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We have observed Baman sca.ttering of 5145-A argon-laser radiation by two-magnon excita-
tions in the antiferromagnetic nickel fluorides K¹iF3 and K2NiF4 and ferrimagnetic Hb¹iF3.
For both the cubic perovskite structure of K¹iF3and the tetragonal structure of K2NiF4, which
behaves like a two-dimensional antiferromagnet, the experimental results are in excellent
agreement with the theoretical spectra computed by a Green's-function technique. This method
is reviewed for the general case of a two-sublattice Noel ferrimagnet with antiparallel spins.
From a comparison with this theory, we find values of J=70.5 +0.8 and 77.0 a 2.0 cm
respectively, for the Heisenberg exchange constants in these two materials. The experi-
mentally observed temperature dependence of the two-magnon Haman spectra, which persists
above the Noel temperature in both cases, is described. For hexagonal Hb¹iF3, with the aid
of magnon-assisted optical-absorption and magnetic-susceptibility data, we have calculated
the magnon dispersion relations and estimated the dominant exchange constants. These values
are 48 cm ~ for the antiferromagnetic 180' ¹i' - F - Ni ' superexchange interaction and 113
cm for the 90' ferromagnetic interaction, with a small second-nearest Ni2' interaction con-
stant approximately 4 cm ~. The identification of the low-temperature Haman line at 510 cm"~

as arising from two different Brillouin-zone-edge magnons is consistent with our exchange
constants when magnon-magnon binding effects are taken into account. A Bethe-Peierls-Weiss
analysis using the present exchange parameters gives a Curie temperature close to the experi-
mental value, 139 'K, and predicts high-temperature sublattice magnetizations in good agree-
ment with the results of nuclear-magnetic-resonance measurements. Finally, comparisons
are made among these nickel fluorides, and with results found from experiments in other mag-
netic insulators.

I. INTRODUCTION

Recent theoretical' ~ and experimental work on
Baman scattering by two magnons has shown the
large effect of magnon-magnon interactions. Be-
cause of the nature of the assumed interaction
mechanism of the optical radiation with the spins,
the spin waves on oppositely directed sublattices
are created by excitation of spins on adjacent sites.
This necessarily perturbs the immediate environ-
ment seen by each of the spins from that of the
normal singly excited spin state, and causes a large
effect on the energy spectrum of the resultant two-
magnon state. Ordinarily, in the case of indepen-
dently excited spin waves at low temperatures, the
spin deviations of each magnon are shared through-
out the spin system and the magnons have little ef-
fect (to a first approximation) on each other. One
might expect that the Baman-scattering spectrum
from two-magnon excitations (with equal and op-
posite wave vector k) would be simply the spectrum
coming from the sum of the two noninteracting ex-
citations, leading to the familia, r line shape of the
joint two-magnon density of states, with perhaps
some wave-vector and polarization-dependent
weighting factor.

Elliott et al. ,
' using a Green's-function fox-

malism, have shownthis tobe incorrect, and for
two-sublattice antiferromagnets they have explicitly

treated the effect of the magnon-magnon interac-
tion arising in the excitation process in Raman
scattering. The resultant theory is in excellent
agreement with the experimental measurements by
Fleury on RbMnF3 with S =-'„and with results pre-
sented below for KNiF3, ' and K2NiF4 with $=1.
Similar studies have been carried out for two-mag-
non optical-absorption and magnon sideband spec-
tra, ' ' ' but the present work will be confined to
further investigation only of Raman scattering. The
most striking result is that the amplitude peak of
the Baman spectrum occurs at lower energy than
predicted for the noninteracting case, and the line
shape is drastically altered. This can be under-
stood physically from a simple Ising model, and
as will be shown, the same qualitative features
apply to the more general ferrimagnetic case.

As additional experimental verification of the
Green's-function method, Raman-scattering data
for the antiferromagnet KNiF3 are compared with
the zero-temperature theory. This provides an
interesting example because it is isomorphic with
RbMnF&, but has S = 1 instead of S = —,

' (which causes
a difference in the Raman-scattering line shape),
and has an exchange constant almost 15 times that
of BbMnF3. Although no quantitative theory exists
for comparison with experimental results at high
temperatures, it is interesting to note the persis-
tence of scattering from the magnetic excitations in
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KNiF, up to at least 300 K, or 1.2T„.
Another system for which experimental data are

presented is Ka¹iF4. This compound is similar in
many ways to K¹iF3but the additional layers of
KF in its crystal structure give rise to two-dimen-
sional antiferromagnetic behavior. A simple modi-
fication of the Green's-function calculation for two-
dimensional systems yields excellent agreement
with the low-temperature two-magnon Raman spec-
trum observed for this material. As in KNiF3, this
spectrum persists up to and above the magnetic
ordering temperature.

The third nickel fluoride which we have studied
is RbNiF3. This hexagonal magnetic insulator has
been the subject of a number of experimental studies
in the last few years because of its unusual proper-
ties. This material is transparent and ferrimag-
netic with a transition temperature of 139'K. A
preliminary report and analysis of two-magnon
Baman scattering in Rb¹iF3has been given by Chinn
et al." and Fleury et al. "

The study of two-magnon scattering in Bb¹iF3
is of special interest because the results can be
compared and contrasted with those obtained in anti-
ferromagnetic KNiF3. As will be discussed later
in more detail„ the local Ni' environment in BbNiF,
is very much like that in the perovskite KNiF3, but
the Ni '-6F octahedra are arranged to give a six-
layer structure with a net magnetic moment in the
ground state.

The present experimental results of Raman scat-
tering in BbNiF, show an intense broad peak, shifted
approximately 510 cm ' from the excitation energy.
As in the scattering from KNiF3, this line also
broadened and its shift decreased as the sample
temperature increased. From the experimental
evidence, we interpret this line as a two-magnon
excitation.

Because of the lower symmetry of this crystal,
the BbNiF3 spin-wave spectrum is much more com-
plex than that of KNiF, . The Green's-function cal-
culation for the interacting two-magnon Raman-
scattering line shape, which was feasible in the case
of KNiF3, is impractical for BbNiF, . We are forced
to start from a free-magnon description, and in-
clude the magnon interaction effects in a flat-band
approximation. The correction is large and im-
proves significantly the agreement of the observed
frequency of the two-magnon Raman-scattering
peak, with the value predicted from exchange con-
stants obtained from an analysis of other experi-
ments.

In Sec. II, we present a summary of the results
of the Green's-function method for the general case
of the two-sublattice Neel ferrimagnet. W' e.treat
this extension of the particular case of the simple
antiferromagnet to examine the effects, if any, of
a net magnetic moment in the magnetic ground state,

and to establish a notation for the later comparison
with experiments. We shall use the antiferromag-
netic results for KNiF3 and K3NiF4, the more gen-
eral solutions will be of particular interest for
ferrimagnetic BbNiF3. In Sec. III, the experimental
two-magnon Raman-scattering results for KNiF3
are compared with the predictions of the Green's-
function theory, and in Sec. IV, a similar compari-
son is made for KSNiF~. In Sec. V, a summary of
the magnetic properties of BbNiF3 is given. Sec.-
tion VI presents the experimental two-magnon scat-
tering results. In Sec. VII, the spin-wave spectrum
for BbNiF3 is obtained. The comparison of the
spin-wave theory with the results of magnon side-
band and susceptibility experiments yields a set of
exchange constants for RbNiF, . These constants
are shown to provide a reasonable explanation of
the two-magnon scattering results. In Sec. VIII,
to provide further confirmation of these values, de-
tailed Bethe-Peierls-Weiss (BPW) calculations are
carried out. Using these exchange constants, the
BPW calculations are shown to give good agree-
ment with the results of NMR experiments, with no
further adjustable parameters. Finally in Sec. IX,
our experimental results are discussed in the light
of other measurements in these materials, and
comparisons among KNiF3, K~NiF4, and BbNiF~ are
made.

II, REVIEW OF GREEN'S-FUNCTION METHOD

A. Raman Interaction and Exchange Hami1tonians

The mechanism for scattering of electromagnetic
radiation by magnetic excitations has been examined
in detail by several authors, "-"and we shall only
summa. rize their results for the ease of particular
interest. Jn two-magnon Baman scattering an in-
terionic electronic off-diagonal exchange coupling
of the radiation field with the spins is probably
most important, although in one-magnon processes,
where such an interaction cannot play a role, a
spin-orbit coupling mechanism probably predom-
inates. Taking into account the exchange mecha-
nism with a spin-only ground state, the spin-de-
pendent polarizability tensor simplifies to

BJr SJ ~ S

which leads to a Raman-scattering Hamiltonian

Here, F., and F.„' are the incident and scattered elec-
tric field components which cause Raman scatter-
ing at the difference frequency + (&u —v'). A physi-
cal interpretation of,the Stokes-scattering process
is that the incident photon excites one electron to
a virtual state, with simultaneous spin flip of it and



TWO-MAGNON RAMAN SCATTERING AND ~ ~ ~

a neighboring electron (to conserve spin angular
momentum). The excited electron then returns to
the orbital ground state emitting the scattered pho-
ton, and leaving both spins excited.

This type of scattering interaction should pre-
dominate in systems with antiparallel spins, where
the matrix elements of S'S are large. In ferro-
magnets or systems with parallel spins, at low
temperatures such terms would be small, and other
mechanisms such as the spin-orbit interaction taken
to second order would have to be invoked. We shall
examine only the exchange-scattering mechanism
and therefore restrict our attention to ferrimagnetic
systems in which neighboring spins are approxi-
mately antiparallel. In particular, ' because of the
simplicity of analysis and its later application to
real crystals exhibiting cubic and square symmetry,
we shall examine the scattering problem for the
case of the cubic perovskite lattice.

The tensor B must have the symmetry of the lat-
tice, and for the perovsI. ite structure we take the
scattering Hamiltonian given by Thorpe and Elliott,

putations. Furthermore, this is probably an excel-
lent approximation for our actual experimental ex-
amples.

The spin-wave modes and energies are found by
solving the equations of motion for the magnon ex-
citation operator's. After making a Holstein-Prima-
koff transformation, the usual linear approxima-
tion, and a standard Bogolyubov transformation, "
we have the dynamic part of the spin Hamiltonian
in the diagonal form with normal-mode creation and

annihilation operators,

If.E(.=~i% 6o')-+)/r pttPr .

The eigenvalue equations for Xz and p,-„give

1/?
' [Z(0) A(0)] I + I +

p.„-= ' ' [Z(O)+A(0)] I+
() a

E "E' (E n)(~ '
n))

I E( n
Z(k) =P((J(n) e("', A(k) =Pz A(n) e'"' .

(6)

xS)'S),
where n is a nearest-neighbor vector connecting up
and down spins.

For the exchange Hamiltonian of the system we
use a simple modification of an antiferromagnetic
Hamiltonian, namely,

H, „=Z J(n)SI, SI„- b+A(n)SI, S';;
y IL

(4)

Here J(n) is the positive isotropic exchange between
sites labeled by j on the up sublattice a and sites
labeled by j+n on the down sublattice b. The term
A(n) is the corresponding anisotropic exchange con-
stant. By choosing this particular example, we

neglect the unessential features of single-ion anis«-
ropy and examine the possible consequences for
Raman scattering of having a net moment in the
antiparallel ferrimagnetic ground state. The effects
of single-ion anisotropy can be included. in a simple
fashion, and we shall describe their effects for the
specific experimental examples discussed below.
Including the anisotropic exchange term in Eq. (4)
allows us to pass to the limiting case of the Ising
model which will give a physical semiquantitative
insight into the magnon-interaction problem. In
the Hamiltonians (3) and (4) and in the remainder
of this paper we shall consider only nearest-neigh-
bor interactions. We impose this restriction not
from theoretical limitations of the Green's-function
method but for convenience in the numerical com-

We have assumed S, —S„and have defined yp =Z(k)/
[A(0)+J'(0)]. The mode with energy &-„ is the upper
"optical" mode and that with p.g is the lower "acous-
tic" mode, after the analogous phonon modes. Near
the Brillouin-zone boundaries the excitations occur.
mainly on separate sublattices, and near the zone
center they are shared more between the sublattices.

In the case of Sb =S„ the simple antiferromagnet,
the above results yield the well-known antiferro-
magnetic dispersion relations and mode strengths,
as the limit S,- S, is taken in Eq. (6).

For the limiting case of the Ising model, the iso-
tropic exchange J vanishes, leaving only the z-z
exchange component A. There is no dispersion,
and the two modes, confined on their respective
sublattices, have energies A(0)S, and A(0)S„which
correspond to the zone-boundary magnon energies
for the Heisenberg model. Because of its particu-
larly simple nature, and 5-function density of states
not too dissimilar from the actual physical case,
this Ising model will be useful later in an approxi-
mation to the Green's-function calculation.

B. Scattering Cross Section and Green's-Function Calculation

The two-magnon Raman-scattering cross section
is found from the Fourier transform of a sum of
spin pair-pair correlation functions

Z e-'"'dt
dQ)dQ )) ~ .~ p
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x(p H'"(n)S;. (t) S;,- „(t) 4NS, S~(2p —J -A)H (I';)
m[1+ (a+A) (4tL -J-&) H (I'3)]

(10)

x Z H~(n')S;, .(0) SI.,', ,(0)) .

The essential transformed correlation functions
which comprise this cross section are simpler in
form and are written as

C(n, n')=(Z S),(t) Sl„,~(t)

In this equation

2p = [&(0)+&(0)](8, +8~)

1 ~ (cosh„a- cosh„a)'
E'- (~-+t -)'

&Z s;,,(0) s;, , , (0))„,

[ZSI. s;,.-, , H.„.],
l, R

and since this combination of 5I, ~ SI„-, is propor-
tional to H„&, in the nearest-neighbor approxima-
tion, the commutator vanishes and no I",-mode
scattering is found.

The remaining part of the Green's-function cal-
culation is very similar to that of Ref. 3. For
simplicity, only the transverse parts of the spin
dot products in Eq. (8) are considered. As dis-
cussed in Ref. 3 and verified by an approximate
numerical calculation, 0 the most important effects
of the S,'S~ terms are felt in the I", mode, which
vanishes anyway, so that the I'3 mode is accurately
found with only the transverse spin components.

After solving the Green's-function equations of
motion, using the Neel state for the matrix ele-
ments in the inhomogeneous terms, we find the
T'3 combination of the Green's function

G(n, n', E) =-((Z S'- 8;.r, +8;, 8"-,„-,;

to be

P 8;, 8;.,„,+8-;,.8;'„„,»
~l

where the subscript denotes the Fourier fre-
quency component from Eq. (7). The technique of
finding the correlation functions or cross section
by the Green's-function method is well known' and
is summarized by Elliott and Thorpe. 3 Since the
results for our simple model are quite similar, we
shall not repeat their derivation but indicate only
the differences in the final results.

In evaluating the total cross section using the
scattering Hamiltonian (3), we see that there are
two linear combinations of C(n, n') transforming
like I';" and I' whose symmetry allows Raman scat-
tering. The I', mode is the uniform summation over
nearest neighbors P@z. C(n, n'). The equation of
motion for the corresponding Green's function will
then depend on

The perfect-lattice Green's function H. (I's) has poles
at the unperturbed two-magnon energies (AI+ p.„-),
and would give the scattering cross section in the
absence of the magnon-magnon interaction, which
has been included through the decoupling of the
equations of motion. These expressions are similar
to those given in Eqs. (7.2) and (7. 5) of Ref. 3,
with the following replacements:

S - 8,8, , 28- 8, + S~, 2E„-- X„-+ p„- .
The spectrum of the scattered radiation is propor-
tional to —ImG(I'~), and the resonant denominator
in Eq. (10) causes a peak in intensity at a sideband
energy lower than that predicted for the noninter-
acting case located at [J(0)+4(0)](8,+8,).

In the numerically simpler case of isotropic ex-
change (A= 0), H (1"3) can be converted tothe integral
form

E' —(&I+ pI)' 2lu 4S,S,

8 Jpt J tJ„t dt, (12)

where 8 (t) is an mth-order Bessel function, n —n'

= a(p, q, r) with p, q, and r integers, and

3 8+8 - Z
g a+

2 (8,8,)"' 2 p,

vVe have numerically recalculated these integrals
(tabulated in Refs. 21-23) over smaller intervals
of 8, and computed the theoretical Haman spectra
for various values of 8, and S~ as a function of the
normalized energy. Some typical results are shown
jn Fig. 1, along with the unperturbed noninteracting
spectra.

The major consequence of having 8,& 8~ is to in-
crease the minimum energy in the Baman sideband
from E = 0 (in the absence of anisotropy) to E = J(0)
&& I S, —S~ I . In comparing this case with an antifer-
romagnet, apart from this large energy gap, the
difference in spin magnitude and presence of a
ground-state moment in the ferrimagnet has little
effect on the two-magnon Haman spectrum. This
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tional techniques.
Crystal growth was accomplished by loading a

graphite crucible with material obtained by the
double-decomposition method. The crucible was
contained in a sealed nickel crucible, with provision
for adding a small amount of NH, HF2. This as-
sembly was placed in an rf field and brought to
growth temperature. The nickel crucible was slow-
ly passed through a sharp temperature gradient to
provide optimum growth conditions.

Standard Baman-scattering techniques were used.
The optical excitation was 5145-A polarized light

0
from an argon-ion laser. Radiation at 4880 A was
also tried, but was absorbed more strongly and
gave a weaker Raman signal. The laser power out-
put was approximately 500 mW. The sample was
mounted in a variable-temperature Dewar and was
maintained at a constant temperature by a regulated
flow of cold helium gas and by a feedback-controlled
electric heater in the sample mount. A calibrated
platinum thermometer measured temperatures
above 20 K and a germanium thermometer wasused
at lower temperatures. Measurements were ac-
curate to within 1 'K.

Light scattered from the sample at 90' from the
incident direction was collected by lenses and fo-
cused on the entrance slit of a —,'-m Ebert grating
monochromator. The filtered light from this in-
strument was focused into a Littrow grating mono-
chromator, whose wavelength drive was mechan-
ically linked to that of the foregrating instrument.
This combination was used in order to decrease
the intensity of the scattered light at the laser
wavelength. At the exit slit of this spectrometer
the light was focused onto the photocathode of a
photomultiplier having a S-20 response. The dark out-
put pulses from this tube were amplified, amplitude
discriminated, shaped, and counted. The dark
count rate was approximately 5 per second. The
output pulses were also filtered and fed into a strip-
chart recorder which recorded the Raman-scatter-
ing signal intensity as the spectrometer wavelength
was electrically swept. %hen the polarization prop-
erties of the scattering were examined, a half-wave
plate was inserted into the laser beam to rotate the
plane of linear polarization, and the scatteredlight
passed through a Polaroid filter.

C. Theoretical Raman Spectrum and Experimental Results

The Green's-function theory for KNiF3 can be ob-
tained either as a special case of the ferrimagnet
considered above or directly from the treatment by
Elliott and Thorpe. As they have shown, the ef-
fects of anisotropy can be included in a simple man-
ner, and we shall use their notation. If the single-
ion anisotropy is included in the form

H„„=-Dgf[(S f)'+ (S'- -)'] -H„g,-(S',- -S'-„-), (l3)

then all previous results hold, with the following
changes:

p, = S[j(0)+ A(0) + H~ + D(2S —1)],
E„-= A.„-= it-= p —SV(k) .

In the present case, we shall assume that the ex-
change is completely isotropic, and for notational
simplicity, include all the anisotropy effects in one
term H~. Then, in terms of the original p, a=St(0),

E„-'= q', [(1+~)' —y„'-], r = H„/Z-(0},
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FIG. 2. Experimental and theoretical two-magnon
Haman spectra as a function of wavelength for KNiF3
at 5'K with 5145-A excitation. The dashed line is the
noninteracting magnon spectrum, and the heavy solid
line with circles is the computed interacting magnon
spectrum.

and in Green's-function argument, 8 =[(1+&)
—(Ej2p, ,)a]'ia . The only major effect on the spec-
trum for small & is to raise the lower limit of the
Baman sideband energy from E= 0 to F. = 2p, o
&& [2&+6 ],twice the anisotropy gap at k=0. The
theoretical line shape for the 1"3 mode for 8= & with
& = 0 is shown in Fig, 2,

The experimental Baman spectrum of KNiF3 ob-
tained at 5'K with 5145-A light is also shown in
Fig. P. The sample was unoriented and no polari-
zation analysis was done on this spectrum. In other
measurements on the same sample, the |l and ~

scattering configurations were observed (i. e. ,
E It E' and E i E', respectively) with no apparent
change in the spectral line shape. Since the 1"&

mode is not excited when E ~ E'= 0, and the 13 mode
is excited with both E tl E' and E ~ E', this experi-
mental result means that the uniform mode was not
observable. This finding is in agreement with the
theoretical prediction of Sec. I.

Superimposed on the experimental data in Fig. 2
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is the theoretical curve obtained by taking J= 71.0
+ 0. 8 cm ' = (102.2 + 1.2) 'K and & = 0. As is seen,
the agreement between the Green's-function theory
and experiment is quite good. To take the anisotropy
into account, the maximum energy, 12J+ 2II&, was
chosen to be 852 cm ', the maximum of the best-
fitted curve with & = 0. The additional information
of the k= 0 splitting, 48. 7 cm ', 2' found from anti-
ferromagnetic resonance absorption' in the infrared,
gives (48. 7) =12'„+HA. Simultaneous solution
gives II~=2. 79 cm '=4. 15 K and J=70. 5 cm '
=101.5'K, or &=0.0066. The theoretical spectrum
with these parameters was computed and was nearly
indistinguishable from Fig. 2 in the region shown.
In one sense, this is an advantageous feature, since
a good estimate for J can be obtained even with
little knowledge of 0&. It is not clear what might
cause such a large anisotropy in this material, since
the cubic crystal structure should give little anisot-
ropy from crystal field or dipolar contributions.
In any event the question is not too serious here
since the value of Z changes by only 0.7%, depending
on whether or not the anisotropy effect is included.

The two-magnon Raman spectrum was also ob-
served as a function of temperature. As tempera-
ture increased, the higher-energy bump and slope
change, characteristic of the interaction effect and
X critical point, gradually became indistinct, the
line broadened, its amplitude decreased, and the
energy shift of the line peak decreased. A plot of
the peak position and half-width is shown in Fig. 3.
Although the graphs stop at T„=253 'K, "because
it was difficult to measure accurately a linewidth
or peak, there was definite evidence of a broad
weak spectrum remaining up to and beyond 300 'K,
1.2 times the Neel temperature.

Even at the higher temperatures, the maximum
energy shift in the Raman spectrum remained very

close to its low-temperature value. In the high-
temperature region, it would seem to be more
physically reasonable to picture the excitations as
being localized and coming from regions with short-
range spin correlation. Since the zone-edge mag-
nons which predominate in the scattering process
have very short wavelength, it is also possible to
think of the excitations as being very highly damped
magnons. Fleury ' discusses this for the case of
NiFz, in which two-magnon Haman scattering also
persisted above the ordering temperature.

At first glance, one might be tempted to apply the
random-phas'e-approximation (RPA) decoupling
scheme in the above Green's-function theory at non-
zero temperatures and make the appropriate re-
placement of S' operators by their thermal average.
This would lead to some qualitatively correct re-
sults, such as the decrease in the Baman shift of
the line peak, a broadening, and decrease in am-
plitude. However, there r'emains a serious draw-
back in this scheme because the magnon energies
are renormalized, and decrease as the tempera-
ture increases. This has the effect of decreasing
the maximum energy in the Baman spectrum, and
in fact would give zero energy shift at T„. Such
behavior is markedly different from the experi. -
mental evidence that the maximum energy does not
change with temperature, so that a better procedure
for solving and decoupling the Green's-function
equations is needed at high temperatures. It is
possible to use a local molecular-field model to
estimate the nearest-neighbor correlation function
at higher temperatures. Assuming that the energy
at the peak of the Baman spectrum is proportional
to this correlation, we have

Ea~„(T~)= 400 cm '= —lid (S)- ~ S)",„-)r

where we have approximated the effects of the mag-
non-magnon interaction by subtracting one nearest-
neighbor interaction. This calculation gives

(Sf S;„-),„=-0.82,
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which implies that considerable short-range order
exists even at the Neel temperature.

IV, K2 Nips

A. Two-Dimensional Antiferromagnet
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FIG. 3. Experimentally measured peak position and

linewidth (full width at half-maximum) of the two-magnon
Haman line in KNiP3 as a function of temperature.

Another magnetic insulator which we have inves-
tigated experimentally and by means of the Green's-
function theory is the antiferromagnet K~NiF4.
This compound is of inter'est for several reasons,
most notably because it behaves like a two-dimen-
sional (henceforth abbreviated as [2]) Heisenberg
antiferromagnet. In fact, KSNiF4 is one of a class
of such magnetic compounds, and it and its iso-
morphs such as HbpMnF4, K2MnF4, RbpFeFg, and
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FIG. 4. Crystal structures of KNiP3 and K~NiF4.

R13CoF4 have recently been the subject of much ex-
perimental and theoretical study. 27 ' ' '~-3 . A brief
review article by Lines summarizes the theory
and early experimental work in magnetism in two
dimensions. After completing the present work,
we became aware of a recent theoretical treatment
by Parkinson ' of the optical properties of antiferro-
magnets with the K&NiF4-layer structure. The ma-
terial K&NiF4 is also interesting because of its sim-
ilarity to the perovskite KNiF3, which we have just
discussed. A thorough comparison of these two
compounds has been made, and from the Raman-
scattering measurements we present additional ex-
perimental data, particularly for the exchange con-
stants, to extend this comparison.

The structures of KBNiF4 and KNiF, are shown in

Fig. 4. In K&NiF4, the perovskitelike layers of

KNiF~ are separated by planes of KF. The result
of these additional KF layers and the lattice sym-
metry is a very small intraplanar interaction. A

recent investigation of neutron scattering inK2NiF4
indeed showed that the intraplanar nearest-neighbor
exchange constant J is more than 270 times as large
as the interplanar constant J'. As Lines pointed
out, the fact that a given Ni spin has four sym-
metrically located Ni ' neighbors in an adjacent
plane actually tends to inhibit order between adja-
cent planes. The presence of this feature and uni-
axial anisotropy along the c axis (which is necessary
for [2] long-range order) thus make K2NiF4 an ex-
cellent approximation to a [2] Heisenberg system.
Measurements of the temperature dependence of
the elastic neutron scattering 0" confirm the [2]
properties of K2NiF4. The temperature at which
both [2] and [3] order occur is 97. 1 'K. As de-
scribed in Refs. 35 and 36, the phase transition is
essentially 2] in character and the magnons also
behave like [2] excitations. The [3]ordering follows
as a consequence of long- range order within the

planes, and the [3] aspects of the transition a.re
superf I.uous.

In the following sections we describe the Raman-
scattering experimental procedures and data for

K~NiF4.
'

After brief discussion of the phonon spec-
trum, the experimentally observed two-magnon

Raman scattering is compared with the [2]
modification of the Green's-function theorypresent-
ed for KNiF~. Our theoretical discussion of the [2]
two-magnon Raman spectrum is like that of Parkin-
son, with the only difference arising from our use
of different types of tables for the numerical evalu-
ation of Green's-function integrals and our explicit
presentation of results for 8= 1. Although the mea-
surements of the temperature dependence of the
two-magnon scattering are not as quantitative as
in KNiF&, we present a qualitative description of its
behavior in the temperature range 5-150 'K.

B. Experimental Procedure

The experimental study of Raman scattering in

K~NiF4 was carried out in the same manner and with
the same apparatus as described previously in the
investigation of KNiF3. The optical excitation had

a wavelength of 5145 A, with about 500 mW of pow-
er. The main difference in this experiment arose
from the poorer optical quality of the KSNiF4 sam-
ple.

The compound K&NiF4 exists as a single-phase
material but undergoes. a peritectic transformation
at -930 C. As such, crystals of this material can-
not be grown directly from the melt. In order to
obtain reasonably good optical-quality material, a
KF liquid layer was slowly passed through a K,NiF4
polycrystalline charge. The KF molten layer was
maintained at 900 'C. The K&NiF4 crystal is slowly
precipitated from the KF-rich solution. The sam-
ple used was approximately 5 mm on a side, and

was cut from the crucible-grown boule. Analysis
of material from this boule by x-ray powder photo-
graphs showed that the composition was indeed
K~NiF4, with no noticeable (&3%) phases of KNiF,
or KF which can easily occur during growth.

The boule was not a single crystal, and had many
visible faults and cracks which were aligned pri-
marily along its cylindrical axis. As a result, the
cubic sample had a large amount of spurious elas-
tic scattering of the incident laser beam, and it
was particularly difficult to transmit the laser beam
through the sample perpendicular to the direction
of the faults. Unfortunately, the highest magnon
scattering intensities were observed in this config-
uration, with a signal-to-noise ratio of only about
3 to 1. Although the laser beam was directed
through the sample as close as possible to the par-
allel side face which was being observed, we esti-
mate that the Raman signal strength was reduced
at least an order of magnitude by the attenuating
and scattering effects of the sample's flaws.

C. Theoretical Raman Spectrum and Experimental Results

Before discussion of the two-magnon Raman scat-
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tering in KBNiF4, we shall briefly mention the pho-
non Raman scattering which was also observed. In

the cubic perovskite KNiF3 the optical-phonon modes
were not Baman active and only the magnetic exci-
tations were observable. In K&NiF4, with space-
group symmetry D4&, the crystal symmetry is no
longer cubic, and some of the optical-phonon modes
are Raman active. From a group-theoretical anal-
ysis there should be 2A&g+2Eg modes observable
by Raman scattering. Two strong modes at ener-
gies approximately 172 and 3S2 cm ' were seen over
the entire temperature range examined. Because
of the poor sample quality, no polarization analy-
sis was possible in order to determine the symme-
try of these phonons.

The Green's-function theory for two-magnon
scattering in K~¹iF4is a simple modification of
that for KNiF3. The same form of nearest-neighbor
bor spin Hamiltonian with anisotropy is used,

H, = E Z(n) S- S. .-DK[(S'-, )'+(S-;„-Pl
]gn

)(p+&&(p y
'1 S(p q 8) +fC(p q 8)

(zSZ}' 8

where

(19)

g= [4(1+~)'- (Z/zSJ)']"', n- n'=~V, q),

S(p, q, 8) = g sin(8&)J' (&)Z,(f) df,

C(fj, q, 6) = f cos(St)Z~(f)J,(&) d& .

little effect on the scattering mode, as in the pre-
vious treatment we shall examine only the Green's
functions arising from the transverse spin com-
ponents.

All of the Green's-function equations for the
ferrimagnetic case are valid for K&NiF4 with S,=S,
= 1, with the only minor changes coming from the
number of nearest neighbors and the details of the
symmetry transformations. The noninteracting
Green's function is

—H„5~ (S'-- Sf...), (16)

and we assume that spins in different NiF& planes
do not interact. This effectively separates the sys-
tem into many independent [2] systems which can
be treated separately. After including all the an-
isotropy terms in the effective-field parameter Hz,
the [2] magnon energies are

These integrals can be found from tabulated associ-
ated I egendre functions. ' The symmetrized non-
interacting scattering Green's function is t"', =G00
+ Gao 2G gy. The scattering intensity is then pro-
portional to

[2zZS(l + 6) —J]G',
j + Z[4z ZS j1 + 6) —Z jj'; )

E~= p, o[(1+6) —y-„],

where

p, o
= SJ(0) = 4S J'

&

y- = K~~ ""= 2 (coskzc + cosk, n)

b =Hg/4T .

The theoretical Raman spectrum obtained from Eq.
(20) with 4=0, z =4, and S = 1 for the case of KENiF4

is shown in Fig. 5 along with the predicted nonin-
teracting spectrum. Note that there are no criti-
cal-point slope discontinuities as occur in the [3]
Brillouin zone. The peak of the interacting magnon

2.0

Similarly, the Raman Hamiltonian is a simple mod-
ification of Eci. (3). With only nearest-neighbor
intraplanar interactions,

E, F', (E, n)(E', n)+R +
2 2 Sf

f, n

t.5—

(h
3.0—

UJI-

where the t subscripts refer to the transverse pla-
nar components. Additional polarization factors
in Eq. (18) contribute only to the uniform Green's-
function mode. These terms commute with the
spin Hamiltonian and do not cause Raman scatter-
ing, so they have not been included. This inter-
action Hamiltonian is also the sum of uncoupled [2]
Hamiltonians. Since the S-;S';,; terms will have

0 —=
0.5 0.6 0.7 0.8

E/E, „
0.9 (,0

FIG. 5. Theoretical two-magnon oman spectrum
for K2NiF4 with 6 = 0, as a function of normalized energy.
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spectrum is located at a, normalized energy E/E „
= 0. 843, compared with the Ising-model prediction
(2zS- 1)/AS = 0. 875. Our results for S = —are iden-
tical with those shown in Fig. 5 of Ref. 41. In the
crystal coordinate system the polarization factor
from Eq. (18) gives the scattered intensity as

2.0

t.5

I-
rh

t.0
hf

Theoretical

(21)
The experimental Raman spectrum of K2¹iF4

obtained at 5 'K with 5145-A. radiation is shown in

Fig. 6. Along with the phonon lines, the broad two-
magnon peak centered near 520 cm ' was observed.
This identification was made from the line's shape
and position and its temperature dependence. Al-

though the signal-to-noise ratio for this sample was
not large enough to allow accurate quantitative mea-
surement of the line position and width at higher
temperatures, its qualitative behavior was ob-
served. Up to approximately 100 K, the Haman
shift decreased very slightly, on the order of 50
cm"', with a slight decrease in amplitude and in-
crease in linewidth. It was difficult to follow the
peak position. in this temperature range, or to note
the precise temperature at which it disappeared,
but by 150 'K no sign of the two-magnon line was
observable.

Vfith the relatively temperature-independent back-
ground spectrum subtracted, the portion of the low-
temperature two-magnon spectrum is shown in Fig.
V, with the shaded area indicating the experimental
noise. Superimposed on the enlarged experimental
spectrum is the spectrum predicted from Eq. (20)
with d =- 0, z == 4, 8 = 1, and J = VV. 0 cm = 110.9 'K.
This last parameter, with an uncertainty of approx-
imately *2 cm-' or + 3 'K, was found by fitting the

peak of the theoretical curve to coincide with the
experimental data, as in the case for KNiF, . Al-

0.5

0' I I I

5260 5270 5280 5290 5300 53t0

WAVELENGTH (A)
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ENERGY SHIFT (cm )

J
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FIG. 7. Two-magnon portion of experimental Harnan

spectrum of K2NiF4 at O'K with theoretical spectrum
calculated for 4=77.0 cm . The shading indicaf;es ex-
perimental noise.

lowing for the large amount of noise in the Raman
spectrum, the line shapes and widths are seen to
be in good agreement for the two curves.

Another interesting feature of the Haman- s cat-
tering experiment was strong dependence of the
two-magnon scattering on the crystal orientation.
As mentioned previously, it was much easier to
transmit the laser beam along the direction of the
crystal faults, and in this parallel configuration
the 90' scattering showed a greatly improved Ra-
man spectrum for the phonons, with almost a ten-
fold increase in signal, but with no visible two-
magnon line. The spectrum with the two-magnon
line shown in Fig. 6 was taken with the laser beam
entering the sample perpendicular to the easy-
transmission direction. This anisotropy is consis-
tent with the picture of an anisotropic [2] scatter-
ing system, and might be explained from the pref. -
erential anisotropic orientation of the microcrys-
tallites in the sample. If the radiation field vec-
tors were perpendicular to the basal plane in the
previously described parallel configuration, no
spin-radiation scattering interaction would result,
as given in Eq. (18).

5t 8Q 5200 5220 5MQ 5260 5280 5500 5520

V/AVELENGTH (A)

L. J J M U ~ I I

150 200 250 300 550 400 450 500 550 600

FNERGY SHIFT (cm )

FIG. 6. Experimental Paman spectrum of K~¹iF4at;

5 'K with 5145-A excitation.

V. STRUCTURE AND MAGNETIC PROPERTIES
OF RbNiF3

The normal-atmospheric-pressure phase of
RbNiF3 crystallizes in a hexagonal structure with

space group B6„, ' and a configuration like that4 44, 45 .

of the hexagonal modification of BaTiO, ." A high-
pressure phase of RbNiF3 also exists which is a
cubic perovskite antiferromagnet, similar to
KNiF3, but the present discussion will be limited
to the hexagonal phase. This normal structure is
ferromagnetic, with an ordering temperature I',
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=139'K. Other experimental work in RbNi 3bNi F has
been reported on such magnetic properties and be-
havior as magnetic resonance, gn

' ma etization and

susceptibill y,'b"t, ' ' '
. Faraday rotation, " ' and

53-55nuclear resonance.
The structure of RbNiF3 is shown in Fig. 8.

There are six formula units per u
'nit cell both in

the aramagnetic and ordered state,s which resultse pa
t Each Niill a Slx--branched spin-wave spectrum. a

' ns bution is located in an octahedron of six F ions, u

these octahedra are not equivalent. Two-thirds
of them have three F ions in common and share a
f ith each other, as well as sharing one Face wi e

-third ofcorner with the remaining one- irion, or a corn
the N' '-F, complexes. These differen ypes o
octahedra then contain different symmetry sites
for the enc ose l i1 d N'" ions labeled B (face shared)
and A (corner shared).

As far as the magnetic properties of RbNiF, are
concerned, the most important distinction between
the two types of Ni lons isf N ' ' s is that two adjacent B sites
have approxima e yt l 90' Nl '-F -Ni ' superexchange

0interactions, w l e anhile an A-B pair of sites has a 180
Ni -F -Ni superexchange interaction. As in

KNiF3, this latter interaction is strongly antiferro-
magnetic, un l el'ke the ferromagnetic B-B interac-

hich does not exist in the cubic perovski etion, w lc o
struc ure.t . . The various factors contributing o
superexchange terms are dedescribed in the review
article by Goodenough' and monograph by Ander-
son. " The two different signs of the exchange con-

tate in whichstants lead to a ferrimagnetic ground sta e,
'

d the A sitesthe B sites are parallel to each other an e
are antipar e oall l to them. Experimental measure-
ment of the magnetic moment confirms that e ne
contri u ion o'b t' t the saturation magnetization is onc-

e re arallel.third of the value expected if all spins were para e .
In Fig. 8 the spin alignment has been shown along
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FIG. 9. Experimental Raman spectructrum of RbNil&3

with 5145-A excitation at three temper
0

eratures, 15, 140,
and 200'K.

the c axis (for future reference) but RbNiF3 actuallp
has easy-plane anisotropy, with the lowest-energy
spin orien a iontations being in the basal plane perpen-

anisot-l r to the c axis. Measurements of the aniso-dicu ar o e
ro y field range from 23 to 30 kOe ' ' or s
fields and from 15 to 17 kOe' using pulsed-field
techniques. owh

' . However the exact magnitude of the
anisotropy le wif ld ill not be too important in the
present si ua ion. in't t' Since we shall show that the an-

isotropy energy is so mis so much smaller than the impor-
tant exchange interactions, a good approximation
will be to neglect the anisotropy altogether for
the treatment of magnon energies. In this situation,
any d' ction of spin alignment can be chosen.

VI. EXPERIMENTAL RESULTS FOR Rt)NiF3

. 2+
Ni

0 F
+

O Rb

FIG. 8. Crystal struc-
ture of RbNiF3.

The Raman spectrum of RbNiF3 was measured
using techniques similar to those described for

d K NiF . The major differences were in

the wavelength analysis by a high-resolution ou e-
grating spectrometer and the used of chopped exci-
tation ra la ion wid t 'th phase-sensitive synchronous
detection of the scattered radiation. The final out-

ut signal, proportional to the intensity of the scat-pu signa,
t d radiation, was recorded on a 'p-stri -chart re-ere

s swe t.corder as the spectrometer wavelength was p .
The spectra observed at three different tempera-

h
' F'g. 9 and are similar to thosetures are shown in ig.

observed independently by Fleury et ajt.
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FIG. 10. Experimental peaQ position and width (full
width at half-maximum) of the two-magnon Haman line
in HbNiF3 as a function of temperature.

Apart from several narrow phonon lines whose
positions did not shift noticeably with temperature,
the most striking feature of the spectrum is the in-
tense, broad line shifted at low temperature - 510
cm ' from the excitation energy. Its Raman shift
and linewidth as a function of temperature are
shown in Fig. 10. Above 77'K, the line broadened
considerably and its Raman shift decreased. Evi-
dence of it remained to temperatures over 200 K
(l. 4T,), well above the magnetic transition temper-
ature, where it was shifted by approximately 320
cm ' from the laser energy (19450 cm ' at a wave-
length of 5145 A). As in the case of KNiF3, the
maximum energy in the Raman spectrum of the line
remained near its low-temperature value, about
570 cm ', but at the ordering temperature the line
in Rb¹iF3was much better defined.

The best spectra (shown in Fig. 9) were obtained
from an unoriented sample. Using an oriented crys-
tal, suffering from cracks and inclusions, showed
that the XZ and YZ components of the scattering
tensor were largest (X, F, and Z are the crystal
coordinate axes with Zf(c axis„ the tensor indices
refer to the incident and scattered light polariza-
tions, respectively). It is not certain whether the
scattered intensity in the other configurations,
which was tmo to three times smaller, was due to
crystal imperf ections and misalignment. Such
might be the case, since none of the phonon lines
completely disappeared for the different scattering
orientations, but extrapolating from the case of
K¹iF~, it is also reasonable to expect both diagonal
and off-diagonal scattering tensor elements. No
change in the line shape of this broad line were ob-
served for the different polarizations and beam
orientations. Fleury et al. found no visible
changes in this Raman line in saturating magnetic
fields of 50 kOe, applied both parallel and perpen-

dicular to the crystal c axis.
This experimental evidence leads to the conclu-

sion that the strong temperature-dependent Baman
line in BbNiF, is caused by scattering from two
magnons, as in an antiferromagnet. As analyzed
below, the magnon branches in BbNiP3 are more
complicated than in a simple two-sublattice struc-
ture, but the same general features and restrictions
for Baman scattering still apply. The dominant
scattering interaction probably involves only terms
in 8& ~ S&, with the additional assumption that sites
i and j are on neighboring oppositely directed sub-
lattices. This automatically precludes having both
excitations on equivalent sublattices since the terms
S';S& or S,S,. necessary to create the magnons in
this case are not present. In a magnetic field, two
magnons excited on the same type of sublattice
would have their total energy shifted by approximate-
ly 2gpz FI (where p~ is the Bohr magneton), while
oppositely polarized magnons would each have oppo-
site signs to their Zeepan shifts and give zero net
energy difference. No effect of the magnetic field
was observed by Fleury et al. ,

' supporting the fact
that one magnon is primarily on the A (down) sub-
lattice and the other associated with the I3 (up) sub-
lattices. The fact that the intensity, position, and
line shape of the Baman spectrum do not depend on
the direction of spin alignment with respect to the
crystal axes also supports the assignment of the
fol m of the interaction S g ~ Sg and shows the negli-
gible effect of magnetic anisotropy on the scattering
results. Other interaction mechanisms, such as
the spin-orbit coupling, which do allow simultaneous
excitation of two up or down spins can also cause
second-order scattering, but these are generally
smaller than the exchange-scattering mechanism,
and in the present case are probably not important.

The other general. feature which must apply for
Baman scattering is that the two magnons have ap-
proximately equal and opposite wave vector, since
the scattering wave vector for the radiation is es-
sentially zero compared to wave vectors in the
Hrillouin zone. Since the magnon dispersion rela. -
tions should flatten out near most of the Bri11ouin-
zone edge, the density of states will be highest
there, and we expect that the main contribution to
the two-magnon Baman scattering will come from
magnons near the zone edge. With this in mind,
we shall next analyze the magnon spectrum of
BbNiF, in detail. Because of the complex crystal
structure of BbNiF3, it is very difficult to apply the
Green's-function technique directly to the two-mag-
non problem. Therefore, me shall first treat the
problem on the basis of scattering from free mag-
nons, and after finding the exchange constants,
show that the Baman spectrum is at least consis-
tent with their predictions and a simple flat-band
estimate of the two-magnon interaction correction.
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VII. ANALYSIS OF EXCHANGE CONSTANTS OF RbNiF,

A. Spin-Wave Dispersion Rc1ations

In analyzing the free magnon energies and inter-
preting the Haman spectrum, we take into account
the following first-nearest-neighbor exchange pa-
rameters (see Fig. 11): (i) J'». for nearest B
neighbors lQ face-shared octahedra and (tl) J~ for
nearest A-B neighbors in corner-shared octahedra.
In addition, we shall consider the much smaller
second-neighbor interactions: (a) J» for hexagonal
plane B Bse-cond nearest neighbors, (b) J„„for
hexagonal plane A-A interactions, and (c) Jss for
second nearest B-8 neighbors separated by an A
plane. Since roughly the same type and number of
Ni '-F -F -Ni superexchange paths hold for these
A-A and second-neighbor I3-B interactions, we

A

shall assume that J'„z= Jaa= J». For simplicity,
we neglect other interactions, which we assume to
act in most respects additively with, and to be much
smallex' than, the dominant J~ and Jaa. interac-
tions. Some of these additional terms will be in-
cluded in the theoretical analysis for generality,
but we shall eventually set them equal to zero. The
final values for these individual small interactions
will probably not be too accurate, but since there
are so many of them, their effect couM be signifi-
cant, and they should be included in an approximate
wRy. In factq eRx'ly RDRlysis of susceptibility data
by a molecular-field method showed an anomalously
large intralattice A-A interaction, which, although
inaccurate (as described later), does indicate the
need to consider such parameters.

%6 begin by determining the magnon energies as
a function of wave vector in terms of the unknown

exchange constants. The method is essentially that
used by Harris for examining the magnon spec-
trum of yttrium and gadolinium iron garnet. In-
stead of finding the normal modes by use of second-
quR11tlzed cx'6Rtlon Rnd annihilation opex'Rtox's we
shaf1 obtain equations which are completely equiva-
lent to the clRsslcal oneS by finding Rnd solving the
equations of motion for the spin raising and lowering
operators, 8' =8"+i8' and 8 =8"-iS'. Initially,
we shall neglect anisotropy and later we shall verify
the validity of this assumption.

The spin-system Hamiltonian is

Plane 6

I "AB
Pla'ne 5

Plane 4

AA

A)

Plane 5

8 Plane l

0 Nl 8 Sp)ns
2+

.2+
Ni A Spins

I'IG. 11. Spin positions, labels, and exchange inter-
actions ln Bb¹1FSo

K= Z Jq, Sq ~ 8, -ggs Ho Z5q, . (22)

where J&, are the exchange constants described
above and are shown with the site labels in Fig. 11.
Ho is an applied magnetic field which is taken to be
along the z axis, and the fix'st summation is over
distinct pairs. The Zeeman term here has a nega-
tive sign only for later convenience in identifying
the mode polarizations. From the equation of mo-
tion for 8', , assuming a time variation e'"', Rnd

making the approximation of replacement of 8' by
its average (or here, zero-temperature) value, we
fGld

(@8'= 8', (Z) Je (8)}o-gPs Ho) —(8;}OK)J;)8)'.
(2&)

A similar equation exists for 8, , and for either
type of operator there will be six such equations,
one for each of the six sublattices. Since the rais-
ing and lowering operators are uncoupled, we need
solve for only. one of them and we choose to solve
Eq. (23). After making the Fourier decomposition
8~/- 8'„e" & (where I' labels the sublattice and j
the site) and taking (8s}0=+1and (8'„)0=—1, we ob-
tain six equations, summarized in the following
matrix equation:

Sa

Sa~

8a —Jaae —j'q
3

0

g+ g ~-fkg c (i'4

8+ g -fkg c (8pa&

—~aa —~aa ~

-~aa -~aa~

Sa
~fkgc (~

~aa e ~a B~

0

—J~e'"'g
e'" '(

=(d ~6x6= A ~

(24)
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For completeness we have included the extra inter-
actions J» and J~, although they have slightly
different types of superexchange paths than con-
sidered before, and will later be dropped. The
hexagonal layer spin spacing is a and the z-axis
unit-cell length is e. A star (*)denotes complex
conjugation. The matrix in Eq. (N) is not Hermi-
tian, but its roots must be real if the assumed
ground state is stable with respect to dynamic spin
fluctuations. The mode energies are found by tak-
ing the magnitudes of the (real) frequencies found
from the solution of Eq. (24),

For certain directions in the Brillouin zone,
shown in Fig. 12, analytic solutions of Eq. (24) can
be found, which relate the magnon energies to the

The row and column labels are shown, and the fac-
tors in the matrix are

8=- Jss (6 —q)+ Jss. +6Jss+3Jss

SB SA,

exchange constants. The solutions of this equation
for various directions in the Brillouin zone are
shown in Fig. 13. Analytic expressions for the en-
ergies at k = I" and E are shown and the schematic
representation of the amplitudes and phases of 8&

are pictured in Figs. 14 and 15. The numerical
values of the exchange constants used in these cal-
culations are given in Sec. VIII.

In Fig. 14, the modes which correspond to those
I point energies shown in Fig. 13 are, in increas-
ing order from zero energy, U„US, U3, U6, U5,

and U4. The Ui mode at zero energy and the U3

mode with energy 3J» have uniform symmetry
and could be Haman active for one-magnon scat-
tering. However, unless the scattering matrix
elements differ for A and B sites, the Ua mode
will not be observable because the sum of the
transverse spin moments for all six sites is zero.

In Fig. 15, the doubly degenerate K-point modes
in order of increasing energy are U&+ U3, U2+ U6,

and U4+ U, . %'e observe two-magnon Haman scat-
tering from the combinations similar to U~+ U6

and U4+ U„although the Ua+ Us and U, + Us coin-
binations would also seem to be allowed.

This analysis assumed an arbitrary direction for
the alignment of the net moment of S' axis, arbi-
trarily taken to be along the crystal c axis. The
actual ground-state configuration is with the spine
lying in the xy plane of the crystal, perpendicular
to the e axis. Choosing a direction in the basal
plane for the 8' axis, and applying a small negative
anisotropy field perpendicular to the basal plane,
the same type of calculation was carried out as
before. However, in this situation the 8' and 8
modes are mixed by the anisotropy field and the
equations of motion have to be found for the Car-

400—
8 2 1/8

Ei * i/2 [4Jeei+ 9Jae+ 56JaeI "ee')]
Ee I J88'I ~/2 Jae

2)Jee')+ &Jae-6 Jee

Jae-i2 Jee

Ut

CQ 200—
tLJ

UJ

f00

0
r A K r

WAVE VECTOR k

RbNiF~

FIG. 13. Magnon dispersion relations in Hb¹F3.

U6

FIG. 14. Schematic representation of amplitudes and
phases for 8~ and 8& at k =1.
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FIG. 15. Schematic representation of amplitudes
and phases for SA and SB at R =K.

tesian spin components. This results in a set of
12 equations, leading to a 12 x 12 matrix. Diag-
onalization of this matrix using the numerical ex-
change constants and an anisotropy parameter ob-
tained from an anisotropy field of 20 kOe gave re-
sults for the magnon energies unchanged to within
the anisotropy energy, -3'K. Since the Raman
scattering is unaffected by external magnetic fields
capable of changing the spin orientation, and since
the numerical results show no large effects of an-
isotropy, the original plus- and minus-mode de-
scription was retained throughout the following

analysis.
The normal-mode solutions given above were

first found by inspection, and later' obtained in a
simple manner by means of group-theoretical
methods. These latter methods are of interest,
because they show explicitly the structure and
degree of complexity of the equations of motion for
other directions and points in the Brillouin zone.
The analysis uses the spin space-group method of
Brinkman and Elliott, '9'6 since we have assumed
the Heisenberg Hamiltonian to which the theory
applies. Inclusion of the spin-orbit or dipolar in-
teractions would necessitate the use of the full
magnetic space group.

For a general k in the Brillouin zone, the full
6&& 6 matrix of Eti. (24) must be diagonalized, but
for k along certain symmetrical directions, the
equations may be simplified. With the aid of the
compatibility relations, 2' we are able to find the
symmetry representations along the 6, T, and Z
directions. This points out the particularly simple
nature of the solutions along T, because the repre-
sentations T, and T4 occur once and T, and T~ occur
only twice, leading to two first-order and two

quadratic secular equations, while for both the ~
and Z directions two cubic equations result.

Because of the particularly simple nature of the
equations for a wave victor along T, we are able
to find a simple explicit expression for the uniform-
mode energy at small wave vector. For ka«1, the
lowest spin-wave energy is given by

where D is the exchange stiffness constant. From
the solution of the secular equations along T we ob-
tain

(~As+ ~AB 2~AA 3~BB 3 JBB 2~BB)(+~)

This result is physically reasonable, since it shows
that the energy is dominated by the large antifer-
romagnetic exchange J». The ferromagnetic
coupling J». does not appear because the B spins
precess in phase; the small antiferromagnetic
terms which compete with J» tend to make the
Noel configuration unstable and lower the acoustic-
mode energy. It shouM be remembered that an-
isotropy, whichwouM lead to an additional energy
gap at small k, has been neglected.

B. Interpretation of a Magnon-Sideband-Absorption
Experiment

Several workers have measured the optical-ab-
sorption spectrum in RbNiF, ." " In particular,
Zanmarchi and Bongers ' measured the absorption
spectrum in the visible and infrared with emphasis
on the 'Az- 'E transition near 15000 cm '. At low
temperature they observed four closely spaced
lines, two of which disappeared as the Curie tem-
perature was reached. As the temperature mas
raised the separation of each of these two lines
from its partner in the remaining pair was reduced.
Their conclusions mere that the two main peaks
were absorptions from the 'A~ - 'E vibronic tran-
sitions of the ¹i~'ions, and were separated because
of the different crystal-field environment of the A.

and 8 sites. The additional two absorption lines
were then interpreted as being magnon sidebands
to these transitions. The low-temperature energy
separation of the sideband to the A.-site transition
was about 320 cm ', and the 8-site magnon side-
band energy was approximately 250 cm '. We will
make the physically reasonable assumption that the
A-site sideband is due to absorption at an A site,
accompanied by the creation of a magnon on the 8
sublattice; and the 8-site sideband is due to the
creation of a magnon on the A sublattice.

Using the previous analysis of the magnon dis-
persion relations, we assign the higher-energy B
lattice magnon associated with an A-site absorp-
tion the energy 320 cm '. Similarly, the A lattice
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magnon has an energy 250 cm '. We assume that
the high-density-of-states zone-edge magnons are
the most important in the scattering and absorp-
tion. For simplicity, we use the analytic expres-
sions for the magnon energies found at the K
point, a good approximation since the transversely
directed magnons have approximately the same
zone-edge energies, and those in the s direction
with slightly different energies have a much lower
density of states.

With this assignment, we have the following two
relations at the E point:

~4, 5 EB 2I &aa'
I

+ 8&- 9&B—B EBB'

(27)

E~ 6= E„=6J~~-9J~~ = 250 cm

The exchange constant J„~ has been included in

J~~, and J» has been neglected, to conform with
the previous discussion and labeling of the ex-
change constants. Since we have included the sec-
ond-neighbor interactions (to be set equal to each
other), we need an additional relation to determine
uniquely the three unknown J's. This is obtained
from a molecular-field analysis of the susceptibil-
ity data for Rb¹iF3.""We use the high-tempera-
ture value of y '(T) to estimate the paramagnetic
Curie temperature (or negative temperature inter-
cept), e, . From a molecular-field analysis we
find tha, t

kI 8, I

= a (62„„+12Ja + 6J a + 124„+2/a .) .
(28)

The molecular-field method is quite unreliable
near T„but we expect that the high-temperature
results are better. The value given for 8, in Ref.
45 is —130'K, while Ref. 48 quotes —33Q 'K. We
estimate that k t 8, I

= 100 cm ' = 144 K, which we
feel is a better asymptote to the susceptibility data
drawn in Ref. 48 and more in agreement with the
first value quoted. Setting all the second-neighbor
interactions equal, Egs. (27) and (28) are solved
to give

JgB=48+3 cm

Jga~ = 113+3 cm

Jgg =Jq~ = JBp = 4a 4 cm

Figure 13 shows the magnon dispersion relations
obtained by solving Eg. (24) for various directions
of wave vector, computed using these numerical
values. The approximate errors which we quote
arise from the uncertainty in 8, . As expected,
the second-neighbor interactions are more sensitive
to errors in L9„but these are intended to be only
rough correction factors, accurate to within a fac-
tor of 2 or so.

At this point we return to the description of the

two-magnon Raman excitation, which was the moti-
vation for analyzing the spin-wave spectrum and
exchange constants in such detail. In finding these
parameters we have not used any data from the
Haman-scattering measurements, and we now ex-
amine the scattering results using the information
about the spin-wave energies.

The approximation to the magnon-interaction ef-
fects which we shall use is the Ising or flat-band
model, which was discussed by Elliott and Thorpe
and in Sec. II. This model uses an Ising-spin
Hamiltonian with only S'8' interaction terms, and
for the simple antiferromagnets yields a good semi-
quantitative estimate of the location of the Raman
spectral peak. Even though the actual spin inter-
actions are very nearly isotropic, this simple an-
isotropic model works well because its 6-function
joint density of states resulting from a flat magnon
dispersion relation closely resembles the narrow
sharply peaked joint density of states found from
the Heisenberg model. Thus the simplest estimate
of the binding, as found fr om the Ising flat-band
model, is a subtraction of the exchange energy of
the excited spin pair from the "noninteracting" two-
magnon energy. As shown in Sec. II, the presence
of a net moment in the ferrimagnetic ground state
and an optical branch of the magnon spectrum does
not cause any major qualitative differences in the
two-magnon spectrum from the simple antiferro-
magnet.

We see that the most plausible assignment for
the Raman line is the combination of two zone-
boundary magnons with opposite wave vectors, one
on the A sublattice with energy approximately 250
cm ' and-the other on the 8 sublattice with energy
about 320 cm . Both of these bands are rather
narrow and flat, and their joint density of states
should peak sharply near the zone-edge energy,
in the transverse directions leading to this empha-
sis of transverse boundary magnons and to the use
of the flat-band approximation to estimate the bind-
ing correction. The sum of these two energies is
570 cm ', about 60 cm ' greater than the observed
location of the Raman peak. However, using the
flat-band approximation, we can estimate the mag-
non-magnon interaction effects by subtracting the
energy J» from the expected noninteracting peak
energy to allow for the proximity of the simulta-
neous A and B spin excitations. This gives a pre-
dicted location of 570 —48=522 cm ' for the Ram'
line, in good agreement with the experimental value,
510 cm . In fact, a more rigorous computation
of the interaction with a Heisenberg model would
probably give yet a larger correction.

A further point which we have examined is the
dynamic stability of the Neel configuration. This
method, used by Kaplan for the cubic spinel struc-
ture, is based on an expansion of the Heisenberg



TWO-MAGNON RAMAN SCATTERING AND ~ ~ ~ 1725

exchange energy to second order in the deviations
of the spins from the Neel state. While it is for-
mally necessary to solve the resulting eigenvalue
equation throughout the Brillouin zone, we feel that
the most stringent stability criterion is met for
transverse k vectors. This analysis for the Z di-
rection yields

AB + AB 2~AA ~BB ~BB 2 BB (30)

for local stability. This stability criterion is more
stringent than that obtained from a molecular-field
calculation. It is satisfied by the parameters (29),
but is not satisfied by exchange constants obtained
from molecular-field parameters of Ref. 48.
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VIII. PREDICTION OF MAGNETIC PROPERTIES
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I

200 500 400

TEMPERATURE ('K }

I

500

A. Introduction

In this section we shall examine the predictions
of several theories as applied to RbNiF3 in an at-
tempt to provide additional verification of the pre-
viously derived exchange constants. By comparing
the theoretical and measured values of such quanti-
ties as the Curie temperature and sublattice mag-
netizations, we hope to show that the exchange con-
stants consistent with the optical-absorption and
Raman-scattering measurements are indeed realis-
tic estimates for BbNiF3.

In principle, knowing the spin interactions, we
can calculate the macroscopic magnetic properties
to any required degree of accuracy, but in practice
the computational difficulties force us to choose
some sort of approximate scheme for doing so.
The properties which we hope to derive are highly
dependent on the approximations which are made
or on the model which is chosen. Therefore, we
must exercise some care in choosing a method which
is not prohibitively difficult to examine, but which
does have a high degree of accuracy.

The molecular-field (MF) model, the simplest
and perhaps most widely used, gives qualitatively
correct results for magnetic properties such as
magnetization and ordering temperature, but its
neglect of short-range order can cause large quan-
titative errors. For example, these discrepancies
can be as large as 50/o in evaluation of the Curie
temperature for low values of spin and number of
nearest -neighbor interactions. The Oguchi method,
a modification of the MF method, treats an ex-
change-coupled pair of spins in a molecular field,
but still retains most of the MF method's limita-
tions. High-temper ature expansion methods are
considered quite accurate if a sufficient number of
terms in the expansion are used; however, they are
numerically involved, and would be quite difficult
in the case of HbNiF3 with its two different domi-
nant exchange interactions and its relatively com-

FIG. 16. Sublattice magnetizations in Rb¹iF3above
To as a function of temperature as found from molecular-
fieM and modified molecular-field calculations and
NMR experiments.

plicated lattice. The BPW method, which we shall
examine in detail, is a cluster calculation which
explicitly considers the interactions among a small
number of spins, and then treats this cluster in a
molecular-field type of calculation. A good review'
of the molecular-field and cluster methods is found
in the monograph by Smart.

Along with the ordering temperature, further ex-
perimental measurements with which to compare
the theoretical results in Rb¹iF3are the sublattice
magnetizations as a function of temperature.
Smolenskii et al. " ~s have performed NMR mea-
surements on the F nuclei located at the two dif-
ferent types of sites in Rb¹iF3. Over the tempera-
ture range 150-400 'K they measured the resonance
frequencies of the F' nuclei, and obtained the var-
iation of the individual sublattice magnetizations as
a function of temperature in the applied external
field. Their results are shown in Fig. 16. A
striking feature of their findings is that over a wide
temperature range above the ordering temperature
the A sublattice magnetization is antiparallel to
the applied field. This result, which is surprising
at first glance, can be understood from the quali-
tative features of the exchange parameters which
we have derived. As expected, the B lattice mo-
ments line up parallel with the field. The magnetic
field torque on the A lattice is only half as great
since there are twice as many B sites, and the
most important factor in determining the direction
of the magnetic moments mA is the large antiferro-
magnet exchange J». This exchange is strong
enough so that even for T & T, the short-range cor-
relations remain and make the lattices antiparallel
in the applied field. As the temperature is increased
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and the thermal excitation and applied field torque
overcome the exchange forces, ~& reverses sign
and both sublattice magnetizations become parallel
to the field. The experimental measurements give
this temperature to be T0= 280'K.

8. Quantum-Mechanical BPW Method

Molecular-field and modified Oguchi-type molec-
ular-field calculations have been carried out and
the results are shown in Fig. 16. The neglect of
short-range order leads to the poor agreement with
experiment. Because of this deficiency in the the-
ory we have used the BPW method to calculate T„
T()p and mg Bo

The BPVV method is a type of molecular-field
treatment which considers a cluster of spins, the
central spin having exchange interactions with its
surrounding spins, and those outer spins being acted
on by an effective molecular field from the rest of
the magnetic system. This model differs from
simpler molecular-field models in that at least
one of the spins under consideration is not in a
molecular field, and the effective field on the outer
cluster spins is not assumed to be proportional to
a sublattice magnetization. This method is quite
similar to the constant-coupling model " which
uses an effective spin-pair Hamiltonian.

The BPW method is chosen for the quantitative
examination of the magnetic behavior of RbNiF3 for
several reasons. (i) It gives better results for
ordering temperatures than either the molecular-
field or Oguchi methods, without an unmanageable
increase in difficulty. (ii) Its accuracy compares
favorably with the more exact high-temperature ex-
pansion method, which would be prohibitively dif-
ficult to apply to the structure of RbNiF„particular
ly if second-nearest-neighbor interactions are in-
cluded. (iii) The BPW high-temperature results
are extremely close to those of the constant-cou-
pling model which, although having better low-tem-
perature properties, cannot be extended to Rb¹iF,
in so straightforward a manner as the BPW method.

The basic ideas of the BPW method are quite
simple. First, a cluster of spins is chosen, whose
outer spins are acted on by effective molecular
fields, and then the cluster partition function is
found. From this, the different magnetizations
are obtained in terms of the applied and as yet un-
determined molecular fields. If different spin
magnitudes or site symmetries are present in the
cluster, more than one type of cluster must be ex-
amined. Finally, consistency relations which give
the molecular fields and magnetizations are found

by equating all equivalent magnetizatioris. In order
to find the ordering temperature, the applied field
is set equal to zero, and the temperature at which
the molecular fields do not vanish is found.

Although this program is quite simple inprinciple,

for the case of RbNiF3 the acta.al calculations are
tedious and complicated. The simplest method of
calculation follows quite closely that of Brown
and I uttinger. First we shall state the quantum-
mechanical problem and next examine a semi-
classical approximation in more detail. In both
cases the treatments are similar, and follow a
perturbation or expansion scheme.

A brief summary of the steps of the first, quantum-
mechanical, calculation for one cluster is as fol-
lows:

(a) Write the Hamiltonian of the cluster, sepa-
rated into exchange and Zeeman terms.

(b) Find the exact eigenvalues of the exchange
Hamiltonian.

(c) From perturbation theory find the cluster
partition function to second order in the applied
and molecular fields.

(d) Find all the magnetizations from the partition
function.

This is done for both the A. — and &-centered
clusters. Then the magnetizations of all A-site
Ni ' ions are set equal, as are the magnetizations
for all the & sites. In this calculation we neglect
the second-neighbor interactions. They are in-
cluded in the classical BPW calculation.

The first cluster consists of two central 8 spins
surrounded by six A spine. (In the discussion of
the BPW method, we write exchange constants as
"2J" to conform to the notation of Ref. 70. Note that
the exchange constants J», J»., etc. , in previous
sections do not appear with the factor 2. ) Its Ham-
iltonian is

+8 +0++1 ~

Zo-——2J'Ss (S~ + S„+S„)
1 1 2 3

A W
—2Z S ~ (Sg + Sg + Sg ) —W Ss Ss

2 4 5 6 2

+1 gl B+Q(SB +SB ) gl BHf(SA +'''+Sg )
1 6

The eigenstates of Xo are given by tn), with ~oto.)
=E (o') Io.j. All of these zero-field eigenstates and

eigenvalues are found by numerical computation,
for a given ratio of Z/Z. Then, from second-order
perturbation theory, the partition function is

z, =Z expfz'(a)] ( & ~ (ate, tn)

t(o. IKiin') I l(o! IK, to.) I'.'. ~. E'(o. ) -E'(o") 2 /
'

(32)
where the tilde denotes multiplication by —I/kT,
i. e. , E = —E/kT. This function is evaluated and the
magnetizations are found from

gpss

~lnZg gp g ~ lnZg
m — --- m

60 1
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where

X~= g psH.0/kT, X, =g ps H,/kT . (33)

The partition function g~ has terms up to second
order in the effective fields. The 4-centered
cluster is treated in a similar manner. After dif-
ferentiating the partition functions to find the mag-
netizations, and constraining the A magnetizations
found from the two clusters to be the same (and
similarly for the B magnetizations), we find two
linear equations in the unknown field parameters.
Their coefficients are functions of J/kT and, im-
plicitly, J/J. To find the ordering temperature
we set Xo= 0 and find where the effective fields
X, and X, do not vanish. This occur's when the de-
terminant resulting from the linear equations
equals zero.

Using the experimentally determined ratio J/J
= —2. 36, the numerical solution gives kT, /l Jl
=4. 74, or in terms of the original notation, kT, /J„e
= 2. 37. With the value J» = 48 cm ' =- 69 'K, the
computed ordering temperature is T, = 163 'K, a
significant improvement over the molecular-field
results. Nex&, we shall make some approximations
in a more extensive BPW calculation including
second-neighbor exchange and show that not only
the predicted ordering temperature, but sublattice
magnetizations as well, are quite close to experi-
mental values.

C. Classical BPW Method

The preceding result of the final quantum-me-
chanical calculation for T„163'K, is about 17/o
higher than the actual measured value, 139 K. If
the experimental exchange constants are correct,
this is not an unreasonable error for such a cal-
culation, particularly since the second-neighbor
interactions, which were not included, tend to
lower the ordering temperature. Since the classi-
cal BPW method is a good approximation to the
quantum-mechanical version and is much easier
to work with, we have made a final classical BPW
calculation for RbNiF, in which are included not
only the dominant J» and J» ~ interactions, but
second-nearest-neighbor interactions as well.

The classical approximation to the BPW method
has been examined by Brown and Luttinger and
Brown. "It generally gives excellent agreement
with the quantum-mechanical BPW calculation
(particularly for larger values of S and coordina-
tion number), and its greater simplicity often
allows its application to more complex spin struc-
tures. The only difference between the classical
method and the quantum-mechanical method as
outlined above lies in the calculation of the parti-
tion functions. In the classical case, the spins are
treated as classical vector quantities, their com-
mutation properties are ignored, and the summation
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FIG. 17. Spin clusters used in the classical BPW
calculation for HbNiF3.

over quantum states is replaced by integration over
the continuum of spin orientations. One feature
retained from quantum mechanics is the final re-
placement of the spin magnitude S by the value
[S(S+1)]'~ . This is the same replacement which
makes the classical Langevin function almost iden-
tical to the exact quantum-mechanical Brillouin
function in the usual molecular-field problem.

The main difficulty in this extension lies in the
inclusion of the additional further-neighbor inter-
actions. A basic requirement of the simple BPW
method is that spins in the outer cluster are not
nearest neighbors of each other, ruling out the
application to such lattices as the hexagonal layer
and face-centered cubic. In RbNiF, this is no

problem if only the two main interactions are con-
sidered, but when more distant neighbors are
added to the cluster, they can have strong inter-
actions among themselves. Brown ' has demon-
strated a method which accounts for interactions
within the cluster by dividing the cluster shell spins
into subshells such that spins within a subshell
have no exchange interactions among themselves.
After this division different molecular fields are
allowed to act on each subshell. Such a treatment
does lead to differences between ferromagnetic
and antiferromagnetic lattices in the classical
limit. However, it also gives the incorrect result
that for the ferromagnetic hexagonal layer and
face-centered-cubic lattices the intrashell inter-
actions have no effect, as seen from symmetry
considerations which require that molecular fields
on equivalent cluster sites be equal. Nevertheless,
this method is probably a good approximation for
RbNiF3 because of the weak nature of most inter-
actions among the shell spins. If two shell spins
do have a strong interaction between them, then
at least one, and sometimes both, are coupled
weakly to the central spins.

Using the symmetry of the assumed Noel con-
figuration, the 8-centered cluster is divided into
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the central B spins and the shell of one A sublat-
tice and two inequivalent 8 sublattices. These are

shown and labeled in Fig. 17. The cluster Ham-

iltonian is

36s = —2JSs ~ [M &) + S (8 &) + S N &) ]—2JS& ~ [S (A', ) + S (A', ) + S P', ) ] —gp, rP, [S&', ) +. ~ ~ + S g', ) ]

—2 JSs ~ [S (Bo) + ~ ~ ~ + S (Bo)]—2JSs [S(Bov) + ~ ~ ~ + S (Bo~o) ]-gp s Ho ~ [S (Bo) + ~ ~ ~ + S (Bo )]
1 '2

—2JSs ~ [S (B4) + S (B4) + S (B4)]—2JSs ~ [S(B4) + S (B4) + S (B4)] —ggo Ho ~ [S (B4) + ~ ~ ~ + S (B~)]

gps Ho (Ss +So ) 2ZSs ' Ss
1 2 1 2

(34)

where

SA =S~ -S,

p= J/kT,

p =J/kT,

~( =gpsHg /kT,

L =I, (2PS ), L(x) = cothx —1/x,

L =I (2PS ), I, =L(2PS )

The A-centered cluster shown in Fig. 17 is treated
similarly. Its partition function is

A 2 2 A 2Z„=(const) [1+p, ", Ss (1+5L2)+p. o S„(1+5I. )

+12@,] Po SASBLL+ 2~oS&(p. s Ss L+ Po SxL)

+o ~oSx] ~
(3'7)

where p", =gpsH", /kT
We now have the two partition functions ZA and

Z~ whose arguments are the five molecular-field
parameters &, , &~, X3, p", , and p, z and the applied
field parameter &0. From ZA and Z~ seven differ-

We have included only the interactions previously
used in calculating the spin-wave energies with

slight changes in notation. For simplicity all of
the g factors are assumed to be equal, and the ap-
plied and molecular fields are parallel.

In the classical approximation, the partitionfunc-
tion for the B cluster is

(35)

where f dQ indicates integration over all spin ori-
entations. The quantum-mechanical perturbation
calculation is replaced by an expansion of the ex-
ponential Zeeman terms. The angular integrations
are straightforward but tedious, and the final re-
sult to second order in the field parameters is

Zs=(const)[1+X~ S~(1+2L +3L L, )+Los Ss
ch.

&& 2(1+5L +6L L)+X S (1~2Io 3LoL)+6(1+L}

&(2X( &o S~S LsI +X) Xo S~Ss LL+2Xo A SossL)

+2(l+L) Xo(&, S„SsL+2&o Ss L+ X~ SosL)

+ s (1+L) 2 (&oS,')], (36)

ent expressions for m A and m~ are found by dif-
ferentiation of lnZA ~ with respect to p, , X, . From
them we obtain the following five independent equa-
tions by setting equivalent magnetizations equal:

X, L(1+L)+A.o(2)L(l+L) yXo L(1+L)

—p,"(o) (1+ 5I ) —2p o L, L = Xo(3) (L —1 —L ),
&, (o) (1+2L +3L L)+ &o (2) (1+L)LL+&o(I+L)LI,

—P, ~ (2) L —Po (2)I = Xo(
—', ) (1 —L —L L),

&i 2L+ Vo"(3}(5L 1) = &o(-,')

&, L(1+L)+ X (—,') (6I.L + 5L —1) + X I, (l ~L)

(38)

&q L (1+L) + &o (2) L (1+L ) + &o ( s ) (3I L + 2L, —1)

=- ~o(s) (1+L) .

From the experimental values of Sec. VII B, the
ratios p/p =J'os, /J„s = —2. 36 and p/p =J„„/I„o
= 0. 083 are obtained and used in the functions I.
and I in Eqs. (38). With &o=O, nonvanishing values
of && and p &

are found at T„when the determinant
of Eqs. (38) vanishes. This condition gives a non-
linear equation in the variable p = J/kT. Numerical
solution of this equation yields kT, = 1. 95 (- 2 J}
=1.95J» or T, =135 'K, quite close to the experi-
mental value, 139'K. Also, the dependence of T,
on the second-neighbor exchange constant was
computed, for the fixed ratio Joe./J„o = —2. 36
and is shown in Fig. 18. The dependence is quite
marked, and our approximate ratio of 5 = J„z/J„s
does give a value for T, very close to the experi-
mental result.

If &o 40, the set of linear equations (38) is solved
for the molecular-field parameters, and the sub-
lattice magnetizations mA and m~ can be found for
T & T, . With the same value of Ho= 6400 G used in
the NMR experiment, ' these results of the BPW
calculation are shown in Fig. 19. The NMR re-
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[X. DISCUSSION AND COMPARISON WITH OTHER
MEASUREMENTS

suits shown are reproductions of the data of Ref.
55. These BPW calculations give absolute sub-
lattice magnetizations, and neither the amplitude
nor temperature scale has been normalized. There
are no adjustable parameters in these final calcu-
lations, and the classical BPW method does indeed
give good agreement with experiment, using the
exchange constants found experimentally. In view
of the approximate treatment of the second-neighbor
interactions in both the spin-wave and BPW analy-
ses, this agreement may be somewhat fortuitous.
However, all of the results for T„TO, andm„~
are quite consistent, which does increase the evi-
dence for the accuracy of the exchange constants
found for RbNiF3.

FIG. 19. Sublattice magnetizations as a function of
temperature in RbNiF3 determined from NMR experi-
ments (data duplicated from Ref. 15) and classical BPKV

calculations.

8 = —,', and is evidently valid over a wide range of
spin values.

In terms of absolute energy shifts, the difference
between the two cases is striking, because of the
much stronger exchange interaction in KNiF3. The
two-magnon shift of - 850 cm ' is also much larger
than that reported for MnF» FeF» and NiF2. '

The nearest comparable two-magnon shift of -510
cm is seen in RbNiF3, in which the same type of
Ni —F —N ' superexchange occurs.

The question now arises as to how consistent the
present experimental value for Z = (102. 2a 1.2) 'K
is with values found by other means. Further, how
does the consistency of the results compare for the
two cases of KNiF, and RbMnF3, the best examples
to date of the interacting magnon situation? For
the latter case, the theoretical Raman spectrum
was computed using the exchange constant found
from inelastic-neutron- scattering measurements.

A. KNiF3

The two-magnon Raman spectrum obtained by
Fleury for RbMnF, was in good agreement with

the Green's-function theory. In Fig. 20 the the-
oretical curve for S = —,

' is compared with that for
S =1 as a function of normalized energy, with
~=0. Although both have the same qualitative
shape and asymmetry, the quantitative differences,
such as the peak position and amplitude relative to
the X point, are clearly seen. Since the experi-
mental results in both cases are in excellent agree-
ment with theory, the validity of the Green's-func-
tion theory is confirmed, particularly for the de-
coupling scheme at the heart of the treatment. This
decoupling was shown to be most plausible for

0.7

r+ MOoES3

0.8

max

0.9 I.O

FIG. 20. Comparison
of two-magnon spectra
in antiferromagnetic perov-
skites with $=1 and S=~,
as a function of normali-
zed energy.
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Thus the two scattering experiments give the same
result. No such other direct measurement exists
for KNiF3, and J has had to be determined indi-
rectly from magnetic properties such as the sus-
ceptibility, Noel temperature, and paramagnetic
Curie temperatures.

Analysis of the macroscopic magnetic behav-
ior ' ' and magnon-assisted infrared-absorption
experiments' has yielded estimates of J ranging
from 86 to 110 K, with the high-temperature ex-
pansion determination of kT„/8 giving 88 K. "
This is considered to be a relatively reliablemeth-
od, and for both RbMnF, and KMnF, ' gives re-
sults within 4% of the neutron- and Raman-scat-
tering measurement of J. It is somewhat puzzling
why there is a. 13% discrepancy between the Raman-
scattering and high-temperature expansion results
in KNiF3.

One factor which may be important in this dis-
crepancy is the difference in. spin between the Ni

and Mn compounds. This may enter in either the
accuracy of the high- temperature expansion meth-

od, mhich does not seem likely, or possibly in the
additional effects of magnon-magnon interactions
which occur in higher order even in ~he single-
magnon dispersion relations. Oguehi finds a
multiplicative factor of 1 +0. 097/2S for the one-
magnon energy in the simple-cubic antiferromag-
net. The correction would be 2%%d for S = —,', but
increases to 5%for S= 1. The latter correction
mould Lower the value obtained for J in KNiF3 to
the point ~here it agreed as mell with the Noel
temperature results as KMnF3 and RbMnF, . How-

ever, this interaction factor is not definitely es-
tablished. In fact, according to Korringa, ' the
correction for S =

& should be wave-vector depen-
dent, and for zone-edge magnons, which are most
important in two-magnon scattering, should de-
crease as 1 —r M, /M~, where &M~ is the zero-
point sublattice magnetization deviation. Pre-
sumably, either correction could be applied in an

approximate manner to the two-magnon scattering
problem, but since the theories are contradictory,
and unproven, neither factor has been included.
If the wave-vector-independent correction is ap-
plied, then within. the framework of the spin-wave
theory this is only a small scaling factor for the
exchange constant which presumably remains the
same in all measured spin-wave properties.

Another factor which should be noted in the com-
parison of variouS values of exchange constants is
the possible variation of J with temperature due,
for example, to lattice expansion. Thus one might
expect exchange constants obtained from low-tem-
perature scattering or susceptibility measurements
to vary from those found by analyses of ordering
temperatures. However, in. the case of KNiF3,
there does not seem to be such a systematic cause

for different values of J.
B. K2NiF4

Fortunately, in the case of K2NiF4 there are
available some recent, very interesting, and ac-
curate measurements of both elastic '" and in-
elastic neutron scattering over a wide tempera-
ture range. The main conclusions of these experi-
ments are that K&NiF4 does indeed behave like a
[2] antiferromagnet. In cooling from high tempera-
tures, the spin correlations in the ¹iF~planes be-
come increasingly long range, and [2] order occurs
at 97.1 'K (with additional [3] order setting in as
well). Throughout the low-temperature range in the
ordered state the magnons were found to have no
observable dispersion in the c-axis direction, con-
firming their [2] behavior.

Vfe have assumed that at the second- and third-
nearest-neighbor intraplanar and all interplanar
interactions are zero, and have found a value of
(110.9+ 3. 0) K for the nearest-neighbor exchange
constant. From the inelastic-neutron-scattering
measurements' at 5 'K, the simple one-magnon
dispersion relation was best fitted over the entire
Brillouin zone with J= 9.68+0. 03 meV
= (112.3+ 0. 4) 'K. More precisely, the analysis
yielded

J 1- = 112.3+0.4 'K,

with a least-squares fit giving J2+2J3 0 but J, and

Jp +J3 strongly correlated. Here, J~ and J, are
the second- and third-neighbor intraplanar exchange
constants. Although not a major factor in the
neutron-scattering analysis, the value of the aniso-
tropy parameter found from antiferromagnetic
resonance is given as II&

= 0.073 me V = P. 85 K.
These results are in excellent agreement with

the nearest neighbor [2] assumptions used in the
theoretical treatment of the Raman scattering, and
the values of the intraplanar nearest-neighbor
exchange constants found from the two experiments
are remarkably close. If the anisotropy had been
included in the Raman-scattering analysis, with
&= If„/4J=-0. 002, the results would not have
changed significantly. A measurement of the mag-
netic susceptibility of Ni-doped KzMgF4, as was
done for KMgF3:Ni, also gave results ingood agree-
ment with Raman- and neutron-scattering data. The
exchange interactions found from the cluster-model
analysis were J = (120 + 10) 'K, the next-nearest-
neighbor intraplanar constant Jz ——0. 5 K, and the
interplanar constant J' = 0.

Although the anisotropy is not a large factor in
determining the Raman spectrum or the spin-wave
energies (except near k= 0), it is extremely im-
portant in the basic tluestion of [2] magnetic he-

ct Mermin and Wagner8a have shown
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that a two-dimensional system cannot have long-
range magnetic order without anisotropy. Qn the
other hand, using an isotropic-interaction Heisen-
berg Hamiltonian and high-temperature expansions
methods, Stanley and Kaplan3 ~ have predicted a
phase transition at which the magnetic susceptibil-
ity diverges as in the usual [3] case, but without
long-range order occurring. The semiempirical
formula of Stanley and Kaplan, which summarizes
their high-temperature expansion results, i's

[2S(S+1)—1] (39)

and predicts a transition in KBNiF4 at about 100 'K,
quite close to the actual observed [3] ordering
temperatures 9V. 1 'K.

On the other hand, us~kg the Heisenberg Hamil-.

tonian with anisotropy, I,ines37 has done a spin-
wave Green's-function calculation of the Neel tem-
perature in K3NiF4 as a function of the exchange
constant and anisotropy. From Pig. 7 of Ref. 27,
using the above experimental values, we find
&&= 93 'K, also quite close to the actual ordering
temperature 97. 1'K. In this theory, since 7.'„
is a rather sensitive function of H„and J, it does
seem remarkable that less than 1 'K of anisotropy
is sufficient to give the ordering at a temperature
very close to the observed one. One might suppose
that the transition predicted by Stanley and Kaplan
was actually occurring and was stabilized to the
normal state of long-range order by an almost
arbitrarily small amount of anisotropy. Partial
confirmation of this hypothesis is found from the
examples of K,MnP4 and Rb~MnP4. Using exchange
constants found from susceptibility measurements,
Breed'3 has applied Eq. (39) and calculated [2]
Neel temperatures of 41.6 30d 35. 2 K for these
two compounds, respectively. Their measured
ordering points are 46. 0 and 38. 6 K, respectively,
quite close to the theoretical predictions.

Another interesting feature in KzNiP4 which is
related to its structure is the problem of zero-
point spin deviations and magnon-magnon inter-
actions which was discussed for KNiF3. Because
of its lower dimensionality and the fact that the
Oguchi correction factor varies as 1/zS, one might
expect that the correction factor in KBNiP4 would
be important. Breed'3 gives the magnon-energy
multiplicative factor at zero temperature as
1+0. 632/2zS = 1.08, and the zero-point spin
deviation is similarly predicted to be larger
than in the [3] system. As in KNiF3, we have not
included either effect because they are not within
the scope of the simple Green's-function treatment
of Raman scattering. It should be noted that
neither the interacting two-magnon Raman-scattering
theory nor the one-magnon spin-wave theory for

the neutron-scattering analysis included these
higher-order effects, and both gave nearly identical
results. As stated above, the Oguchi energy cor-
rection, if applicable, would enter in roughly the
same way for each type of spin-wave scattering
measurement by scaling the parameter J, so that
this agreement would be expected.

The effect of the zero-point spin deviation on the
interpretation of the scattering data is not so clear.
Prom the direct measurement of the one-magnon
dispersion relation in KBNiF4 by neutron scat-
tering, no wave-vector-dependent correction to
the simple spin-wave model is found, and there-
fore the zero-point deviation correction ' for zone-
boundar y magnon energies is notwarranted. Another
possible way in which the spin deviationfactor might
enter is in the decoupling of the Green's-function
equations, where averages of 8' operators are
taken. However, it is not obvious that this factor-
ization and averaging with respect to nearby spin
sites should give the same results as the spin
average over the entire sublattice.

A final comparison for K~¹iF4is with the perov-
skite KNiF3. The Ni ' —F —

¹

' exchange paths
are very similar in these two materials since the
lattice constants ao differ by less than 0.008A, ~V

with the larger spacing in KNiF3 (ao = 4.014A at
room temperature). The exchange constants as
determined by the present Raman-scattering
measurements are 77 cm ' for K3NiF4 and VO. 5 cm '
for KNiF, . The difference is far less than the 20
cm estimated by Lines 7 and might easily be ac-
counted for either by the difference in lattice
parameters or by the difference in covalent mixing
in the two compounds. According to this latter
explanation by Lines, the difference in the K' cation
environment affects the covalency of the F orbitals
with which it interacts and hence affects the Ni3'

orbitals' covalency and superexchange interactions.
A 10% difference between the two exchange inter-
actions does not seem unreasonably large. It is
interesting that the ratios of exchange interactions
for other similarly related compounds, as given by
Breed, '~ are

J (Rb2MnF4)/J(RbMn F3) = 7. 3 K/6. 8 K = 1.08,

J(KaMnF4)/J(KMnF~) = 8.4 'K/7. 6 'K = 1.10,

remarkably close to the result for K3NiP4 and
KNiP3. In all cases, the magnetic cation separa-
tions vary by roughly the same amounts and are
larger in the perovskites, which have the smaller
exchange constants.

C. RbNiF3

An important question which has not yet been ex-
amined in the case of RbNiF, is the effect of ex-
.".ition-magnon interactions. Parkinson and Loudon
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have treated this problem in detail for RbMnF„
and have found conclusions very similar to those
for the case of magnon-magnon interactions in
Baman scattering. Arith a similar sort of exchange
interaction between the exciton and magnon, they
find that the magnon sideband created by a simul-
taneous optical excitation on one site and a spin
excitation on a neighboring site has an energy shift
less than the zone-boundary magnon energy (in the
Ising approximation) by an amount ZS -J'S', where
J (8') and S (S') are the ground- (excited )-state
exchange constant and spin. As in Baman scat-
tering, the Heisenberg interaction gives a broad
asymmetrical sideband, with a binding correction
slightly more than that given by the Ising model.

Unfortunately, it is not possible to apply these
results directly to BbNiF3. The magnon sideband
in BbMnF3 is a satellite of a magnetic-dipole-al-
lowed electronic transition. In BbNiF3, the main
absorption lines are electric dipole vibronic tran-
sitions, phonon sidebands of first-order spin- and
parity-forbidden transitions. A similar situation
occurs in KNiF3 with, of course, only one exciton
and magnon, instead of two as in BbNiF3, so that
we may examine the applicability of the correction
factor, since we have an accurate value for J in
KNiF3. Several references on the optical-absorp-
tion spectrum and its interpretation are available
able. " The transition of interest is from
3A@,- 'E~ at an energy near 15 000 cm ' at low
temperature, with a magnon sideband 390 cm '
from this line. The noninteracting situation, with
J-70 cm ', would give a shift of 420 cm '. Since
S'= 0 in the singlet excited state, the Ising cor-
rection would give a shift of 350 cm '. We see
that although some binding occurs, it is less than
half of the Ising prediction, and probably even
farther from the Heisenberg result. Since the
theoretical prediction for the exciton-magnon
interaction in KNiF3 is not accurate, there is no
reason to expect that it would be any more reliable
in the more complex case of BbNiF3. The maxi-
mum possible correction would be a decrease of
the expressions for the A and 8 absorption side-
band shifts by one unit of J», and as indicated
in KNiF3, the correction is probably much less.
Because of this uncertainty and complexity, we
have not included the exciton-magnon binding ef-
fects in the analysis, although they might be as
important as the second-neighbor interactions
in the preceding evaluation of the exchange con-
stants.

Another point which is not clear is the absence
of other two-magnon Baman lines. It seems
plausible to expect only combinations of magnons
on opposite sublattices to contribute to the scat-
tering, at least at low temperatures, because of
the nature of the S S pair interaction, which will

have much smaller matrix elements between pairs
of nearly parallel neighboring B spins than for
neighboring antiparallel A and 8 spins. Moreover,
for density-of-states reasons, we also expect zone-
edge magnons to dominate in the scattering, so that
of all possible two-magnon contributions, it seems
likelythat two mainpossibilities exist: one zone-edge
A-lattice magnon near the K-point energy, about
6J», and either of the two 8-lattice magnons
with energy near 3J» or 3J»+2IJ».l. The lat-
ter combination is observed, and one might expect
to observe scattering from the former also, but
experimentally this is not see. Because of the ad-
ditional interactions present in HbNiF3, and the
complexity of the lattice structure, it is extremely
difficult to write a Baman Hamiltonian and use
the Green's-function method as in KNiF, . How-

ever, we may postulate ~'„.at a similar symmetry
restriction comes into play for a uniform-type
mode which could decrease the intensity of the
lower-energy magnon pair. A direct way of veri-
fying this argument is, of course, to carry out
a Green's-function calculation with some assump-
tions about the Raman Hamiltonian, for example,
that only S„~S~ scattering mechanisms are pres-
ent, and perhaps a simplification in the spin
Hamiltonian, neglecting second-neighbor inter-
actions. Even this, however, is a formidable
task. First, we expect that it will be necessary
to know the perfect crystal, or noninteracting,
two-magnon Green's functions. For each general
k, these have to be found by diagonalizing the
6&& 6 spin-wave matrix, and then the appropriate
summation over all k must be taken. Even as-
suming that these free-magnon functions are
known, a further complication comes from the
additional Green's function between sites on dif-
ferent sublattices which must be found, and which
will at best lead to third-order coupled equations
for these functions.

In an attempt to avoid some of these difficulties,
an ab initio Green's-function calculation for the
Ising model was tried for a simple three-sublat-
tice analog of HbNiF3 with one A and two 8 sites
per unit cell. Starting from an Ising Hamiltonian,
and a Baman Hamiltonian with only S& ~ S~ terms,
the same Green's-function calculation as in KNiF3
was carried out. For all the free Green's func-
tions, a simple pole with energy 9J&&+ l J». l

appeared, which is the energy of an A-lattice
zone-edge magnon and the average of two 8-lat-
tice magnons. Thus, as might be expected, we

see that the Ising model cannot contain the infor-
mation about the phases of the 8-site ekcitations,
which is the essential difference between the types
of 8-lattice magnons. For this reason, we have
estimated the two-magnon correction energy in
the Ising-like or flat-band limit, after computing
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the free-magnon dispersion relations from the
Heisenberg Hamiltonian.

The temperature dependence of the Raman shift
can be described qualitatively in terms of a simple-
cluster theory. At the zone edge, the magnon
energies are nearly equal to those found by treat-
ing the spin excitations as being localized. Com-
puting the energy of a spin excitation in the effec-
tive field of the neighboring spins, we obtain
E(A magnon) = 6J„a(Ss) + 6J„„(Sg)and E(8 magnon)
= 21J». I

—3Jzs (S„') —9J» (SB), for a nS, &&I, = l
transition for the coupled B-Bpair. In this ap-
proximation, the total Raman energy consists of one
part proportional to the sublattice magnetizations,
and another part, proportional to 2 lJ». l, which
will vary much more slowly with temperature as
the S =1 and S =0 pair levels become populated above

A rough correction for the two-magnon binding
is obtained by subtracting an energy =J» from the
total 8,aman energy.

According to this molecular-field-type model,
the Raman energy should abruptly change to the
value 2l J~~. l at T„since only the B-B clusters
persist above T, . Instead, the observed Raman
shift continues to decrease with temperature in a
manner which suggests the presence of short-
range order for which (S„~Ss) is not zero, although

(S„) (Sa) may vanish. Just above T„ this nearest
A-B neighbor correlation may be estimated from
the Raman shift. Assuming that the average cor-
relation for second neighbors is negligible at T„
and including a binding correction, E„, „=—8J„~
&&(Sg Sa)+2!Jaa. l. Ea, is -400 cm ' at T„
and using the derived values of the exchange con-
stants, we find

(S„'Sa) r = —0. 47 .

A similar argument for KNiF3 just above T„gave

(S, S,,„), =-0.62,

which is in good qualitative agreement for the
same type of correlation in RbNiF, .

This short-range-order persistence may also
be significant in other results such as apparent
ground-state energy shifts due to magnetic order-
ing observed in optical absorption. Assuming
that the B-B pairs are ordered at T„ the A- and
B-site shifts from a molecular-field model are

~&~ = 6J~a —OJ~~ = 264 em '

and

b,E~ = 3J» —9J~~ = 108 cm

These are well above the measured'values, 170
arid 50 cm ', respectively. However, if these
computed values are multiplied by 0. 53 to estimate
the effects of short-range order still present at

T„ the shifts going from T, to 0 'K become 140
and 57 cm ', much closer to the measured values.

From the investigation of RbNiF3, it is possible
to compare the experimental results with those
of KniF3 and K~NiF4. This is instructive because
all three compounds have similar Ni-F-Ni con-
figurations and exchange interactions. In the
perovskite KNiF3 and layered KzNiF4, the nearest-
neighbor exchange constants were 70. 5 and 77
cm, respectively. Such similarity in the
strength of the antiferromagnetic Ni-F-¹i super-
exchange interaction is expected since the Ni-Ni.
distances differ by about 0. 05 A and the spin en-
vironments are quite similar.

From these considerations one might also expect
the 180 ' Ni-F-Ni interaction in RbNiF3 to be
about the same as in the potassium compounds.
Qualitatively, this is true, since the interaction
is strong and antiferromagnetic. However, the
corresponding exchange constant is 48 cm ',
roughly 30%%uo smaller than that in KNiF3. Recent
x-ray analysis"' of RbNiF, has measured the
atomic positions accurately enough to demonstrate
some differences from KNiF3 which may account
for the smaller size of J». The measurements
by Arnott and Longo' show that the A-B distance
is 4. 02 A, slightly larger than the perovskite value,
4. 014 A,

' and that the intermediate F ion lies
0. 12 A closer to the B site than the A site. Also,
the bond angle is 178.2', less than the 180' cubic
perovskite angle. These considerations, as well
as the unknown differences caused by the Rb' ions
compared to K', found in the two simpler fluorides,
could account for a reduction of the antiferromag-
netic exchange in RbNiF3.

Another point of comparison between RbNiF3
and the potassium nickel Quorides is the second-
nearest-neighbor exchange constant which occurs
via two intermediate F ions. Experimentally, we
have found that this parameter is 8% of the anti-
ferromagnetic exchange constant, although this is
a very rough average and could easily be an over-
estimate by a factor of 2. Even though the mole-
cular-field analysis of Shafer et a/. was inade-
quate in that it could not be related quantitatively
to microscopic exchange parameters, nevertheless
a very large and antiferromagnetic intralattice
interaction was found which could only arise from
second- and further-neighbor interactions. Our
findings are consistent with the sign of this inter-
action, although with a very much reduced second-
neighbor exchange constant.

In comparing this result in RbNiF3 with KNiF3
and K&NiF4 there is one further point to note.
One-magnon neutron scattering has shown that the
distant-neighbor interactions in K~NiF4 are negli-
gible, and the Raman-scattering results for KNiF3
are also consistent with a nearest-neighbor inter-



1734 CHINN, Z E IGER, AND O' CONNOR

action model. Therefore, the experimental evi-
dence is that in these compounds the second-neigh-
bor exchange [J(2nn)] is unimportant, even though
the geometrical superexchange paths seem to be
similar to some of those in RbNiF3. It is quite
difficult to offer any a gn iori explanations for the
relative sizes of J(2nn) in these compounds. An-
other example of such difficulties is given by
RbMnF3 and KMnF3, which are also antiferromag-
netic perovskites (KMnF3 having a very slight
tetragonal distortion) with very similar nearest-
neighbor exchange constants. In RbMnF3, neutron
scattering shows no evidence of J(2nn), which does
exist in KMnFS and is 3' of the first-neighbor
interaction.

It is worth pointing out that RbNiF3 offers the
unusual opportunity of measuring in one crystal
both 90 ' and 180 ' exchange constants for the Ni '
ion. The signs of these constants and, roughly,
their relative magnitudes are in reasonable agree-
ment with expectations from the Goodenough-Kana-

mori rules. ' The exchange constants in the
isomorphic crystal CsMnF3 have also been deter-
mined. Both the 90 and 180' exchange inter-
actions in this crystal are antiferromagnetic. The
difference between these compounds is explained,
in the Goodenough-Kanamori theory, by the different
occupancy in the Mn ' and Ni ' of the e~ and t,~

electronic orbitals.
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