.018J; (s.22)

from (3. 10) and (4. 1). Eliminating Q between (5. 21)
and (5. 22) gives

8- [in (Z/k)]-', &=0, h 0 (s. as)

X,-I.'-[kin(Z/k)]-', ~=0, k-0.

AppENMx

Since the present theory is most valid for high

spin quantum numbers, we use the classical series
results for determining 4. For the classical-spin
quadratic-layer isotropic Heisenberg lattice the
high-temperature susceptibility series is

X/Xc ),=1+~ sr /'r {Al)

where v=kT/JS(8+1. ) and Xc„„,=F2 p, ~~ 8(8+1)/3kT
and has coefficients a, which are known exactly '
out to l =9.

In Fig. 4 we show a plot of a, /a, a,., vs 1/I which

should extrapolate 'to T~ /T~ as the abscissa goes
to zero [where Tc' = 8JS (8+1)/3k is the molecular-
field Curie temperature]. In an earlier assessment
of the shorter nonclassical series'9 a formula

kT'@= g j(z —1) [28{8+1)—1], 8& 2 (A2)

was proposed (where z = 4 for our case giving Tc /
Tc'=0. 45 as 8 ~). Later analysis of the longer
classical series" points to a lower Tc '/Tc' value

of perhaps between 0. 3 and 0.4.
In Fig. 4 we extrapolate smoothly to an ordinate

0. 40. Quantitatively the extrapolation is very closely

a, /a, a, , = 0. 40+ 1.4 (I/I ) —2. 3 (I/I )3, I » ~

(A3)

Using (A3) together with the exact terms I » 0 we

have computed the "exact series" curves of Pigs.
1 and 2.

(
8 n(t/T )
8 in[(t/T, ) (0. 01&88/k) n]

4=0, h, 0 (s. 23)

Comparing (5. 20) and (5. 23) with upper-bound re-
sult (5. t) allows us to conclude that in the constant-
4 approximation, for T& T„

8-[In(1/~)]-', k =0, &-0 (S. 24)
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High-Temperature Magnetic Susceptibility of Interacting Electrons in a Solid. II*
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A new alternative expression for the third viria1 coefficient for fermions is derived. It is
used to deduce an expression for the high-temperature magnetic susceptibility of electrons
which interact according to the Hubbard Hamiltonian. The work extends a previous calcula-
tion which considered only the second virial coefficient. The results are compared with the
Stoner theory of the ferromagnetism of itinerant electrons. The inclusion of the third virial
coefficient modifies the usual expression for the susceptibility and indicates an increased
tendency toward ferromagnetism.

I. INTRODUCTION

In a previous calculation, ' the virial-expansion
technique was used to examine the magnetic sus-
ceptibility of a system'of interacting electrons de-
scribed by the single-band Hubbard Hamiltonian. ~

The virial-expansion technique is applicable to low-
density systems and gives an approach to the study
of such systems at temperatures higher than the
Curie temperature of a possible ferromagnetic
transition. The work mentioned above contained a
rigorous determination of the second virial coeffi-
cient using the methods of solid-state scattering
theory. ' The spin susceptibility which was obtained
agreed with the high-temperature susceptibility in
the Stoner theory of the ferromagnetism of itinerant
electrons. This enabled the establishment of a
relation between the paramagnetic Curie tempera-

ture of that theory and an element of the t matrix
for particle-particle scattering.

The object of this paper is to consider the third
virial coefficient for the same system. We are as
yet unable to calculate this exactly as was done for
the second virial coefficient, and our final result
still involves one significant approximation, the
nature of which will be specified subsequently.

Several authors have discussed the quantum theo-

ry of the third virial coefficient. ' The derivation
of this quantity is considered in Sec. II of this paper.
The determination of the third virial coefficient b3

requires information concerning three-particle
scattering processes. We employ the Faddeev
equations to obtain a concise expression for b3

[Eq. (2. 25)] which contains a free-particle part and

a term involving only connected diagrams for three
particles. This expression is rigorous, general,


