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A molecular-field-type theory is given for the second-order phase transitions occurring in

perovskite crystals, in which a Jahn-Teller (JT) ion (Mn ', Cu ', Cr ') occupies an octahedral
8 site. The dynamic character of the JT effect is taken into account and excited vibronic states
are included. The ordered system consists of two sublattices, each having the same tetragonal,
but opposite orthorhombic, mean distortion amplitudes. Near the transition temperature T&,

the hvo amplitudes behave as T& —T and (T, —T)~, respectively. Increasing the anisotropic
JT coupling P enhances the mean tetragonal distortion amplitude and diminishes the orthorhombic
one. The transition temperature is studied as a function of the molecular field strength and of
P, and characteristic regions of solutions are distinguished. The temperature dependence of
the specific heat for some typical systems is presented.

I. INTRODUCTION

In a previous paper' (henceforth referred to as
I), a theory of cubic-to-tetragonal phase trans-
formations in spinels due to a cooperative Jahn-
Teller (JT) effect has been given. Compared to
spinels, the experimental material' "concerning
JT-induced transformations in perovskitelike com-

pounds is less extensive. On the other hand, in
the perovskites there exists rather definite experi-
mental evidence from the anisotropic EBB spectra
due to Cu ' in low concentrations, that there are
individual distorted JT centers even in the cubic
phase.

Perovskites are seldom found to have a simple
cubic structure; owing to packing-induced distor-
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tions, their usual symmetry is either orthorhombic
or rhombohedral, depending, e. g. , upon the re-
lative sizes of the ions. '6'~ Thus, the cooperative
JT effect plays only a partial role in most of the
observed distortions.

The problem was already discussed by Kana-
mori, 3 who predicted the existence of a structural
phase transformation of the second order and an
"antiferromagnetic" type of distortion, introducing
a fictitious spin to specify the degenerate orbital
states. However, in this treatment, neither the
dynamic nature of the effect nor the excited vi-
bronic states was taken into account. The in-
fluence of the anistropic energy was only qualita-
tively discussed by him.

The static JT effect appears to be exceptional
particularly in cooperative manifestations of the
effect, where a given amount of distortion is
shared among a great number of modes of the lat-
tice. This justifies, in our view, the reconsidera-
tion of the problem through a dynamic treatment.

In the higher-lying vibronic states the system
tends to resonate between three equivalent dis-
tortions, one along each of the cubic axes. Raising
the temperature so as to populate these states will
have a disordering effect. This effect is additional
to that acting within the lowest states which achieves
disorder through increase of the entropy. The in-
clusion of excited states leads then to a reduction
of the transition temperature.

In this work the problem of the cooperative JT
effect is treated using the molecular-field approxi-
mation. We consider the cases in which the col-
lective effect arises due to paramagnetic cations
Mn ', Cr ', and Cu ' in a doubly degenerate elec-
tronic state, situated at the octahedrally coordin-
ated sites of the perovskite.

The static cooperative treatment is worked out
in Sec. II, and effective coupling terms between
adjacent octahedra are obtained. Section IG is
devoted to the dynamic JT treatment of the co-
operative process. This amounts to solving the
vibronic equation of state of each JT octahedron
in the presence of interactions with its surround-
ings. The thermodynamics of the phase transition,
the behavior of the order parameters as functions
of the temperature, and the type of distortion oc-
curring in the critical- and low-temperature regions
is discussed in Sec. IV. In Sec. V, we examine
the range of variation of the transition temperature
and introduce five categories into which the systems
may fall depending on the values of the physical
parameters.

II. STATIC JAHN-TELLER TREATMENT IN
PEROVSKITES: EFFECTIVE COUPLING

In Fig. 1, the nth unit cell in the perovskite
A.J30, is described by the cube drawn by broken
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FIG. 1. Structure of a cubic ABO3 perovskite. Cube
,drawn by broken lines houses one formula unit.
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by a, (n) and a, (n), respectively, which operate in
the degenerate electronic function space of the 8
cation located in the nth unit cell. The small Car-
tesian displacements of the ions are denoted by
X(n, i), etc. Here i takes the values 1, 2, 3 when

referring to the three oxygen anions which are di-
rected along the x, y, and z axes, respectively,
and the value 0 for the 8 cation in the nth unit cell.

We thus get a sum over all unit cells of terms
like

—,'M~ ([X(n, 1)-X(n, 0)] +[X(n-xa, 1) -X(n, 0)] )

+ 2M,~I[X(n, 0) -X(n+ xa, 0)]~,

and analogous terms for the y and z directions:

+4~(M&olif)' ((12) ' e~(n)(2[2(n, 3) —Z(n —za, 3)]

-[X(n, 1) —X(n -x a, 1)] -[F(n, 2) —F(n -ya, 2)])

+ ~a, (n) {fX(n, 1)-X(n —xa, 1))

—[1'(» 2) —1'(n —ya, 2)9)
Mum denotes the force constant for the oxygen-
metal motion, while M,~, denotes the force con-

lines. For simplicity the crystal is assumed to be
cubic in the absence of the JT effect and packing-
induced distortions are ignored.

There are three oxygen iona in the unit cell,
placed along the positive directions of the x, y, z
axes, the origin of which is the 8 cation. The
electronic state of this cation is supposed to be
doubly degenerate in its cubic surroundings with
components lEq) and !E, ) which transform as
(2x'-x -y )//6 and (x -y )jQ, respectively.

The Hamiltonian of the system includes the elastic
energy due to the interactions of nearest and next-
nearest neighbors, and the JT term. At this stage,
the static limit is treated so that the kinetic-energy
term is excluded.

A'e designate the two Pauli matrices
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stant for the motion of the 8 cations with respect
to each other. The linear JT coefficient L has
already been discussed in I.

The static treatment then amounts to extrem-
ization of (1) with respect to the relative displace-
ments X(n, 1) -X(n, 0), etc. The following cou-
pbng terms between neighboring centers are found

(as multiples of [M,&d,&&(M&d + 2M, &d,) ]I /12fi&o}:

coupling between n —n+ za:

og(n)og(n+ s a);

coupling between n —n+ xa:

[-—,'og(n) + —,'v 3o;(n)][--,'og(n+ xa)+,'-9'So, (n+ xa));
(2)

coupling between n —n+ ya:

[-—,'&rg(n) ——,'KSo, (n)] [-—,'og(n+ ya) ,'ES—o,—(n+ya)]

The expressions within the square brackets in
the last two lines are og(n) quantized along the
direction of the bne connecting the two neighboring
cations, respectively, and expressed in terms of
the matrices which are quantized along the z di-
rection.

The formal analogy of the resulting coupling
terms (2) with an anisotropic Heisenberg Hamil-
tonian has already been noted in I concerning the

spinel problem. In the present case, the coupling
is highly anisotropic and, so to say, antiferro-
distortive. The last feature is obviously because
of the fact that an oxygen which moves towards a
8 cation on its right necessarily moves away from
the cation on its left, provided that the cation- ca-
tion force constants are not too small. Mfhen

M, (d, becomes negligible, the coupling disappears.
From the antiferrodistortive nature of the cou-

pling it is natural to assume that the lattice of the
8 cations may be divided into two sublattices each
exhibiting, on the average, a distortion of the
oxygen octahedra along a different axis. Ne label
the two sublattices by (+) and (-) signs and denote
the average values of the Pauli matrices by
o, (+), &r, (+), o,(-), and &r, (-). We also assume
the presence of the anisotropic JT energy leading
to three equivalent minimal. a, in the potential surface
of& each octahedron, corresponding to tetragonal
elongatlons ln the x g and z directions.

Applying the molecular-field approximation to
the coupling terms in Eq. (2) leads to a set of
self-consistent equations relating average Pauli,
matrices of the two sublattices. To achieve this
we replace o„(n)(&= S, e) in (2) by th'eir values at
each of the three minima. The positions of these
minima are negligibly affected by the molecular
field near the transition or if the wells are ex-
tremely deep:

(
—exp [B&r,(+)] +-,' exp(- 8[-,'og(+) - -,'/So, (+)]]+ -,' exp(- 8[-,'o, (+) + -,

'
v'3&r, (+)])

exp[Bog(+)]+ exp(- 8[-,'&rg (+) - -,'43'o, (+)]T+exp(- 8[-,'-&rg(+) + -,'/3&r, (+)])

——,'l3 exp(- 8[-,'og(+) ——,'/So, .~(+)] +,'-XS exp(- 8[-,'og(+)+ —,'v'3&r, (+)]g
xp[e8 (+&r)g] ex+p(-8[-,'&rg(+) ——,'v'3&r, (+)])+exp(- 8[-,'-og(+)+-,'v'3&r, (+)]]

(3)

where

[M,&o,/(M&d + 2M, &d, )]J
46(ok T

A similar pair of equations exists for Vg(+) and
&r, (+), and can be obtained from Eq. (3) simply by
interchanging the (-) and (+) signs labeling the two
sublattices.

Written in the polar form, the average Pauli
matrices are

og(-) =&r(-) costr(-), . . . , &r,(+) =o(+)sin0(+) .

At this point we postulate the following relations
between the averages on the two sublattice, which
are compatible with the set of equations (3):

2r
&r(+) = &r(-) -=&r 0(+) =n ——0(-) =-0, n=0, +1.

(4)
The three values of n describe the equivalence of
the three main axes. Presumably, the relations
given by Eq. (4) are not the only possible ones
W&hith solve Eq. (3). However, as will be seen
liter, they correspond to the observed type of dis-
tortion and electronic ordering in most actual exam-
ples.

In the following we consider the case with v= 0.
Having substituted this into Eq. (3) we obtain two
coupled transcendental equations for o, (+) and o;(+)
or o and 0.

In studying the behavior of the static model near
the transition point, the expressions in (S) may
be expanded near V- 0, where only terms up to the
square of V are retained. This procedure is justi-
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a [8oB cos28+ (1+ -,
' B) cos 8 ]= 0,

o[,'aB si-n28+ (1 ——,'B}sin8 ] = 0. (5b)

The solution 0= 0 describes the undistorted cubic
phase of the perovskite crystal. In order to obtain
solutions oqq 0, we divide Eq. (5a) by (5b) and have

(1+-',B) cot 8= ,'B —1—.

Since cot 0 is always positive or zero, it is appar-
ent that o may differ from zero only if B & 1,
namely,

M ~
kT

M ~+2M ~ 8h
=—kTt (6)

Equation (6) defines the transition temperature in
the static-treatment limit. Defining

X =—M, (u, /M(g

fied in the present case where the transition is of
second order, since the order parameter 0 goes
smoothly to zero as the transition temperature T,
is approached [.This, however was not the situation
in the spinel case (I) where the order parameter
still had a finite value at T, . ]

Equations (3) and (4) (with n = 0) are then written
as

and assuming X«1, Eq. (6) reduces to kT, = LL /6hqd.

At the transition point —,'8=1 and cotta=0, i. e. ,
8(+) = -8(-)=-,n. Substituting 8=-,'w into Eq. (5a)
gives a = 0 which is characteristic of a second-order
phase transition. Further details, concerning the
configuration of the ordered phase as well as those
arising from the remaining two solutions with
n=+1, will be discussed in Sec. IV as part of the
more general dynamic approach.

III. SOLUTION OF VIBRONIC PROBLEM

W'hen the kinetic energy of the ions is taken into
account, the lattice is no longer treated as static
and we enter upon the study of the vibronic problem.
The ionic displacements appearing in the dynamic
JT Hamiltonian must be regarded as quantum-me-
chanical dynamic variables rather than geometrical
parameters.

We use for the E-type vibrational coordinates
the same units as in I, namely, write them in a re-
duced dimensionless form as q~= Qe(M&u/k)

q, = Q, (Mv/h)'~, where Q, and Q, are the two norm-
al coordinates of the twofold-degenerate E mode,
& is its frequency, and M is the anionic mass. The
mass of the cations is assumed to be sufficiently
heavy compared to M, so that their kinetic energy
may be neglected.

rWe lift out of the total Hamiltonian of the crystal
the term H(n) which contains the normal coordin-
ates of the octahedron belonging to the nth unit cell:

82 82
H(n)=-,'qrq(- r —,+qr(n) (nq))+ 'lqn, (n&n, (n) ~ q, ( )q-, (n)j

+ qK[( q, ( n) —q ~( n))oe( n) + 2qe( n)q, ( n)a, ( n)] + —,
'

v 2N[3q~( n)q, ( n) —q~(n)] + H, „„
where

H„, = ,'M, (u', (h/M(u) —[3/3q, (n+ za)+ —,'/3q, (n)] + [- /3qe(n —za) ——,'K3qe(n)] + [—,'q, (n+ xa) —(1/2v 3)q~(n+ xa)

+ ~qq(n) —(1/2v 3)qe(n)] +[ —~qq(n -xa)+ (1/2v'3)q~(n —xa) —2qq(n)+ (1/2v 3)qz(n)]

+ [ -—,'q, (n+ ya) —(1/2/3)q~(n+ ya) ——,'q, (n) —(1/2v'3)q~(n)]

+ [~zq, (n —ya)+ (1/213)qz(n —ya)+ 2q, (n)+ (1/2/3}q~(n)] }.

H„, is the elastic energy due to interaction between
the 8-site cations, expressed in terms of the nor-
mal displacements of the nearest set of octahedra.

L, R, and N are the coefficients of the vibronic
coupling terms which are linear, quadratic, and
cubic in the vibrational coordinates, respectively.

These coupling coefficients have all the same di-
mension (energy) and are given in terms of the de-
rivatives of the electronic potential V by

L=-E, E, +E, E, ,
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E~ E g — E

In applying the molecular-field-approximation
method to the Hamiltonian of Eq. (V), all the nor-
mal displacements q~, q, other than those belonging
to the nth unit cell are replaced by their average
values q& and q, . Following the discussion in the
static treatment of Sec. II, we assume the existence
of two sublattices and replace qe(n') and q, (n') in
H(n) (n'+ n) by qe(-) and q, (-), respectively, where
the averages are defined by

q,(-)= Tr [q (n')e ""'""]/Tre""'""
t

{C= (9, S)x (8)

The self-consistency which the set of Eqs. (8)
introduce into the formalism is apparent since H(n')
is itself a function of q&(+). We write qe(n') = qe(-)
+ [qe(n') —qe(-)] and regard the second term as
small so that the square can be neglected. Now

lumping together into H(n) only those terms which
do not depend on n', H„, of Eq. (V) becomes

l(.-=Me((P/M(xP .

Under conditions of strong linear JT coupling,
i. e. , L/k&u» 1, the Hamiltonian given by Eqs. (7)
and (9) can be approximately diagonalized in a way
similar to the single-center case. '6"' This is
achieved by transforming to a new set:

cos'q&
I ze} - silloq& lEe),

) + cos ,' V I
Ee»-

where y is the angle in the polar form of the vibra-
tional coordinates

q& = q cosy, q, = q sing.

Xho&[qe(n)qe(-) + q, (n)a, (-) —qe(+)q, (-) —q, (+)q,(-)],
(9)

where X has already been defined in the static treat-
ment as

Assuming a deep radial potential and restricting
q to its mean value qo- L/2ho&, the problem re-
duces to that of solving the angular Schrodinger
equation

( g3
If(+)x(q ) =

l

- o ~ &-«»8q + re( )-c»q + r.'( )»-nq'
ep

—(x&xtxr4 '( ((-&x((+&~ xl(-&xl(+&&) x(x &
= xx((x&

(10)

Here

(r = h(o/2qox P = a &2 &q'o - ~&q'ox

yo{+)=+Ah(oqoqo(+) (s= 8, &).

Note that the definition of ye(+) is identical to that
of ye in the spinel case [see Eq. (11) of I]. How-
ever, the sign with which ye appeared in the angular
Hamiltonian of the spinel was negative [I, Eq. (10)].
It has already been noted that for d~ and d ions at
octahedral sites, P & 0.

The state of the system in each sublattice is
given by the solution of Eq. (10), and is dependent
on the temperature through the presence of y& and y,

'
in the Hamiltonian. As will be shown in Sec. IV,
a temperature T, exists, above which both y,' and y,'
of the two sublattices vanish, corresponding to the
cubic phase of the crystal. Below T„nonzero so-
lutions for ye and y,

' exist and the stable state of
the system is that of a distorted crystal.

The eigenvalues and eigenfunctions of Eq. (10)
are found by numerical matrix diagonalization sub-
ject to setting the parameters y~i and y,

' equal to
what is obtained self-consistently from Eq. (8).

In the spinel problem y, was equal to zero be-
cause of symmetry considerations, so that the angu-
lar Hamiltonian became an even function of y. This
made possible the reduction of the Hamiltonian ma-
trix to a direct sum in the even and odd representa-
tions (see Appendix of I). In the present case, one
can not put y,'= 0 without a simultaneous vanishing
of y~ so that a similar matrix reduction cannot be
performed.

In the limit of P /a» I, the three lowest vibronic
states alone may be retained, corresponding to
what we have called (I, Sec. III) the three-state
approximation. The matrix of the Hamiltonian of
Eq. (IO) in the representation of lke), l4, ) and

I q('„,), which are the lowest doublet and adjacent
singlet of the cubic Hamiltonian, is

3I'

(12)
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Here F& is the energy of the lowest vibronic
doublet of the cubic angular Hamiltonian

Ev, = av —4v'v'ay/[9(l+ y)]

+ 8v e 9~'"a(1 —y)/[9(1+ y)],

-2' a/9where v=—(9P/8a)'+ and y=—e ~"' ~9. The energy
difference between this doublet and the adjacent
singlet is

31'= SPy[ v'(I+ y) —2e '""].

The parameters q and x are Ham's. reduction fac-
tors. " In the three-state approximation they are

q = —2e '""(1+2y)/(1+ y),

r= - —,'/2 e '+"(1—y)/[1+ y)(1 - 2y)]'~~.

Being interested in the solutions in the vicinity
of T„we are allowed to regard yz and y,

' in Eq.
(12) as small perturbations, since the transition
is of the second order. Ne write yz and y,

' in the
polar form

y,'(~) = p(~) cos8(a), y,'(+) = p(+) sin8(+). (13)

It is obvious that p(+) = —X|I+qoo(a), where e is
defined in Sec. IL (For the minus sign see Ref.
20. ) Omitting the (-) label of the second sublat-
tice and assuming p, «3X', we obtain the following
expressions for the eigenvalues of the matrix in
Eq. (12) and expectation values, correct to second
order in p:

= a pq ——,'p'r'(I a cos38)/31',
tt'E,

= SI'+ p'r'/3l', ,

=a qcos8+-,'r (p/31') (sin8sin38+ 2 cos28+2 cos8)t 4'& cosql4',

+2 COSQ +2

+ ~r 3(p/SI')3[sin38 (2 sin28+ 3 cos8 sin38)ra/4q + Sq(cos 8+ cos28)],

(+,
i cosy' qs) =2r (g/31') cos8+ Sr q(p/SI') cos28,

(14)

' ~ = + qsin8+-,'r (p/SI') (cos8sin38+2sin28v 2sin8)
+p SlIlp +3

,'r (p/3 I—")3[sin38 (cos2 8+ cos 8 cos383r 3/4q) + Sq(sin28+ sin 8)],

(4's~sinq
~

4',) =2r (p/31) sin8 —Sr q(p/SI') sin28.

Re shall use these results in Sec. IV.

IV. ANALYSIS OF CRITICAL REGION AND

LOS(-TEMPERATURE CONFIGURATION

In dealing with a two-sublattice system it is
reasonable to define a free-energy function F for
an assembly of octahedra, with a Hamiltonian which
is the sum of H(+) and H(-) of Eq. (10). However,
the term

—(&@~qo)
'

[ye( )ye(+)+ yl(--)yl(+)]

expressing the mean interaction between neighbor-
ing octahedra is equally felt by each of the sublat-
tices and, therefore, should obviously appear only

once in the expression for F.
In thermal equilibrium each of the four deriva-

tives of F with respect to y&(a) (c= 8, e) must be
equal to zero. This results in obtaining four self-
consistent equations, which are

Mf~qo ~y,'(a)~ &sing ~

(15)

The equivalence of Eqs. (15) and (8) is immedi-
ate. In addition, the second derivatives of F must
be positive. This can be ensured by adding to the
free-energy quadratic terms of the form

(y~ —XS&oqo(cosy)) + (y,' —XN&oqa(sing))~,
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where the averages ( ~ ~ ) are calculated at equi-
librium. We have no microscopic Hamiltonian
which yields these quadratic terms; however,
these terms do not alter Eq. (15), whose validity
is anchored to the seU-consistency conditions
[Eq. (8)] independently of the free energy

Equations (15) must be invariant under a change
in the sign of the integration variable y. Having
performed such a transformation in, e. g. , the
equation for the (+) sublattice, and then replacing
X~( )by-r&(+) and y,'(-) by -y,'(+) throughout, one
obtains the equation for the (-) sublattice, and
vice versa. This solution corresponds to Eq. (4)
with n= O. The two other solutions of Eq. (4),
namely, 9(-) = pv —0(+) and 0(-) = —3v —g(+),

be shown to solve Eq. (15) as well. Note that each
of the solutions in Eq. (4) leaves the two sublat-
tices energetically equivalent.

For small and moderate values of tE/o. , numeri-
cal methods involving multidimensional matrix
diagonalization were applied in order to solve Eqs.
(15). However, for high values of P/n, it is pos-
sible to take advantage of the analytical expressions
for the eigenvalues and expectation values in the
three-state approximation, Eq. (14). Assuming
p. «31 «AT and defining

Ej(+) = —tE(-) -=o,

we obtain

2 X«qo z
SI'

z 31 2F
pXAQPgo —~ —+—cos28 -—- — — - - - q' 1+—+ t' 1+— cos8 —1+—, cos0 = 0,0 (kT) 2 kT 2 kT kT 2kT kT (16a)

p, p,&5qo, —
a 2

+—sin28+ —--- - —

q 1+—„+r 1+—— sino — 1+——sino = 0. (16b)

Looking for a, solution p, 4 0 we arrive at the equation

cot 8 1+ --—q 1+—+~' 1- --= = —--- —
tf 1+—+r 1 ———1,

2zk(uq', r , r 2 Xk oq', , r , r
AT AT 2AT 3 AT AT 2&T

which has solutions only if its right-hand side is
greater or equa, l to zero; thus

p, cos20cos~& 0, p. sin20sine& Q. (16)

From the second inequality we have p. cos~& 0,
which means that y& and, more importantly, the

For large values of P/o. , q —,', x z/2, and
31'- 0, so that the transition temperature of Eq.
(1V) becomes kT, = —,'XRuqo. Substituting for qo its
ground-state value, i.e. , qo- I/O«, it is obvious
that this expression for the transition temperature
coincides with the static-treatment result of Sec.
II, provided that A «1.

It is interesting to analyse the behavior of the
order parameters ye and y,', or p, and 0 just below
the transition point. At the transition temperature
cot8 = 0, 6 is equal to —,n and substituting this in
Eq. (16a), p=O. When the temperature is slightly
decreased the following inequalities arise after
multiplying Eq. (16a) by cos& and (16b) by sin8:

mean tetragonal distortion q~ of both sublattices
are negative [see Eq. (11)].

Following Kanamori, we represent the sub-
lattice mean distortions as vectors in the qq, q,
plane (see Fig. 2). In the vicinity of T, the two
vectors are almost antiparallel to each other in
the direction of the 7f, axis, but both are slightly
canted towards the negative q, axis [drawn by full
lines in Fig. 2(a)]. The canting angle vanishes at
the transition point (0 =-zw)[drawn by dotted lines
in Fig. 2(a)], and increases with decreasing the
temperature. Thus, on the average, the two sub-
lattices exhibit opposite orthorhombic distortion
amplitudes q, but both have negative tetragonal
distor tions q~. Consequently, three unequal tran-
sition-metal-oxygen distances are formed in the
ordered phase, the short and long ones alternating
along the x and y directions, and the distance along
the z direction being in between them.

This corresponds to a tetragonal distortion of
the pseudo-unit-cell along the z axis with co/ao& 1.
However, the true crystallographic cell of the
ordered phase, which contains four distorted
perovskite units, is tetragonal with c/a & 1. Efere
c = 2co and a = v 2a„where c, and ao designate the
lattice const;ants of the pseudocell.
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e(+)=-e(-)

(a)

e(+)= ~~-e'(-)

(b)

e(+)=-—-e(-)= 2'
(c)

X-ray diffraction patterns of, e. g. , KCuF„ in-
dicate the existence of three different metal-
fluorine bonds and show the displacements of F
ions in successive (001) planes to be in opposite
directions. ~'8 This structure coincides with the
type of ordering which arises from the above-dis-
cussed model, where we have chosen the relation
between the two sublattices to be given by Etl. (4).

Although this type of ordering is the most
common one, there is evidence to the existence of
another type, in which the F displacements in
successive (001) planes are in the same direction.
This distortion, as well as the completely ferro-
distortive one suggested by Blasse~ for ASCuWO6
(A = Sr, Ba) are not discussed by us.

Solving Eqs. (16) for T & T, and taking I'/kT«1,
2q -r gives

FIG. 2. Sublattice distortion in the qe, q, plane for the
perovskite structure, where the tetragonal axis of the
unit cell is (a) along the Z direction and (b) and (c) along
the & and X directions. Broken lines and heavy-line
arrows represent the configuration at, and somewhat
below, the transition temperature, respectively.
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generate cation, they found a thermal hysteresis
of the magnetic susceptibility associated with a
noticeable two-phase region, which is character-
istic of a first-order transition. Although the dis-
tortion of BiMn03 exceeded that in BiCr03, no
thermal hysteresis was observed in the former.
This lends support to the second-order nature of
the JT-induced transition.

In order to study the low-temperature config-
uration, we have plotted the canting angle of the
sublattice distortion at 0'K as a function of the
molecular-field strength, for two values of P/u
(Fig. 4). As P/& decreases, & becomes closer to
—,'g which can be shown to be the solution of Eq.
(15) when P vanishes. 2v is also the limiting value

. for O shown on the extreme right of the figure,
when P becomes negligible with respect to the

fu= 4kT(T, —T)'~'/T'~'

cos8= —,'(T, —T)' ~/T,'—

sin&=-'(3T +T)"'/Z'"
&.0

0.2 04 0.6

I f I f I

(b)

0.8
0.

I.O

qe(+) =qe( )~ Tg —T, -

q, (+)=-q, (-)~(Tg- T)"'. (1S)

Thus in the critical region below T, the temper-
ature dependence of the mean distortions is given
by

0.8—

a
CF

~ 0.6

5

The square-root law of q, is typical of a second-
order phase transition. The critical-region be-
havior of Eq (19) can b.e seen in the extreme right-
hand side of Fig. 3. In this figure, results of the
numerical solution of Efls. (15) are displayed for
some typical values of the parameters.

Sugawara et al. '~ investigated the crysta]. lograph-
ic phase transitions occurring in BiCr03 and BiMn03
crystals. In BiCr03, which should exhibit no co-
operative JT distortion since it contains a nonde-

t0

0.2

0 0.2 0.4 0.6
0

I.O

FIG. 3. Mean normal coordinates and canting angle of
sublattice distortion, (a) for high and (b) for low molecu-
lar-field and anisotropy energies.
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molecular-field strength. The limiting value of ~

on the left end of Fig. 4 corresponds to zero mo-
lecular field and is compatible with the value
8=-,'g at the transition point. Referring to Eqs.
(3) of the static extremely anisotropic treatment,
it can be shown that at very low temperatures

6 l I l

IyI(+) =~I(-)-—,',
Iy, (+) = -o.(-)- k&3,

so that e= &(+)-—,'v, 8(-)- ——,'II provided that

lim[()v- 8)/T]-~ as T-o.

This is displayed by the horizontal dotted line at
~=

graf in Fig. 4«TMS limit correSponds to a con-
figuration in which each single complex is tetra-
gonally elongated-along the g and y axes, alterna-
tively. The pseudo-unit-ceQ undergoes a tetra-
gonal distortion with e/a & 1,

Calculated specific-heat curves vs temperature
are displayed in Fig. 5. A similar low-temperature
anomalous hump was experimentaOy observed by
Bokov et al. 5 in some manganite systems. Ho~-
ever, they interpret this behavior as associated
with an antiferromagnetic transition occurring at
low temperatures. Sharp humps were earlier
reported in the specific™heat curves of KMFz
(M = Cu, Co, and the nondegenerate ¹ ),

Figure 6 shows curves of the reduced transition
temperature with different values of P/n. The
abscissa is the ratio of the molecular-field strength
&@eqo «(oIP)' . In the limit P/a - ~, the lowest
vibronic energy levels of the cubic angular Hamil-

0.0 Oj 0.2 OA 0.6 0.8 I.0

tonian —u(8 /SqI ) —pcos 3III are approximately
given by —p+3{2II+1)(-,' oIP)I~' {II=0 l ~ ~ ) and
are threefold nearly degenerate. Thus, 3(3II.P)'"
gives the energy separation between the set of the
three lowest vibronic states and the higher-lying
states.

In the foQowing we discuss the variation of the
tran81tlon temperature referr1ng to the saIQe five
regimes which have been introduced in I.

(a) Starting with extremely high values of p/n,
provided that

3I'«APING&q «0( pIr)

we may apply the static limit treatment where we
have found kT, /IIII'&q30=-,'. [See Eq. (6) with
M~~«MIIP and qo= I/MIII. ]

(b) For moderately high values of P/c. , where

3r- &n(oq(') «(Ixp)"',

FIG. 5. Temperature dependence of the specific heat
for values of the physical parameters shown in the first
two columns in the inset.
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keg Xflauqo /I

I I I

-6.0 -4.0
I I I I a I

-2.0 0,0 2.0
togIo )kIIIq~//gal

FIG. 4. Canting angle of sublattice distortion at 0 'K
as function of the molecular-field strength for P/& =4
and 50. Broken line represents the static extremely an-
isotropic behavior.

FIG. 6. Reduced transition temperature as function of
the molecular-field strength plotted for different strengths
of the nonlinear coupling. (These curves may be compared
to those in Fig. 9 of Ref, 1.)
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the three-state approximation, Eq. (12), is valid,
leading to reduced T, somewhat below 0. 5 [ Eq.
(1&)].

(c) The intermediate region covering values be-
tween 0. 5 down to almost 0. 25 belongs to what we
have called the general regime. This includes
P»n as well as P& 0. , provided that the molecular
field is sufficiently strong to cause excitations in-
to several high-lying vibronic states,

(d) The right-hand extreme of Fig. 6 corresponds
to the strong molecular-field limit, i.e. ,
&k&uqo»n, P, where the reduced transition tem-
perature approaches the value & .

The analytical derivation of this limiting value
is as following: Near the transition point, ye«y, ',
so that we may neglect the term yecosp in the
Hamiltonian of Eq. (10) and write

H(+) = —(2S'/Sy2 —p cos3y+y,'(- ) siny,

ignoring constant terms which do not enter the ex-
pressions for thermal averages. We define

Og
Ho(+) = —

2
—pcos 3yay

and put y, (- ) = —y,'(+). If we now omit the (+)
sign labeling the sublattice and write y,

' instead of
y, (+), we have for the commutation relation

f 8
[ H, H()] =+@, ~ n siny —2 cosy—

Assuming (2, p, y', «kT, appropriate for the strong
molecular-field case since kT, is of the order of
XSurqo, using the operational expansion

BA SB eA+B+(1/2)IA, B)+(1/12)t(A, B),B)+(I/12)t(B,A],A+ ~ ~

y

and neglecting terms of order 1/(kT)2, we have

e "/» =(1+y', siny/kT+ ) e "2/

Substituting into the self-consistent equation [Eq.
(15)], we obtain

Here the molecular-field strength is much smaller
than the separation between the doublet and singlet,
so that only the two lowest states need to be con-
sidered. The limiting self-consistent equation is
of the form

p/XK+q() =q tanh(I1q/kT)

and the reduced transition temperature approaches
the value q, where q is Ham's reduction factor.

The dependence of (cosy) on the molecular-field
strength for constant temperature is shown in Fig.
7. Attention is directed to the implicit dependence
of the molecular field on the JT ion concentration.
Although our theory was developed for full concen-
tration x = 1, it is obvious that for 0 & x & 1 the
quantity XS'&qo should get multiplied by x, which
calls for a new definition of X as Xx. Thus Fig. 7
displays the effect of reduction of the JT ion con-
centration on the axial distortion and shows the
existence of a critical concentration, correspond-
ing to the abscissa taking the value - 2. 3, below
which (cosy) vanishes and the distortion disappears.
A critical concentration x-0. 8 was experimentally
established in La(Mn2' —Mn4')02 systems A.
linear dependence on x was found in some mixed
perovskites. "Our model does not apply to these.

The axial ratio of the true crystallographic
cell (containing four perovskite units) is given by

c/a = )) 2[1+(cosy)~3/(lo/())() —(cosy)/~3)]

((cosy) & 0),

where lo is the length of the undistorted octahedral
axis. Taking as typical value Qo/10=0. 075, one
gets a saturation value of c/a = 1.381 for the
system described in Fig. 7. As was shown by
Kanamori, the ratio qe/q, can be expressed in
terms of the three Mn-0 distances observed in the
tetragonally distorted phase, giving

2 Tr(siny +y ', sin y/kT + ~ ) e
Tr(1+y', siny/kT+ ~ ~ ~ )e "o/

0.2— P—=4a

From symmetry arguments it is easy to verify
that Tr sin&pe-"o~~~ as well as Tr cos2ye ~o '
vanish. Having written sin y as —,

' ——,
' cos2y and

equating the coefficients of y', on both sides of
Eq. (20), we obtain

kT, /Xk(gq() = 2 .

I

2 4 6
Acuq02

a

IO

(e) The left-hand extreme of Fig. 6 corresponds
to what we have called the "Ising-model limit. "

FIG. 7. The thermal average (cos p) (equal to g~//'qp)

as function of the molecular-field strength in a perovskite,
drawn for a fixed temperature.
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qs(y)/q, (a) = cot8(+}= t (2m.—I —.s)/v 3(l —s), (21)

where E and s stand for the long and short distances
alternating along the g and y directions, and m is
the Mn-0 distance algng the g axis.

X-ray measurements of the three different dis-
tances in Mnr~ perovskifes give E = 2. 09A, m
=1.91k, and s =l.. 'l9A, yielding a rather small
canting angle of 6 deg 35 min. Og. the other hand,
the copper-fluorine distances in KcuF3 crystals'
are found to be E = 2. 25 A, m = 1.96A, and s = 1.89 A,
corresponding to g, canting angle of 19 deg 24 min. '

From the observed transition temperatures in
perovskites which are about a few hundreds of
degrees ' the molecular-field strength XNurq~o is
possibly about 103 cm '.

Taking n- 10 cm ' and P- 500 cm ', we see
from Fig. 4 that the maximal canting angle amounts
to 20', which is close to the observed value in
KCuF3. The small canting angle in MnF3 corre-
sponds to much smaller values of P which, referring
to Fig. 4, are estimated as lower than 100 cm '.

VI. CONCLUSIONS

The theory presented for antiferrodistoz'tive

perovskites follows Kanamori's theory in physical
content, but has been made more tangible (by the
use of a specific though restricted model), more
realistic (by the inclusion of the dynamic effect},
and more quantitative (thereby becoming compar-
able with experiment). We recall the curves of the
rather unusual specific heat as functions of tem-
perature (Fig. 5) and the distortion-vs-JT-ion
concentration. The transition is of the second or-
der, appropriate to a bvo-sublattice system. It
was seen to vary between one-quarter and one-half
of the molecular-field energy (Fig. 5) almost as
for spinels (I). In the canting angle of the sublattice
distortion [Eq. (21}]a new measurable quantity ap-
pears3 for perovskites which depends upon most of
the physical parameters and is relatively easily
accessible to experiment. Its limiting zero-tem-
perature value is small than 3 m, its value for ex-
tremely strong anisotropic energy. '

The main limitations on the validity of the theory
are similar to those in Paper I and were discussed
there: the use of the molecular or mean-field ap-
proximation, the exclusive attention paid to the
angular distortion (in the qs, q, plane), and the as-
sumption of infinitely heavy (though not rigidly
fixed) cations. The restriction in the type of dis-
tortion imposed. by Eq. (4) is also recalled.
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20%hether l g ) or I ltd, ) appears in the vibronic ground
state depends on the sign of the linear JT coefficient L;
} g ) appears if L&0 and ( (+) appears if L&0. We re-
gard ) E&) and i E,}as one-electron kets. Then crystal
field theory indicates I &0 and the ground state arises
from I tt) ). If, however I &~) and ) E,) were defined as
single-hole (or many-electron) wave functions, then L, &0
and i g, ) would have to be taken. Note also that the ex-
pectation values of the one-electron Pauli matrices az
and o, in the vibronic ground state are those of the opera-
tors -cos(It, -sing, respectively.

It is instructive to point out that the four long Cu-F
bonds of 2.07 A in KCuP3 reported by Edwards and
Peacock (Bef. 9) are the arithmetic mean of the long and
short distances given by Qkazaki and Suemune (Ref. 7),
while the two shorter bonds of 1.96 A are equal to the
intermediate distances givenin Ref. 7. Edwards and Pea-
cock (Ref. 9) ascribed their results to a tetragonal dis-
tortion of each octahedron in a sense opposite to the com-
monly found elongated Cu ' and Cr ' complexes.


