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A detailed study of the static and dynamic critical behavior of the planar antiferromagnet
K2NiF4 is reported. The dynamic experiments reveal several unusual features. Magnons over
most of the Brillouin zone are observed to persist well above Tz. The magnons ultimately be-
come unobservable because of lifetime effects rather than any appreciable renormalization of
the real part of the energy. The spin-wave gap remains sharp right up to the phase transition
and, in fact, it seems to renormalize like the sublattice magnetization at all temperatures.
The transverse excitations for q & 0 in general exhibit no explicit recognition of the phase tran-
sition and even at q = 0 there is no apparent variation through T& of the integrated intensity.
The function 8 "(q, co), which manifests the expected critical behavior, is found to be very nar-
row in q, co space. For T & Tz there is no measurable inelasticity of the critical fluctuations at
q=0. For T& T&, , 3 '(0, ~) has a finite width which goes to zero as T —T& thus exhibiting the
critical slowing down first predicted by Van Hove. Quasielastic measurements of X (q) have
been carried out for T ~ TN. These experiments yield the critical exponents p= 0.4 + 0. 1 mea-
suredat Tzand p= 0. 57 + 0. 05, p =1.0+0. 1 for T & Tz. The value for q is similar to that for
the two-dimensional Ising model, p= 0.25, but p, y differ considerably from the Ising-model
values of l+. This latter result is not in agreement with current theory.

I. INTRODUCTION

In several recent papers we have reported neu-
tron-scattering investigations of various aspects of
the static and dynamic properties of the planar anti-
ferromagnet K2NiF4. ' ' The principal result of these
studies is that K~NiF4 has a pronounced two-dimen-
sional ([2]) character and, in particular, it seems
to exhibit what may be described as a genuine [2]
second-order magnetic phase transition. In the
static experiments, which measure the Fourier
transform of the equal-time pair-correlation func-
tion, it is found that in the paramagnetic regime
the critical scattering has the form of ridges rather
than peaks; these ridges, which extend in the di-
rection perpendicular to the NiF2 planes, are found
to be absolutely independent of that momentum co-
ordinate, thus showing that the correlations are
entirely two dimensional. As the temperature is
lowered towards the ordering temperature, the
scattering intensity at the superlattice position
grows and the ridge narrows, corresponding to con-
tinuous increases in the staggered susceptibility and
the correlation length, respectively. At 9V. 23 K,
the system undergoes a magnetic phase transition;
however the actual transition is three dimensional,
that is, the system achieves long-range order si-
multaneously both within the NiF& planes and be-

tween them. The crucial feature is that the order-
ing is not accompanied by any observable [3] critical
scattering both above and below 7&. This immedi-
ately leads one to conclude that the phase transition
is driven by the planes themselves and that the [3]
aspects are inessential. From a study of the ge-
ometry of the critical scattering, it is also found
that only lt" (0), the component of the [2] staggered
susceptibility along the anisotropy direction, di-
verges at T& .3 It therefore seems that the anisot-
ropy is playing an important role. In fact, it is
probably this anisotropy which enables the [2] NiFs
planes to order, since a [2] Heisenberg system can-
not exhibit conventional long-range order for T & 0.

To date, studies of the dynamics of K3NiF4 have
been limited to a measurement of the spin-wave
dispersion relations at 5 'K and an initial investiga-
tion of the long-wavelength magnons around T„.'
The low-temperature measurements showed that
magnons propagating within the planes are accu-
ratelydescribedby simple spin-wave theory with a
nearest-neighbor Heisenberg exchange J= 9. 68
a 0. 06 meV (3C = J S, ~ Sa) and an anisotropy field
gp~H~ = 0. 073+ 0. 001 meV. The spin-wave energies
were also found to be independent of the momentum
component perpendicular to the NiF3 planes to within
an experimental accuracy of 1 part in 270. Several
long-wavelength magnons, and in particular one at
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E= 7 meV with q- 0. 05 reciprocal-lattice units
(i. e. , X= 110A) were followed through TN . Some-
what surprisingly, it was found that the 7-me V mag-
non changed little in either energy or width up to

1.1TN '
So far, studies of the critical exponents have

been limited to a measurement of the sublattice
magnetization which yields P = 0. 138+ 0. 004; this
is extremely close to the value P = 0. 125 appropriate
to the [2] S= —,

' Ising model. Rscent numerical work
has indicated that the critical exponents in the as-
ymptotic limit should depend only on the symmetry
of the Hamiltonian and not on its details. This fact,
together with the observed value for P, would seem
to suggest that K2NiF~ might indeed exhibit critical
behavior similar to that predicted for the [2] Ising
model.

In this paper, we report detailed studies of the
static and dynamic critical behavior of K2NiF4 em-
ploying precise resolution corrections. It was
originally hoped that it would prove possible to study
the critical dynamics with sufficient accuracy to be
able to test the dynamic scaling ideas of Farrell
et al. and Halperin and Hohenberg in two dimen-
sions. ' However, both because of the narrowness
of the critical mode in q, (d space and simple sig-
nal-to-noise problems we have been limited to a
semiquantitative survey of the dynamics around T„.
For the statics, however, because one integrates
over energy there is no signal-to-noise problem
and we are able to measure the static critical ex-
ponents accurately. In this paper we report mea-
surements of X'(0), the staggered susceptibility for
T & T&, K' the inverse correlation length for T & T»
and X(q) at T„. Measurements for T& T„will be
reported at a later date.

The format of the paper is as follows. In Sec.
II, we review the general theory of magnetic neu-
tron scattering, particularly as applied to two-
dimensional systems. Vfe discuss in detail the
theory for the static measurements where we show
that there is an important simplification in obtain-
ing J da in one- and two-dimensional systems. In

Sec. III, the details of the experimental technique
and the methods of data analysis are presented.
The experimental results for the dynamics are
described in Sec. IV, while the static critical be-
havior measurements are presented in Sec. V.

II. THEORY

A. Neutron Scattering

The magnetic neutron-scattering cross section
for unpolarized neutrons from N localized spins is'

92
=~(k„k,) Q (6„,—j.j, ) S "'(Q, ~),

where the momentum transfer hQ=5k& -8k~, the

energy transfer

a~ = (a''/2m, ) (u,'- S,'),
and A(k, , k&) is a constant depending on the moment,
the form factor, and k„kz, Here

s '(Q, ~) = (I/») J „e"' ""Z; & S.-'(o) S';(~) ) d ~

(2)
that is, the scattering cross section is directly
proportional to the space-time Fourier transform
of the unequal-time two-spin correlation function.
For systems with Heisenberg interactions and uni-
axial anisotropy, only the diagonal components
n = P are nonvanishing. The component of & (Q, v)
associated with the fluctuations may be written

&D'(Q, ~) = (4T/g'V')X "(0)

x(@„P/I e- ~) F (Q, „), (2)

where the frequency distribution function F '~(Q, &u)

has the property that

J d (o F ' (Q, (u) = 1 .
X ~(Q) is the wave-vector-dependent susceptibility.
Equation (5) is simply a statement of the well-known
Quctuation-dissipation theorem. "

In the dynamics experiments one is interested
in detailed studies of F (Q, sp). If, for instance,
one assumes that the correlations decay exponen-
tially in time, then F ~(Q, &) will have the form of
a simple Lorentzian in the energy

F "(Q, ~)=. '[I'(Q)/~'+1(Q)']. (5)

If, in addition, the correlations have an oscillation
in time with frequency &o(Q) superimposed on the
exponential decay, then (5) becomes two displaced
Lorentzians centered about + u&(Q).

For the longitudinal component near TN, one ex-
pects F" (Q, w) to have a Lorentzian frequency
spectrum as in (5). The transverse components in
an anisotropic system however may well have a
magnonlike shape near T„, approximating closely
displaced Lorentzians. Indeed we have already ob-
served experimentally that long-wavelength magnons
persist up to 1.1 T„.

Using (4), Eq. (2) may be rewritten

(6)

For the critical fluctuations under normal conditions
the major contributions to X "~(Q) come in the region
8& «k~T. In that case,

(1 —e "~/N(oP) = 1,

so that (6) becomes

J„d»g'(0, ~)=(&sT/g'u')X (Q);
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hence by measuring I"„d~ s g~(Q, &u), we may in fact
measure directly the wave-vector-dependent sus-
ceptibility. In Sec. IIC, we discuss the problems
in obtaining f d~ experimentally.

B. Wave-Vector-Dependent Susceptibility
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The wave-vector -dependent susceptibility has
been discussed in detail for the [2] and [3] Ising
models by Fisher and Burford. ' They show that to
rather high accuracy for T» T, one may write

X(q)/Xo ——(I/z, ) (& +rP q )" /(& +gq ), (8)
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where, in two dimensions, q=-,' and y(T) is a slowly
varying function with magnitude 0. 03 at T„g=1
+~2p which is very close to 1. po is the Curie
susceptibility for noninteracting spins. For T = T„
Eq. (8) becomes

)t(q)/X, = (I/r, )' "(q"/q' "),
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whereas for T& T, and q & w/q

X(q) /Xo= (I/~i)' "(&"/K'+ q') .
These two forms are consistent with the exact re-
sults of Kaufman and Onsager' and Kadanoff and
Wu for the [2] Ising model. In the past various
workers have tended to use Eq. (8) either with

g= 0, the classical Ornstein-Zernike form, or with

p = 1, g= 1 which is known as Fisher and Burford's
"first approximant. " In [3] systems where q is
small, the final results tend to be insensitive to the
explicit form used. However, as we shall see, in
two dimensions p may be quite large and in that
case the specific analytic form chosen for y(q) is
quite important. Finally, in K2NiF, we have the
additional complication that there is no explicit
theory for a [2] near-Heisenberg antiferromagnet.
We must therefore use Eqs. (8)-(10) only as a guide
with the final form being dictated by the experi-
mental results themselves.

C. Quasielastic Approximation

From Eq. (7) we see that the wave-vector-de-
pendent susceptibility is proportional to f ~
~~(Q, &) provided only that k&«k BTThus we may
in theory obtain Z

'
(Q) by measuring 8 0(Q, &) di-

rectly and integrating over ~. In practice, how-
ever, this is not possible in most cases. Theusual
experimental technique is instead to remove the ig

discrimination and simply to accept all neutrons
emerging at a given scattering angle. This yields
J dk&A(k&, k&) 8&(Q, u&), which is proportional to
f gu 8&(Q, &u) provided that the reduced parameter

[(mph)I'/k, «] «1,
where I' is an average characteristic frequency,
k& is the incident neutron wave vector, and K' is the
inverse correlation length. This simply requires
that the change in k& involved in integrating over ig

RESOLUTION ELLIPSE

(000)
FIG. 1. Diagram of a two-axis neutron spectrometer.

Lower portion gives the equivalent scattering in recip-
rocal space.

[(mo/S)F/k, z] sine' «1, (12)

where 8& is the angle k& makes with the (1, 0, l)
ridge. Condition (12) may always be satisfied by
choosing the scattering geometry such that 8&= 0,
that is, by having kf parallel to the ridge. In this
case, changing k& does not change the momentum
transfer within the planes, so that the integration
over the energy is performed properly. If we

be small compared with x, or in more physical
terms, that the neutron pass through a region of
correlated spins in a time fast compared with the
fluctuation period.

In one- and two-dimensional systems, however,
an important simplification occurs which enables
us to measure f ~ directly. This is best described
by explicitly considering the scattering diagram.
In Fig. 1, we show a typical experiment setup in a
two-axis experiment. The corresponding scatter-
ing diagram in reciprocal space is shown in the bot-
tom part of the figure. In a [3] experiment, the re-
duced-momentum vector would be measured from
the (1, 0, 0) reciprocal-lattice vector. As discussed
by Schulhof et al. (Ref. 15) this immediately leads
one to condition (11). In two dimensions, however,
if (0, 0, l) is the direction perpendicular to the mag-
netic planes, then q is measured from the closest
point along (1, 0, l) rather than (1, 0, 0). It is trivial
to show that (11) then becomes
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choose local axes such that z is along the ridge and
x is perpendicular to it, thenfor Q«k„e,. =0 when

Q„/2k,
Qg Qg [1 2(q /2k )2]1/2 (18)

In order to illustrate the effects of inelasticity for
various geometries we have carried out a computer
simulation of a constant-angle experiment. The re-
sults of this study for several values of the reduced
parameter (m~I'/k)/k(x are shown in Fig. 2. ' This
was calculated for the experimental setup shown in
Fig. 1 with the x and z axes defined as above,
Q„= 1, kI ——6, and I' taken at a constant value inde-
pendent of q. It assumes
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and the xx, yy components are neglected for pur-
poses of this illustration. From the figure it may
be seen that the inelasticity may indeed have sig-
nificant effects on each of y(0) and x. However,
both are properly determined when (12) is satisfied.

In a one-dimensional system the requirement for
8&= 0 is simply that k& must be perpendicular to the
chains.

III. EXPERIMENTAL TECHNIQUE

A. Sample and Apparatus
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FIG. 2. Results of the computer simulation of a con-
stant-angle experiment for various values of the reduced
inelasticity (moI'/5)/kg(&. Upper part of the figure gives
the apparent K divided by the true K for various inelas-
ticities as a function of Q». Lower part of the figure
gives the peak intensity under the same conditions.
Calculations were performed for Q,=1, k;=6, v=0. 05.

The crystal structure of K&NiF4 and, inparticular,
the structural reasons for the [2] behavior, have
been discussed at some length previously. ' A

diagram of the structure together with the corre-
sponding reciprocal-lattice diagram for the orienta-
tion used in these experiments is given in Fig. 3.
The sample employed in these experiments mas
grown by Guggenheim of Bell Laboratories. The

FIG. 3. Chemical and magnetic structure of K2NiF4.
Inverting the central spin exchanges the a and b axes.
Reciprocal lattice displays both the [010] and [100]
magnetic zones. Nuclear Bragg peaks are indicated
by double circles. Thick lines indicate the vicinity in
which two-dimensional critical scattering is observed.
Around Z"z ——97. 28 'K, a*=1.112 A ', c*=0.4818 A ~.

sample and method of growth have been described
previously. ~ The crystal is approximately 0. 5 cm'
in volume with a mosaic spread (full width at half-
maximum) of 0. 6 deg.

The elastic and inelastic experiments mere car-
ried out, respectively, on double- and triple-axis
spectrometers at the Brookhaven High-Flux Beam
Reactor. The elastic experiments mere performed
at wavelengths (X) of 1.029 and l. 968 A. The
monochromator gras a germanium crystal reflecting
from (3, 1, 1) and (1, 1, 1), respectively, in transmis-
sion geometry. This choice of reflections minimized
beam contamination from —,

'
X neutrons. 10-min

horizontal collimation before the monochromator
and both before and after the sample gras employed
(see Fig. 1). There was no explicit vertical colli-
mation except for that determined by the collimator
heights themselves. In these experi'ments this
meant that one essentially integrated over the ver-
tical coordinate of the scattering function. In the
inelastic experiments, incoming energies varied
betgreen 5. 2 and 56 meV depending on the energy
range being studied and the resolution required.
The monochromator and analyzer were both pyro-
lytic graphite reflecting from either (002) or (004).
The collimators were also varied in order to opti-
mize both the signal and the resolution wherever
possible. The sample was mounted with its [010]
magnetic axis vertical on an aluminum pedestal us-
ing Hysol Epoxy type 1 C; both the pedestal and glue
were covered with cadmium. The sample holder
graS thetl LQOUlil, t'0, Lll c'L CryOgeniCS ASSOCiateS tem-
perature-control Dewa, r; around T„=97. 2 'K rela-
tive temperatures mere found to be reproducible to
within 0. 020'K.
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tion of the intrinsic cross section both with the
mosaic function of the sample and with the instru-
mental resolution. As noted previously, for quasi-
elastic experiments carried out around (1, 0, 0), the
sample mosaic part of the convolution drops out.
Over essentially the entire temperature range of
interest to us here, the instrumental resolution is
an important factor. The actual values for the
parameters in y(q) then must be deduced by least-
squares fitting the chosen analytic form for y(q)
folded with the resolution function to the experimen-
tal data on a point-by-point basis. This procedure
necessarily limits our ability to distinguish between
the different analytic forms for 1(q). We shall dis-
cuss the actual implementation of the fitting pro-
cedure in Sec. V.

For the dynamic experiments, we must include
in the resolution ellipse an additional variable —the
energy. Since we do not carry out any explicit de-
convolutions of our dynamic experiments, it is not
worthwhile discussing this in any more detail here.

FIG. 4. Energy analysis of the scattering at q=0 for
T = 90 'K, 7. 2 'K below Tz. This experiment measures
approximately 8 D(0, &}+ 3 D(0, &}. Solid line is the cal-
culated line shape assuming perfectly sharp excitations.
Dotted line is a guide to the eye.

B. Resolution Limitations

The ultimate precision of the experiment is lim-
ited by both the mosaic spread of the sample and
the resolution limit of the instrument. In this case,
the sample mosaic is rather large and hence could
present a serious problem. . Fortunately, however,
since the critical scattering is [2], it is possible to
avoid this difficulty. Consider the reciprocal-lat-
tice diagram given in Fig. 3. At the (1, 0, 0) posi-
tion the mosaic spread is perpendicular to the
(1, 0, 0) vector and hence the mosaic in the plane is
along the (1, 0, l) direction. However this is just
the direction of the critical scattering ridge. Thus
there is no first-order contribution of the sample
mosaic to the ridge width around (1, 0, 0). There is,
of course, a contribution to the vertical width.
However, since our experimental arrangement is
such that we effectively integrate over the vertical
coordinate of the scattering function, the vertical
mosaic has no effect.

The resolution function of a two-axis spectrom-
eter can be described as an ellipsoid in reciprocal
space where any cross section through the ellipse
has a Gaussian intensity profile. ' The resolution
ellipse within the plane is illustrated in the bottom
part of Fig. 1. To a first approximation it may be
described as an elongated ellipse with the long axis
nearly perpendicular to k&. In our case it is only
this long axis which is important.

The experimentally measured data are a convolu-

EV,. EXPERIMENTAL RESULTS: DYNAMICS

As noted in the Introduction, previous studies of
the dynamics in K&NiF4 have been limited to a mea-
surement of the magnon dispersion relation at
4. 2 'K and a brief survey of the thermal evolution
of some long-wavelength magnons through TN .' In

this work, we consider first the behavior of
3 (q, a&) and 3 (q, &u) at q~ 0 around T„. Here 8

"

is defined as the component of ~ ~ along the spin
direction (c axis) in the ordered phase; similarly,
' is the component perpendicular to the c axis.
Experiments around q= 0 were carried out mainly
with 5. 2-meV incoming neutrons and with 40-min
collimation before and after both the monochromator
and analyzer. An energy scan at 90'K at the posi-
tion (1, 0, 0. 3) is shown in Fig. 4. This scan mea-
sures approximately the combination

[ ~ "(Q, ~)+ ~'(Q, ~)]. It should be emphasized that
the magnetic Bragg peaks are [3] in character and
therefore occur only at positions such as (1, 0, 0),
(0, 1, 1), and (1, 0, 2) whereas the critical scattering
is completely [2] in form; hence by going along the
ridge away from the Bragg-peak position it is pos-
sible to observe the pure fluctuation spectrum with-
out the complication of having to subtract off a
Bragg peak as occurs in [3] critical scattering ex-
periments. From Fig. 4 it may be seen that for
q = 0 at SO K the spectrum is composed of a sharp
peak centered around E= 0 and satellite peaks at
-1.5 meV (we show in Fig. 4 only the neutron en-
ergy gain peak). Measurements of the relative
intensities of the peaks for various positions along
the ridge, which in turn varies the relative contri-
butions S" and 3, show that the central peak
arises from &", the longitudinal fluctuations, where-
as the peaks at -1.5 meV arise from s'. The lat-



CRITICAL MAGNETIC SCATTERING IN KpNiF4 1741

ter is, of course, just the spin-wave spectrum and
1.5 meV gives the spin-wave gap at 90'K. The
solid line in Fig. 4 is a calculation of the antici-
pated line shape arising from the spin waves as-
suming perfectly sharp excitations. The calcula-
tions were carried out usingthe convolutionprogram
of Samuelson and Hutchings" adapted for K&NiF4.
The skew symmetry in the line shape is a resolution
effect which arises from the fact that the magnon
dispersion curves are quite steep so that the finite

q resolution is important over a relatively wide
range of energy. From the figure it may be seen
that simple spin-wave theory gives a surprisingly
good account of the line shape around q = 0 even at
90'K. The experimental spectrum is somewhat
broader than the calculated one showing that there
are some intrinsic li.fetime effects but they are not
appreciable.

The most surprising feature of the data at 90 K
is the longitudinal mode. This diffusive critical
mode was not observed in the metallic ferromag-
nets iron" and nickel' below T, and has only been
previously observed in the insulating antiferromag-
nets MnF& and RbMnF3. ' The mode is found to be
extremely sharp in energy. The measured width

is 0. 18+0. 03 meV compared with an instrumental
resolution of 0. 16 meV. Thus, to within the ex-
perimental error for T& —T= 7. 2 K, there is no
observable energy width in the longitudinal critical
mode. This is in contrast with what might be ex-
pected from classical theory. Van Hove first
showed that for T & T, the spin fluctuations in a fer-
romagnet should speed up as one heats the sample
above T, . He suggested that this might also occur
for T & T„but he did not treat this case explicitly
because of the complications introducedbythepres-
ence of a permanent magnetization. This apparent
elasticity of the critical fluctuations at q= 0 for
T & T, has also been inferred by Schulhof et a/. for
MnF&. They were not actually able to measure
I"(0) because of the presence of the magnetic Bragg
peak but their finite q measurements of I'"(q)
seemed to extrapolate to I""(0)= 0. We anticipate
our later results at this point to note that s "

(0, &o)

does indeed "speed up" for T& T, . We are then
faced with a very interesting dilemma: why is the
speeding up observed for T & T, but not for T & T, ?
It seems clear that the difference in behavior must
be associated with the presence of the permanent
sublattice magnetization for T & T, . This problem
has, in fact, been discussedin detail by Heller in
the context of MnF&. He notes that the measured
susceptibility X& may be factorized into two parts:

Xr = ys + (T/C„)(dMO/dT)

He postulates that for T & T, the first term X, has
a, very rapid relaxation rate (i. e. , it speeds up be-
low T,), whereas the second term which is coupled
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FIG. 5. Temperature variation through Tz of the
transverse generalized susceptibility at q= 0. Measure-
ments were carried out at (1, 0, 2. 3) which yields approx-
imately y g D(0, ~)+ 2 ID(0, ~). Solid lines are guides to
the eye.

to the energy, which is in turn a constant of the
motion, must relax slowly near q= 0. The explana-
tion of our data thus would be that it is (T/C„}
& (dMJdT) which gives rise to the sharp peak in

Fig. 4, whereas y, gives a broad distribution
which would be lost in the background. From Fig.
4 it may be seen that at 90 K we clearly cannot
make any statement about the relative sizes of X&
and Xg .

The behavior of the transverse q= 0 mode as a
function of temperature through TN = 97.23 'K is
shown in Fig. 5. These measurements were car-
ried out at the ridge position (i, 0, 2. 3} which yields
~ s "(0, ~)+-', s '(0, z). A well-defined spin-wave

gap is found to exist even at 97.0'K, -0.2'Kbe-
low the phase transition. The line shape is quite
similar to that calculated at 90'K (see Fig. 4)
showing that simple spin-wave theory describes the
long-wavelength magnons essentially right up to
T&. By 98'K, -0.8'K above T„, the gap has of
course collapsed to zero. (This is not fully apparent
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FIG. 6. Spin-wave gap energy vs temperature in
K~NiF4. Solid line is the sublattice magnetization
normalized to 2. 37 meV at 4. 2 K.

from Fig. 5 because of the low statistics. How-
ever, longer runs carried out at other ridge posi-
tions illustrated the zero gap clearly. ) It is im-
portant to note, however, that the transverse spec-
trum above T„ is quite similar to that below T»
except for the collapse of the gap. There is no
change in intensity through T„nor is there any .

real change in the line shape. The longitudinal
mode, on the other hand, diverges at T~ . The in-
elastic data then confirm in a very convincing fash-
ion our previous observation based on the quasi-
elastic data that only y" (0), the component of the
wave-vector-dependent susceptibility along the
anisotropy axis, diverges at T„. Figures 4 and 5

show clearly that )t (0) is nearly temperature inde-
pendent over a wide range of temperature around
T&. hence, the conclusion that KBNiF, exhibits an
anisot~opy-induced I 2] phase transition.

Figure 6 shows the neutron measurements of the

gap frequency as a function of temperature together
with corresponding antif err omagnetic- resonance
measurements by Birgeneau, DeRosa, and Guggen-
heim. The solid line is the measured sublattice
magnetization suitably scaled. ' The two curves
agree to within experimental error at all tempera. -
tures. We do not know of any fundamental theory
which predicts such behavior but nevertheless our
empirical observation of the simple relationship
between the gap frequency and the sublattice mag-
netization is quite enticing.

We have also attempted to measure the q depen-
dence of the inelasticity for 3"(q, v) at T„. Here
we expect the simple form I' (q) ~q', where the ex-
ponent z is to be determined by experiment. The
measurements were carried out using 5. 2-meV
incoming neutrons with 20-min. collimation before
and after both the monochromator and analyzer. It
was found that reliable values of the energy widths
could only be determined for wave vectors up to
twice the q-resolution width (-0. 005 A ' in this
ease). Over this entire range the observed energy
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FIG. 7. Energy analysis of the longitudinal critical
scattering at q = 0 for T & T'&. Long tail arises from the
transverse fluctuations. Solid lines are guides to the eye.

widths were just those of the resolution function
(0. 10 meV). Thus the inelasticity at T„over the

q range for which we can make measurements is
too small to be observable.

Several energy scans at q =0 for T &T„are shown
in Fig. 7. These were also carried out using
5. 2-meV incoming neutrons but with 40-min hori-
zontal collimation. As anticipated, the intensity
decreases rapidly with increasing temperature and
the energy width increases from 0. 16 meV (-the
resolution width) at 98 'K to -0. 25 meV at 105 'K.
Thus we do indeed observe the anticipated slowing
down of the longitudinal critical fluctuations as
T T'„. Attempts to measure the q dependence of
the relaxation rates for T &TN again were not suc-
cessful. We therefore limit ourselves to the fore-
going qualitative observations on the dynamics of
the longitudinal critical fluctuations.

We now consider the temperature dependence of
the spin waves away from q =0. Previously, Skalyo
et al. observed that long-wavelength magnons
(q-0. 05 A ') exhibit little renormalization or life-
time effects right through T„. We have now ex-
tended their measurements over the entire Brillouin
zone. Typical experimental results for an inter-
mediate-wavelength magnon, q- 0. 13 reciprocal-
lattice units (the zone boundary is at q = 0. 5) and
E = 16 meV, are shown in Fig. 8. These scans were
carried out using the constant-E mode of operation,
where the energy is held fixed while the momentum
transfer Q is varied. The solid line accompanying
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magnon in K2NiF4. Solid line at 5 K is the calculated
line shape assuming perfectly sharp magnons.

the 5 K data is the theoretical instrumental line
shape calculated for magnons with infinite lifetimes.
The parameters in the expressions for the magnon
energies and structure factors have previously been
determined by Skalyo et a/. , while the instrumen-

tal parameters are measured directly so that the

only adjustable parameter is the over-all height.
The agreement between this theory and experiment
at 5'K is excellent.

As the temperature is raised the peak height de-
creases while the line is broadened beyond the in-
strumental width, indicating that real lifetime ef-
fects are manifesting themselves. However, even

at 97'K magnons are still well-defined. The over-
all intrinsic q half-width of the 16-meV magnon is
about 0. 015 + 0. 005 reciprocal-lattice units which

corresponds to about 1. 5+0. 5 meV in energy. The

most interesting feature is that there '~as been
little renormalization at all in the real part of the

energy. As the temperaturt= is raised further, up

to 120 'K, the 16-me V magnon broadens consider-
ably but still, nevertheless remains well-defined.
We note from Fig. 8 that, to within the error, the

center of the peak is not more than10% away from
that at 5'K. Finally, by 145'K the magnon has
broadened sufficiently that with our present signa»

to noise we cannot make any statement about its
nature. We have carried out similar measurements
at 8, 12, 20, 24, 30, and 38 meV. In all cases the

results are qualitatively the same as those at 16
meV, that is, there is at most a 10% decrease in and (16)

the real part of the magnon energy up to the highest
temperature measured whereas the imaginary part
changes drastically. For the higher-energy mag-
nons, signal to noise becomes a problem at an early
stage since the intensity varies as 1/E.

It is interesting to compare these measurements
with corresponding measurements of the transverse
susceptibility in the uniaxial [3] antiferromagnet
MnF~. ' In that case, the magnon energies are
renorxnalized by about a factor of 4 between 5 K
and 7.'„=67. 46 'K. In addition, the real and imag-
inary parts of the magnon energy are about equal
at T„so that the characterization of the transverse
excitations as propagating modes is itself question-
able. It seems likely that the difference in behavior
between these [2] and [3] antiferromagnets resides
in the difference of the ratios T„/T», where T~~ is
the zone-boundary magnon temperature at 0 K.
In MnFz T„/Tzs -—1, whereas in KzNiF4 this ratio
is about 0. 2. This means that in K&NiF4, even. at
T~, only relatively long-wavelength magnons are
thermally populated; simple spin-wave calculations
then indicate that under these conditions there
should indeed be little renormalization of the real
part of the energy. The surprising feature, how-

ever, is that as the temperature is raised above T~,
the destruction of long-range order and the subse-
quent continuous reduction in the longitudinal cor-
relation length manifests itself only in the spin-
wave lifetimes, not in their energy.

V. EXPERIMENTAL RESULTS: STATICS

The static experiments were carried out on a two-

axis spectrometer with the c~9". figuration shown in

Fig. 1 using neutrons of energy 77. 2 and 21. 1 meV.
Before beginning a detailed study, it is necessary
first to survey the gross qualitative features of

)('~(q). The most significant feature of the data has
already been discussed in Ref. 3. There, measure-
ments of do/dQ at (1, 0, 0. 2) and (1, 0, —6. 8) at
105'K using 7'7-meV incoming neutrons were re-
ported. In the quasielastic approximation, the
former measures X" +X whereas the latter gives
approximately 2y'. The result was that at
(1, 0, —6. 8) the scattering was weak and nearly in-
dependent of q. This led us to conclude that only
X" is diverging at T„, a result which has been dra-
matically confirmed in the dynamic measurements
reported in this paper. Because of the importance
of do' /dQ in our data analysis it is worthwhile con-
sidering this matter in some more detail. Figure
9 gives similar measurements carried out at
100. 96 'K with 23.-me V incoming neutrons at
(1, 0, 0. 2), (1, 0, —6. 8). These measure, respec-
tively,

do, II d
(1, 0, 9.9j: f'((9) (9.99 ~ 1. 01
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At (1, 0, 0. 2), k& is very close to being parallel to
the ridge so that the integration over the energy is
carried out properly. Hence the measurement at
(1, 0, 0. 2) yields y" +X . At (1, 0, —5. 8), however,

A'& is nearly perpendicular to the ridge. The conse-
quence of this for the transverse part is illustrated
in the bottom portion of Fig. 9. To a first approxi-
mation, the E-q relationship for the transverse cor-
relations around T~ is merely the magnon disper-
sion curve with slope 109 meV/A . There is, ot
course, some broadening but we can ignore this for
our illustrative purposes here. The corresponding
slope for the neutron-dispersion curve, however,
is only 14. 7 meV/A '. Thus when the spectrometer
is set to look at nominally elastic scattering at
h =0. 975 one is in fact observing inelastic processes
arising from h much closer to h = 1.0. This mill be
true for the entire range of h values covered in the
scan shown in Fig. 9. Thus the fact that the scat-
tering at (k, 0, —5. 8) is flat tells us nothing about
the corresponding variation of X'. This was not
properly appreciated in Ref. 3. From our point of
view, however, the important feature of the scat-
tering at (1, 0, —5. 8) is that it is much weaker than
that at (1, 0, 0. 2). do /dQ is probably also only
weakly q dependent, but this has not been proven
experimentally. To a good approximation, then, in

~97 .88 .99 I.OO I.OI I.02 I.03
h(a~)

FIG. 9. Two-axis scans across the ridge at (1, 0, 0. 2),
(1, 0, -5.8) measured with 21-meV incoming neutrons.
Bottom part of the figure gives the corresponding dia-
gram in S-q space for the transverse part for a quasi-
elastic measurement nominally at {0.975, 0, —5.8).
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FIG. 10. Scan along the top of the ridge at (1, 0, l ) in
K~NiF4 with 21-meV incoming neutrons. This corres-
ponds to scan B in Fig. 3. Arrow denotes the position
at which k~ is perpendicular to the NiF~ planes.

our analysis of the quasielastic scattering at
(1, 0, 0. 2) the transverse component may be treated
as part of the background. This will introduce
some uncertainty but it should not be serious.

The second feature of )('~(q) which we wish to
examine is the validity of the quasielastic approxi-
mation for the longitudinal part for various geome-
tries. Accordingly, scans along the top of the
ridge at (1, 0, I) were carried out. Results of such
a scan at 21 meV and 102. O'K are shown in Fig.
10. The ridge intensity as a function of "/" is ob-
served to deviate significantly from the anticipated
(1 —cos'8, ) behavior. First, the ridge peaks at an
I p 0 and second, the drop off in intensity appears
much more rapid than cos 8&. Comparison of Fig.
10 with the computer simulations given in Fig. 2

shows that this is indeed just the behavior predicted
for a breakdown of the quasielastic approximation
when

moI'/kk (a' -1 .
The arrow in Fig. 10 is the position at which
sin6I& = 0; that is, k& is parallel to the ridge. The
peak in Fig. 10 is not as sharp as that in Fig. 2
because of finite resolution effects in the former.
We conclude, therefore, that as long as the mea-
surements of do "/dQ are carried out in the neigh-
borhood of (1, 0, 0. 4) at 21 me V, we will in fact
measure y "((I) properly. Similar results are ob-
tained at 77 meV, although the effects of the break-
domn of the quasielastic approximation are not so
dramatic. In that case, sine&=0 at (1, 0, 0. 2).

Typical scans across the ridge at 97. 26 and

107.4'K are shown in Figs. 11 and 12. In both
cases the Lorentzian-like shape of )("((I) is evident.
The data above h= 1.02 were found to be contami-
nated slightly by a small satellite crystal and hence
were omitted in the analysis. Scans similar to those
shomn in the figures mere carried out at a series
of temperatures between T~= 97. 23 and 110'K with
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the form used by previous workers, that is, Fisher
and Burford's "first approximant, "which is Eq.
(8) with p, g = 1. We then fit each of tc, q, an over-
all scaling factor A, and the background at each
temperature. If this is indeed the correct analytic
form for X"(q), then we must find that q is temper-
ature independent whereas A must be only weakly
temperature dependent. The results of these fits
for g at 21 meV are shown in Fig. 13. The effec-
tive g one finds using this "first approximant" is
extremely temper ature dependent. It decreases
rapidly from 0. 4 at T„to ™0. 1, at 3 degrees above
TN. For temperatures above 100'K the uncertainty
in p always includes 0, indicating that a simple
Ornstein- Zernike form is adequate to describe the
experimental data at these temperatures. This
behavior is inconsistent with the choice y, |I = 1 but,
in fact, is just what one expects from Fisher and
Burford's second approximant [Eq. (8)l for y very
small, (=1. As we have noted previously, Eq. (8)
predicts that very near T„, that is, for z«yq,

X(q)/Xo- (1/&i)' (e"/e' '),
.97 .98 99 1.00 I.OI l.02 I.03

h

FIG. 11. Ywo-dimensional critical scattering in
K2NiF4 at T= 97.26'K. Center curve is the measured
resolution function at (1, 0, 0). Solid line through the
data points is a least-squares fit to A/q2 " with q = 0.4.
Dotted line is a fit to the form A/(v +q') with ~ fixed at
10 4 reciprocal-lattice units.

whereas away from T„and for q & z/cp

X(q)/Xo- (1/~i "}(~"/~'+e') . (10)

Unfortunately, the experimental data. do not per-
mit the determination of a statistically meaningful

p at each temperature.
We consider first the data taken very near TN

with 21-meV incoming neutrons. It is found that

21-meV incoming neutrons and from T„to 210 'K
with 77-meV neutrons.

In order to deconvolute the data to obtain }("(0}
II ~ ~ ~ ~

K, it is first necessary to decide on the proper an-
alytic form for )("(q). To begin with, we employ
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FIG. 12. Two-dimensional critical scattering in
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g/( 2 2:neq. trons. Solid line is a least-squares fit to th fo e orm
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FIG. 13. Values of g deduced from the 21-meV data
using Fisher and Burford's first approximant
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staggered susceptibility p (0),and constant A. in p (q)
=A/(j~' +q ) determined at 21 meV. Solid lines are
least-squares fits to power laws as described in the
text.

and

x"(O) = C((T/97. 23) —1) '"".",
(2o)

For all temperatures above 99 'K the X is close
to 1, again indicating that Eq. (18) is statistically
adequate. A typical illustration of the quality of
the fits is given in Fig. 12. The small line in the
center gives the width of the resolution function.
Even at 107.4'K, 10'K above T~, the resolution
function still contributes a significant portion of
the total width.

From the least-squares fits to the data we ob-
tain each of A, t&, }I'"(0) as a, function of temperature.
These are plotted versus 7 —T„ in Fig. 14. For
a second-order phase transition, it is expected
that in the asymptotic region both z and g (0) will
have simple power-law dependences on the reduced
temperature with exponents v and —p, respectively. 6

Least-squares fits to the data obtained with 21-meV
incoming neutrons give

v = (0. 042+ 0. 07)((T/97. 23) —1) ""' '

)t "(q} reaches a limiting line shape at about 97. 7'K,
0. O'K above T„. The over-all intensity increases
very slightly as T~ is approached but otherwisp the
successive curves for )t(q) are indistinguishable.
Figure 11 shows the data taken at T = 97. 23 'K.
These are slightly above the T„=97. 23 'K deter-
mined both from fits to the magnetization and from
}t"(0); however they lie within the range covered by
the spread in T„ indicated by the I3] magnetic Bragg
scattering. The inner curve in Fig. 11 is the mea-
sured resolution function. The solid curve is a
least-squares fit to the data using Eq. (9). The
fit gives

g = 0. 4 + 0. 1 (17)

da AT
dQ v'+q' (18}

The y goodness of fit is - 1, indicating that to with-
in the accuracy of the data, Eq. (9} is a satisfactory
analytic form. This value for g is found to be in-
sensitive to the position chosen for the background.

In order to illustrate the difference between Eq.
(9) with q =0. 4 and Eq. (10), we have also carried
out a fit of the Ornstein- Zernike form to the data
with I(. fixed at the very small value of 10 recipro-
cal-lattice units to insure integrability at q = 0.
This is shown as the dotted line in Fig. 11. From
the figure it may be seen that the data differ
significantly from the classical 1/q2 form.

We have fitted the data above T„ to the Ornstein-
Zernike form

so that v = 0. 57 + 0. 05, y = 0. 97+ 0. 08. The error
bars correspond to two standard deviations. From
Eq. (19) it is evident that the temperature depen-
dence of A has contributions from both &" and

(I/x&) ". If we make the ad hoc assumption that
&" is the dominant term, then we may obtain the
product pg from A. We find

X~ ((T/97. 23) —1)""'
so that

(21)

ol

pg* = 0. 16+ 0.04

(22)

g*=0.3+0. 1 .

g = 0. 4 + 0. 1, (23)

There are two maj or sources of uncertainty in
the above analysis. First, the resolution width
is nearly always comparable with the intrinsic
width so that we rely heavily on the accuracy of
the convolution procedure. Second, there is some
difficulty involved in our inclusion of d&x /dA in the
background. These uncertainties may be largely
removed by repeating the entire experiment with
incoming neutrons of quite different energy so
that the resolution function is significantly altered.
Accordingly, we have measured }t"(q) between T„
and 210'K using neutrons of energy VVmeV. This
increases the resolution width by about a factor of
2. The general features of the data taken at V7meV
are identical to those obtained at 21meV. We first
fit the data near T~ using Eq. (9). This gives

where according to Eq. (10),

& ~ (I/r, )'-"~; }C(o) =&/~' . (19)

in precise agreement with the previous value. We
then fit the data above T& using the Ornstein-Zer-
nike form for }t"(q). The data, for y" (0), v obtained
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from scans across the ridge at (1, 0, 0. 1), are
shown in Fig. 15. Least-squares fits to the data
with T —T„~15 K give

z = (0. 048 + 0. 010)((T/9V. 23) —1) '

(24)

~"(0) = C'((r/9V. 23) —1) '"""
O

.05

.02

CORRELATION LENGTHS in K2NiF4, MnF, f2] Ising

Islllg

K2NIF4

g*=0.3~0. 1, (26)

in agreement with the value obtained from the line
shape near T„. This agreement, of course, is
simply a statement of the fact that the scaling re-
lation
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and staggered, "usceptibility p (0) determined at 77 meV.
Solid lines are least-squares fits to power laws as de-
scribed in the text.

so that p=0. 57+0.07, y=1.03+0.08. The scatter
in A is such that it is not possible to obtain a
meaningful value for pg*. The precise agreement
between each of the exponents g, p, y obtained at
21 and 77meV is most gratifying. We note that
the absolute values obtained for &0, that is, 0. 042
+ 0. 07 and 0.048+ 0.910 reciprocal-lattice units,
also agree to well within the experimental errors.

Above about 115'K, the susceptibility and cor-
relation lengths are observed to depart from their
asymptotic behavior. This is, of course, to be ex-
pected. We note that w is still relatively small at
210'K; the value of & =0. 2 reciprocal-lattice units
corresponds to a correlation length of about 6A.

Our quasielastic measurements thus yield the
following critical exponents:

q = 0. 4 t 0. 1, v = 0. 5V a 0.05, y = 1.0 + 0. 1 . (25)

With somewhat more theoretical uncertainty, from
the data above T&, we obtain

10 IO 2 io-' Ioo

FIG. 16. Inverse-correlation ranges for K2NiF4,
MnF2, and the t.2] S = 2 Ising model. a is the separation
between nearest-neighbor antiferromagnetic spins.

A2-n) =r (2V)

is satisfied to within experimental error. We
should note that our final values for the exponents
v, y rest heavily on our assumption of a Lorentzian
line shape away from T„. Thus, for example, a
fit of Fisher and Burford's "first approximant"
with q = 0. 3 to all of the data yields a v nearer to
0. 8. However, as we have noted previously, the

, data do seem to indicate that the Lorentzian form
is to be preferred, albeit with rather low statistical
confidence (see Fig. 13).

It is of interest to compare our values for the
inverse longitudinal correlation lengths with those
obtained experimentally for MnF3' and with the
exact result for the [2] Ising model. " These are
shown in Fig. 16. The major difference between
the [2] uniaxial antiferromagnet K,NiF4 and the [3]
system MnF& seems to be in the magnitude of the
correlation length rather than in the actual exponent
although the latter does differ slightly in the two
systems. At a given reduced temperature, say
T/T„—1 =0. 1, the correlations are about 20 times
larger in K&NiF4. Most surprisingly, however,
there seems to be no correspondence at all between
K2NiF4 and the [2] Ising predictions. This is true
both for ~ and for y"(0). The [2] Ising model pre-
dicts exponents of 1, T, respectively, whereas we
find 0. 57, 1.0. The latter are, in fact, sugges-
tively close to the molecular-field predictions of

1 although this is probably coincidental. Finally,
we note that our value for q=0. 4 +0. 1 differs sig-
nificantly from the classical value g =0 but is rather
close to the [2] Ising value of —,'.

In the Introduction to this paper, we noted that
the numerical work of Jasnow and Wortis in three-
dimensional systems indicates that the critical
exponents should depend on the symmetry of the
Hamiltonian alone and not on its details. On this
basis we anticipated that we would observe critical
behavior similar to that predicted for the [2] Ising
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model. Our measurement of P, 0. 138+0.004,
seemed to support this approach. It is cleax, how-

ever, that our values for y, v are not consistent
with this picture. It is difficult to offer a satis-
factory explanation for this and indeed any convin-
cing arguments probably will have to rest on de-
tailed theoretical calculations. It is worthwhile,
however, commenting on several possible pitfalls.
The most obvious objection is that our measure-
ments of y, v were not made in the asymptotic re-
gion. This can never be dealt with unambiguously
in the absence of a detailed theory. However, we
might note that over the entire region measured,
only g"(0) was appreciable; this is just what one
expects in the Ising limit. 3~ Second, one might
speculate that the exponents are being affected by
the [3]aspects of the system Th. is is also im-
plausible. We should re-emphasize that the values
for K, y"(0) are deduced from a [2] ridge, not a
[3] peak. Furthermore, over the entire tempera-
ture range measured, and indeed right up to T„,
the critical fluctuations remain [2] in form with no

suggestion of [3] correlations, If v, y were to be
affected by the [3] interactions, then it would seem
that as a prerequisite the three dimensionality of

the system would have to manifest itself in the
fluctuation spectl um, It does not.

These results clearly call for more research on
both the experimental and theoretical levels. The
differences in the temperature behavior of the
transverse excitations in K3¹iF4compared with
typical [3] systems such as MnF3 are quite marked.
A quantitative explanation of these differences
presents a real challenge to the theorists. Sim-
ilarly, numerical calculations of the static critical
exponents in a [2] near-Heisenberg system would
be valuable. On the experimental level, it is ap-
parent that measurements of the critical exponents,
in particular y and v, in similar [2] systems such
as K~MnF4 would be most useful in order to test
the universality of the behavior we observe in
K~¹iF4.
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The fact that we might not be in the asymptotic re-
gime would also manifest itself in higher-order terms
in the expression for K, that is, we could have

K= KoT (1+aT+b7' ' ' ')
If a and b were much greater than unity, then our values
for v obtained from a simple power law (a, b= 0) could be
grossly in error. With our present data we certainly

cannot distinguish between various analytic forms for K;

hence we must simply assume a simple power law for
the reduced temperature dependence until a detailed
theory dictates otherwise. It is perhaps worth com-
menting, however, that the pertinent parameter may
well be K itself rather than v' and in that case, it is
more likely that we are in the asymptotic regime.
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Existing first-order Green's-function theories of the Heisenberg ferromagnet all lead to
magnon energies for which the temperature renormalization is wave vector independent. Such
theories can describe phase transitions only at a temperature Tc for which all spin-wave ex-
citations have vanishingly small energy. It has become increasingly evident, particularly for
systems of low dimensionality, that such an approximation is quite unphysical, paramagnetic
magnons often being physically well defined over much of the Bril'louin zone to quite elevated
temperatures. This paper describes a rather general method for introducing wave-vector-
dependent magnon renormalization into the Green'8-function formalism, enabling approxi-
mations of obvious physical significance to be made directly in terms of the magnon disper-
sion relation. The theory is developed in detail for the simplest nontrivial approximation
and applied to the problem of the two-dimensional Heisenberg ferromagnet. A phase tran-
sition is found to a state of zero magnetization and infinite susceptibility. We also discuss
the weakly anisotropic two-dimensional ferromagnet, which supports long-range order at
low temperatures, and study the approach to the isotropic limit.

I. INTRODVCTION

Over the past several years, the technique of
double-time temperature-dependent Green' s func-
tions has been applied with some success by many
authors to a varied selection of statistical prob-
lems in ferro-, ferri-, and antiferromagnetism.
Formally, the method produces solutions for the
desired expectation values as functions of temper-
ature, but these solutions are in the form of an
infinite set of coupled first-order differential
equations, and the development of a tractable form-
alism makes necessary a decoupling approximation.

The majority of decoupling procedures devised
for Heisenberg systems, particularly in approxi-
mations applicable for general spin quantum num-
ber and aiming for validity over the entire tem-
perature range, are made at the earliest possible
stage of the calculation (i. e. , in the differential
equation involving the lowest-order Green's func-
tions). This is done almost from necessity rather
than choice, because of the enormous increase in
mathematical complexity which results from de-
laying the decoupling to a later stage, unless
further approximations restricting the tempera-
ture range of validity are also introduced. A short

list of publications, sufficient to give an indication
of the developing sophistication in first-order
Green's-function decoupling schemes, is given in
Refs. 2-10.

Regardless of their degree of sophistication,
these approximations all produce excitation energies
for which the scaling with temperature is wave
vector indePendent. That is, they all predict that
short-wavelength and long-wavelength spin waves
renormalize in the same way. A corollary is that
they can describe well-behaved phase transitions
only at the temperature for which all spin-wave-
like excitations have vanishingly small energy.
However, it is now well established experimentally
that real magnetic second-order phase transitions
are not at all like this but that the phase transition
@Beets significantly only long-wavelength excita-
tions. Both neutron diffraction " and Raman' '
".p~riments on magnetic systems reveal that

short-wavelength excitations undergo no .obvious
anomaly at a pha, se transition temperature T, but
continue to exist well into the para, magnetic phase
as propagating excitations. The phenomenon is
most marked in systems of low dimensionality,
where all but the very long-wavelength spin waves
are essentially temperature independent up to tem-


