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The critical magnetic exponents are determined for EuO and found to be $=0.368+0. 005,
6=4.46+0.1, and y=1.29+0.01. Within experimental error these values are consistent with
the predictions of scaling theory. It is shown that the reduced magnetic field is expressible as
a function only of the reduced magnetization in the critical region, with a functional dependence
which differs for 7' above and below T,. However, the linear model of Schofield et al. leads to
a single equation of state which gives a good approximation to our data throughout the entire crit-
ical region. Our results were analyzed in terms of high-temperature expansion for fcc lattices
with nearest J; and next-nearest-neighbor J, interactions. It is shown that straightforward ex-
trapolation procedures can lead to serious discrepancies. However, the analysis can be used
in conjunction with our susceptibility measurements both immediately above 7', and upto 370 °K
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and with the observed y* behavior to determine the value of the magnetic interactions.

Our re-

sults indicate that J, is ferromagnetic and equal to (0.5+0.2)J;. The disagreement between
this and the previously reported value is discussed.

1. INTRODUCTION

A study has been made of the magnetic properties
of EuO in the vicinity of the critical temperature
T.. The sample specimen was prepared from a
single crystal of high-resistivity EuO grown from
the melt as previously described.! The principal
impurities were C=100, K=50, Ca=35, Sr=12,
and Te=12 at. ppm, all others less than 10 at.
ppm. The sample was ground into a sphere by the
A. D. Jones Optical Company, and the measure-
ments were made with a vibrating-coil magnetom-
eter.? The results of this study permit a deter-
mination of the critical exponents B8, 6, and ¥, de-
fined by the equations.

o=A€® (T<T,): (1a)
H=Bd® (T=T,)> (1b)
X'=Ce” (T>T), (1c)

where A, B, and C are proportionality constants,
€=|T-T,/T,, ois the magnetic moment in emu/
g, H is the internal magnetic field (applied field
minus the demagnetization effect), and ¥, is the
initial susceptibility. The evaluation of the critical
exponents B8, ¥, and 0 is presented in Sec. II of
this paper, and a comparison between our results
and predictions of scaling-law theories is given in
Sec, III.

Since EuO is a ferromagnetic semiconductor with
the Eu®* ions located on fcc lattice sites, it is an
ideal material for study in conjunction with the
high-temperature expansion of the Heisenberg Ham-
iltonian, Such a study, using the known expansion
coefficients for an fcc lattice with nearest- and
next-nearest-neighbor interactions is carried out
in Sec. IV. The results of this study enable us to
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evaluate the relative strength of the two interac-
tions. They also are used to show that extrapola-
tion procedures have limited reliability in the eval-
uation of y as a function of the relative interaction
strengths.

Our findings are summarized and discussed in
Sec. V. The critical parameters are compared
with values determined for other materials, and
possible reasons for the large discrepancy between
the interaction ratio we obtain and its previously
reported value are explored.

II. CRITICAL EXPONENTS
A. T<T:

The critical index B was determined by the meth-
od proposed by Rayl and Wojtowicz,® which utilizes
the fact that there is a sharp kink in the magnet-
ization-vs-temperature curve at the temperature
T,, where the applied field H, is equal to the de-
magnetizing field NM of the sample in the equa-
tion H=H, - NM. The magnetization is constant
at temperatures below T,, but falls off sharply at
and above T,. This method has the advantage that
the magnetization is accurately determined at T
=T, by the relationship M =H,/N, where N is the
demagnetization factor (V=% 7 for a sphere). In
addition, this method permits an accurate deter-
mination of T, since T, - T, in the limit H, - 0.

The observed kink was extremely sharp in our
crystal, occurring within an interval of the order
of 0.01 K°, which indicates high sample homoge-
neity. The locus of T, as a function of applied field
is shown in Fig, 1. Extrapolation of this curve to
H,=0 gives T,=(69.59+0.01) K°, which precision
applies only to temperature differences; the ab-
solute temperature is uncertain by +0. 25 K°, based
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FIG. 1. Experimental relationships between applied
field H, and kink temperature 7', in EuO.

on a calibration of our thermocouple at liquid nitro-
gen. The results shown in Fig. 1 can also be ex-
pressed in terms of o, vs €,, where €,=(T,~ T,)/
T, and 0,=M/p=H,/Np with p=8.190 g/cm®, the
theoretical density for EuO. A log-log plot of the
resultant curve is linear over the range 0. 0016

< €,<0.15, as can be seen from Fig. 2, and yields
the values 8=0.368 +0. 005 and A= 276 for use in
Eq. (la).

The magnetic moment of EuO as a function of
magnetic field was measured at 7=7,. The re-
sultant relationship was found to satisfy Eq. (1b),
with 6=4.46+0.10 and B=7.6x 10,

B. T>T.

The inverse initial susceptibility x;' was de-
termined in the region immediately above T, by
measuring the magnetic moment as a function of
temperature at several applied fields between 1
kOe and 50 Oe, by plotting the results in the form
of 0%-vs-H/o isotherms, and by extrapolating these
isotherms to 0?=0. The ensuing values of X;' were
analyzed by two distinct methods in our determina-
tion of the critical exponent y. The first was the
T* technique introduced by Kouvel and Fisher. *
This involves the determination of

-1
x_ /98X
T =Xo dT

as a function of temperature. If a temperature-
dependent effective exponent is defined as y*(7)
=(T=1T,)/T*, then y*(T) -y in the limit as T - T,.
A computer program was written to evaluate y*(7)
according to this procedure, and it was found that,
for T,=69.59 K°, the value of y* is essentially con-
stant, falling within the range 1.278+ 0. 002 for

T - T, between 0.5 and 4 K°, as shown in Fig. 3.
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FIG. 2. Kink-point data replotted as 0, vs €, on a
log-log scale. The solid line corresponds to 8=0. 368,
A=276.

The assumption of a slightly higher value for T,
leads to a general reduction in ¥*, but with a def-
inite maximum at 7— 7,~3 K°. Therefore, y

=1. 28 can be considered a minimum value. When
values of 69. 585 and 69.58 K° are assumed for T,
a definite rise in y* is observable at the lowest
values of - T,, as is also shown in Fig. 3. Since
these values fall within the uncertainty of our ex-
perimental determination of 7,, a most probable
value of y=1.29+0.01 has been chosen. However,
it should be noted that a value as high as 1. 31 can-
not be excluded.

The second method of analysis involved the as-
sumption that ¥ remains constant over the interval
0.5 K°<T-T,<5K"° and the use of a computer to
obtain a direct determination of those values for
v and T, which, on the basis of Eq. (1c¢), best fit
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FIG. 3. Experimental values of y* as a function of €
for a range of assumed values for 7.
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FIG. 4. Experimental values for the inverse initial
susceptibility xal vs € on a log-log scale. The solid line
corresponds to y=1.285, C=1680. The theoretical
curve for & =0.7 assuming a linear extension is shown
by the dashed line and illustrates the poor agreement
with experiment for small €, as discussed in Sec. III.

our measurement of x;'. This method yields ¥

=1, 285 and C=1.68 x 10® with T,=69.594 K°. All
the values of x5! computed from Eq. (1c¢) using these
values of y and T, fell within the experimental er-
ror of the measured values. The nature of the
agreement is indicated by the logarithmic plot of

X;! vs € given in Fig. 4. This value for v is con-
sistent with the value chosen on the basis of the T*
analysis.

III. SCALING AND EQUATIONS OF STATE

Studies of the magnetic critical-point exponents
have led various authors®~® to propose the rela-
tionship

y=B(6-1). 2)

Equation (2) cannot be rigorously derived, but is
based on plausibility arguments. The ultimate
check on its validity must come from experimental
verification, and is seen to hold in our results,
which predict y=1.27+0. 05 on the basis of our
measurements of 8 and 6.

Taking the behavior of the specific heat C, in
the vicinity of T, as C, <€~ for T'>T, and C,xe"®
for T< T, the scaling laws suggest the additional
relationships:

a=2-p(6+1) (3)
and
a=a’, @

Our results and Eq. (3) yield a=0 for EuO within
our experimental error, in which case the predicted
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behavior for the specific heat is C,«Ine.® The
specific heat of EuO has been investigated by Tea-
ney® and a logarithmic relationship observed for
T>T,. However, this agreement must be qualified
by the fact that different specific-heat behavior

is observed for T'< T,, indicating that Eq. (4) is not
generally valid.

The scaling laws also lead to the prediction®®
that the reduced field 7 is a function of the reduced
magnetization  only; i.e., k=h(m), where h=He™®®
and m=0€"®, Following the nomenclature of Ho and
Litster, '° we have taken 2=He™®, where A
= (gug/SET)H, and have plotted & vs m at various
temperatures, as shown in Fig, 5. The resultant
points are seen to lie on two curves, one for T'< T,
the other for T>7T,. These curves are qualitatively
similar to those obtained by Ho and Litster!® for
the ferromagnetic insulator CrBr;, which they
showed to be consistent with the scaling laws.®

It is of considerable interest to establish if a
convenient parametric form for the equation of state
in the vicinity of 7, can be obtained which is ap-
licable both above and below 7',. One such form,
called the linear model (LM), was recently pro-
posed by Schofield, Litster, and Ho.!' The LM-
involves transformation to new variables 6 and #»
defined by the equations'?

A=ar®%0(1-6%, e=r1-0%%, o=7"m(),

®)
with
2
bv?=(6-3)/(6-1)1-2B)
1.0
(T>7) (T <Te)
L T T
. 69.979 + 68.954
o 69.907 x 68.824
x 70.035 . 68.694
o.er + 70.164 o 68.564
« 70.292 » 68.305 .
o 70.677 o 68.045 :
¢ 71,134 ¢ 67.784
F ¢ 72.202 ¢ 67.519
s 73.468 + 67.254 °
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FIG. 5. Reduced magnetic field % plotted as a function

of the reduced magnetization m in the critical region both
above and below T'.. :
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FIG. 6. Comparison of experiment with the linear
model for a=0.22 and b*=1.598. The straight line cor-
responds to m(6) =2446.

and ¢ an arbitrary parameter. The LM then pre-
dicts the linear relationship m(0)= %6, where £ is
a constant. A plot of m(6) vs 6 for our EuO data
taken both above and below T, is shown in Fig. 6,
wherein a=0.22 and 62=1.598. A single straight
line with 2= 244 is seen to represent a good ap-
proximation to the data both above and below T,.
However, there is a distinct departure from lin-
earity in the region 6>0.5 and T > T,, with the
worst point departing about 5% from the straight-
line relationship. In view of the large number of
experimental parameters (i.e., o, H,, N, €, 6, )
which enter into the determination of each point,
the departure from linearity cannot be considered
outside possible experimental error.
A necessary condition for the validity of the LM

is

BA®D /0= p0-3) /(p2 _ 1)) | ®6)

where A, B and C are the coefficients defined in
Egs. (1). Using the experimental values given in
Sec. II, and considering only the uncertainty in the
value of § in setting the limits, evaluation of the
left-hand side of Eq. (8) gives

BA™'/C=1.262:% |
and the right-hand side yields

b%3/(6* - 1)"1=1.64+0.05.

Thus, using the experimental value of 5, Eq. (6)
does not hold, and departure from the LM is to be
expected. However, the extreme sensitivity of
the left-hand side to small changes in 6 places Eq.
(6) well within experimental uncertainty. In fact,
the evaluation of 6 from Eq. (2) using the experi-
mental values for g and y yields 1. 63 for the left-
hand side of Eq. (6).

Given these considerations and the fit shown in

Fig. 6, it is felt that the LM adequately describes
the properties of EuO, and gives a good approxi-
mation to the equation of state throughout the crit-
ical-temperature region.

IV. USE OF HIGH-TEMPERATURE EXPANSION TO
DETERMINE EXCHANGE CONSTANTS

EuO is both semiconducting and ferromagnetic,
and hence can be considered a “Heisenberg” fer-
romagnet. In addition; it has a simple rocksalt
structure with the Eu®* ions on an fcc lattice. In
the case of a Heisenberg Hamiltonian with nearest-
and next-nearest-neighbor exchange interactions
Jy and J,, respectively, the magnetic susceptibility
can be expressed in the form of the power series

had n
=t D a9 4) )
where a=J,/J;, and C is the Curie constant. For
a material with magnetic ions on an fcc lattice,

the coefficients a,(a, S) have been evaluated for ar-
bitrary spin S through the sixth order.!¥~!® EuO is
therefore an ideal material in which to investigate
exchange interactions by comparing experimental
susceptibility measurements with the predictions of
Eq. (7).

In addition, the assumption of a power-law di-
vergence of the susceptibility upon approaching 7T,
from above leads to definite relationships between
the critical exponent y and the coefficients a,(a, S).
Since the power-law assumption is restricted to
the limit 7= T,, evaluation of y as a function of @
involves the extrapolation of a,(a,S) to # — (1 /7= 0),
as discussed in Appendix A. A significant body of
literature has been devoted to extrapolation pro-
cedures for dealing with this problem. In the past,
such calculations have been unencumbered by being
subjected to direct experimental verification.
Hence the reliability of the extrapolation has gen-
erally been assumed on the basis of the behavior of
the extrapolated function. However, in EuO we
are afforded a rare opportunity to experimentally
check the reliability of such an extrapolation.

A. T>>T.

It is desirable to make comparisons between Eq.
(7) and experimental inverse susceptibility in the
high-temperature range since the theoretical sus-
ceptibility is then much less sensitive to the ex-
trapolated terms than it is immediately above T,.
We therefore measured the susceptibility of our
EuO sample at temperatures up to 370 K°in a field
of 10 kOe. The resultant x;}-vs-T curve appears
linear above 210 K°with a molar Curie constant
C=17.4 and an apparent paramagnetic Curie point
6=81 K°, in fair agreement with the results ob-
tained by McGuire et al.!"

If the measured 6 is equated with the molecular-
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tibility vs temperature. The
experimental values (indi-
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field Curie point T}, a value ¢,=7T./T,=0.86 is ob-
tained. Thisis greater thanthe maximum attainable
value of {,, The error lies in equating 6 and T,
i.e., in assuming that, over the temperature in-
terval 37,< T< 370 K°, one can use the equation
X = C/(T - 6) as a reasonable approximation to Eq.
(7). It can be shown that much higher temperatures
are required before the experimental value of 6
closely approximates T,.!®

This effect is illustrated in Fig. 7 which contains
our experimental values of ;! vs T as well as the-
oretical curves which were calculated for 7.=69.59
K° using a high-temperature series obtained by
linear extension of the function described in Ap-
pendix A and were scaled to match the experimental
Curie constant. The theoretical curve for @=0.5
yields the best fit to the data. Despite appearances,
this curve is not a straight line and, if extended to
sufficiently high temperatures, is found to corre-
spond to T,,=84.05 K°. For higher values of @ the
theoretical curves are relatively insensitive to
changes in @, but the one for a=1.5 lies about 2 K°
below the experimental results, which is outside
experimental error. The theoretical curves are
more sensitive to changes in @ at smaller « values,
and by a@=0. 2 lie more than 2K° above the experi-
ment; for a=-0.1 there is a 5 K° difference. This
is in direct contradiction with the results obtained
from an NMR experiment by Boyd!® and from spe-
cific-heat measurements by Henderson et al.,?°
who reported values of @=-0.13 and a¢=-0.11,
respectively.

B. T near Tc: Standard Extrapolation

In the temperature region immediately above T,

280 320 360

the higher-order terms of the high-temperature
expansion (#3>7) make a significant contribution to
the susceptibility. Therefore, interpretation of the
susceptibility data in this temperature region're—
quires extrapolation from the known coefficients to
obtain information about the higher-order terms.
Furthermore, as noted above, the experimentally
determined value of y can be related to the mag-
netic interactions only by extrapolation of Eq. (7)
to 7 = co.

In order to perform such an extrapolation, we
initially followed the “slope”-method procedure
proposed by Stanley.? This method, which utilizes
the convergence criterion

Pu=an/01 8y 7= T /Ty =ts, @®)

defines a function of 1/z# which extrapolates to y(a)
as 1/%n -0 and is (hopefully) smoothly varying. Ap-
plication of this procedure to the fcc lattice with
both nearest- and next-nearest-neighbor interac-
tions failed to yield a function smooth enough to ex-
trapolate for «>0.4.

This result is not surprising since, as @ becomes
large and positive, the next nearest neighbors start
to play a dominant role. These neighbors are lo-
cated on a simple cubic lattice, and it is known?
that with this structure the extrapolation is less
reliable and is best achieved by considering the
coefficients in two separate groups, i.e., a,, a,,
ag, ... and ay, as, a;, -... We therefore substituted
a new convergence criterion involving a,,, @, for
that given in Eq. (8) and extended the slope method
to consideration of this case. This leads to a de-
termination of the function v, /2,,.1 /2 Which is de-
fined in Appendix A and is shown plotted vs 1/z in
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FIG. 8. Function v,, 1/3,,-1/2 for an fcc lattice with
S=% plotted against n~! for various values of the ex-
change ratio a.

Fig. 8. It is seen that v,,; 3, ,.1/2 varies linearly
with 1/n over the range — 0.1< @<2.0. Linear ex-
trapolation to 1/%=0 therefore leads to a determina-
tion of y(@) with an accuracy as good as can be
achieved by extrapolation techniques. The series
convergence for @< -0.1 is poor, which confirms
previous findings. %

In addition, one can extrapolate the Z,,; /3,,.1/2
function defined in Appendix A to obtain {,. How-
ever, the £ and y functions are not independent,
and it is shown in Appendix B that the linear rela-
tionship ¥, /2,n.1/2= ¥ — @/n requires that

tn+1 /2,n-1/2% tc(1+ a/2n2+ o °) . (9)

Thus linear extensions of the y(@) in Fig. 8 deter-
mine, by virtue of Eq. (9), unique extrapolations of
the £,(@). The resulting values of ¥ and ¢, are shown
plotted vs @ in Fig. 9.

The experimental value y=1.29+0. 01 corresponds
in Fig. 9 to the value @=1.5x0. 2, in clear dis-
agreement with the high-temperature susceptibility
measurements as shown in Fig. 7. Since the high-
temperature susceptibility depends primarily on
the known coefficients and hence is relatively insen-
sitive to extrapolation effects, this discrepancy
raises serious questions regarding the reliability of
extrapolation procedures for the determination of
Y.

To investigate this aspect of the problem, we
have compared the experimental values of x;' im-
mediately above T,, as discussed in Sec. II, with
the theoretical curves for several values of @ In
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this temperature interval, as noted previously,
the theoretical susceptibility curves will depend
strongly on the extrapolated terms. Use of the
linear extension (LE) of ¥,.1 /2,4.1/2 leads to the
curves shown in Fig. 10. It is seen that a=1.5,
which corresponds to the correct y value, gives
poor agreement with the susceptibility, as does

=~0.1. The best agreement with the magnitude
of x5! occurs for @=0.7. However, the y value
corresponding to this curve is 1. 333 which is well
outside experimental uncertainty. Hence, the ap-
parently excellent agreement, as indicated by the
curve, is misleading. It arises from the fact that
the greatest percentage error between the experi-
mental and theoretical curve occurs for T near T,
where the magnitude of x;' is small. There is al-
most a 5% error between the experimental results
and the theoretical curve for ¢=0.7atT-T,=1K",
increasing to about 8% by T- T,=0.5 K°. This in-
creased deviation as T'— T, is more clearly illus-
trated in Fig. 4 where the theoretical curve is given
by the dashed line. Thus, one cannot achieve con-
sistency with all our experimental results using a
straightforward linear extrapolation of v, /,n.1/2
to define a, for = > 6.

Attribution of this inconsistency to the unreliabil-
ity of the linear extrapolation can be checked di-

- rectly by treating the theoretical inverse-suscep-

tibility curves as data, performing a T* analysis,
and comparing the resultant y* values with those
obtained from the experiment. As seen in Fig. 11,
the theoretical values of y* for @=1.4 (correspond-
ing to y=1.294) fall off with increasing tempera-
ture significantly more rapidly than is found ex-
perimentally. We must therefore conclude that the
extrapolation procedure is incapable of predicting

¥ to the close tolerances required to make it useful
for determining magnetic interaction parameters.
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FIG. 9. Extrapolated values for v and ¢, as functions

of the exchange ratio y based on the linear-extension
procedure.
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FIG. 10. Comparison between experimental values
for the inverse initial susceptibility immediately above
T, and curves computed from the high-temperature ex-
pansion for an fcc lattice with S=- and various values
of the exchange ratios @. The curves for @ =1.5, 0.7,
and — 0.1 are based on the linear extension of ¥y, 1/2,n-1/2,
the curve for @=0.5 is based on the truncated extension.

C. T near Tc: Corrected Extrapolation

In order to achieve consistency between theory
and the experiments it is necessary that the first
six coefficients a, (n ¢ 6) be those for @=0.5 to
agree with the high-temperature susceptibility
curve, and that the corresponding 7, /3,n1 /2 CUrve
extrapolate to ¥ ~1.29 as 1/#~0. It is further
necessary that the resultant high-temperature ex-
pansion series lead to a theoretical x;'-vs-T curve
whose magnitude agrees with experiment immedi-
ately above T,, and that the theoretical y*-vs-¢
curve be slowly varying in this temperature inter-
val to ensure agreement in the shape of the sus-
ceptibility curve.

The simplest way to meet the first pair of cri-
teria is to linearly extend the ¥,. 2,41 /2 COrre-
sponding to the known coefficients a, (nz 6) for «
=0. 5 until the value'y,,=1.29 is attained, and then
to maintain this value as 1/ -0, with the ¢,,4 /5,41 /2
being determined consistently. This type of ex-
trapolation will be referred to as the truncated ex-
tension (TE), to distinguish between it and the LE,

Since the high-order terms of Eq. (7) play an
important role, lowering the value of %,.; /3,41 /2 in
the extended region strongly affects the theoretical
X! curve immediately above T,. In general, it
raises the value of X! for a given value of @, For
the extreme case of the TE, the theoretical curve
for a=0.5 gives the agreement shown in Fig. 10.
In addition, the theoretical curve for @=0.5 with
the TE leads to the y*-vs-€ behavior shown in Fig.
11, which is seen to be reasonably consistent with
the experimentally observed behavior.
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In the high-temperature region (27,< T<370 K°),
the higher-order terms (z >6) play a minor role in
the determination of x. Thus the theoretical x!-
vs-T curve in this temperature range for a particu-
lar value of « is virtually independent of the nature
of the extrapolation chosen, and the conclusions
reached in connection with Fig, 7 remain unchanged.
Thus the high-temperature expansion for @=0.5
yields consistent agreement with the experimental
value of v, with the y*-vs-€ behavior, and with the
inverse-susceptibility curves both immediately
above T, and in the region of higher temperatures,
provided the TE is used.

The consistency of agreement between theory and
experiment is lost when « departs significantly
from the value 0.5. Although the magnitude of the
theoretical inverse susceptibility is in good agree-
ment with experiment for a=0.7, except in the
immediate vicinity of T, when using the LE, re-
ducing the extrapolation to meet the experimental
value of ¥ must have the effect of raising the the-
oretical curve. For &=0.7 and using the TE, the
theoretical curve lies ~3% above the experimental
results. Therefore @=0.7 can be considered the
upper bound for @, At the other end, it is seen in
Fig. 8 that for @=0.3, the value of ¥, 3,n.1/2 has
reached 1. 29 for n=5. A lower value of @ would
require that the extrapolation go through a maxi-
mum and then decrease to y=1.29 at 1/#=0. Thus,
one would reasonably expect a>0.3. Direct con-
firmation comes from the high-temperature in-
verse-susceptibility results, where it was shown
that by a=0. 2 the theoretical curve lies 2 K° above
the experimental values, with the discrepancy in-
creasing with decreasing «. For these reasons,

<]
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1.25—

~ L
Experimental
Theoretical
B 0a=1.4 y=1294 (LE)

o

@=0.5 =1.290 (TE)
YMGK
©a=0.5 y  =1295 (TE)

| 1 1 | | | | 1
o 0.02 0.04 0.06 0.08

FIG. 11. Experimental and theoretical variation of
v* with €. For the LE, reduction of & causes a pro-
nounced vertical displacement of the curve. For TE,
the position of the curve depends more on Yy, than on
a. The experimental curve used for comparison cor-
responds to the solid dots of Fig. 3.
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we conclude that the value of a can be bracketed as
a=0.5+0.2. The corresponding value for the
nearest-neighbor constantis J,/% = (0. 53+ 0. 05)K°.

V. SUMMARY AND DISCUSSION

We have investigated the magnetic properties of
EuO in the vicinity of the Curie point and deter-
mined the critical exponents g=0.368+0. 005, &
=4,46+0.10, and ¥=1.29+0.01. The relationship
of these values agrees, within experimental error,
with the predictions of scaling theory. They are
also consistent with the logarithmic behavior of the
specific heat observed® in EuO immediately above
T.. In further agreement with scaling theory, it
was found that for 2 =He"*® and m=o0e™® h can be
expressed as a function of m alone. However, the
form of h(m) was different for T above and below
T.. An attempt was made to see if a single equa-
tion of state could be established for EuO which was
applicable both above and below T,. It was found
that the linear model recently proposed by Scho-
field et al.! represented at least a good approxima-
tion throughout the critical-temperature region.

In addition, our results were analyzed in terms of
the high-temperature series expansion for fcc lat-
tices with nearest- and next-nearest-neighbor in-
teractions. On the basis of the known expansion
coefficients and susceptibility measurements in the
high-temperature region where the results are rel-
atively insensitive to extrapolative procedures, we
determined a@=~0.5. We were then able to use this
result to test the reliability of extrapolation for the
determination of y.

Griffiths® has recently published an article which
postulates that in a Heisenberg ferromagnet the
critical exponents remain constant, independent of
distant-neighbor interactions. This is not borne
out by our numerical evaluations of the first six
coefficients which show ¥, /2,n.1/2 to be strongly
dependent on the interaction ratio a for these known
terms.

Using a modification of the slope method, we
succeeded in obtaining a well-behaved linear rela-
tionship between ¥,y /5, 5.1 /2 and 1/n for n=3, 4,
and 5, and found that a straightforward linear ex-
tension to 1/%2=0 gave a=1.5 for the measured val-
ue of . The linear extension also predicted a much
more rapid variation of y* vs € than is observed
experimentally. The threefold error in « is found.
to correspond to an error in the y extrapolation of
approximately 43%. We believe this error repre-
sents the limit of reliability inherent in the deter-
mination of y by extrapolation, since the linear
dependence of the known ¥,,; /3,41 /2 Upon 1/n leaves
negligible uncertainty in their extension. This
large unreliability is not surprising when one con-
siders that the extrapolation of ¥ from the changing
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S10PEeS Yy /2,q.1 /2 ilVOlves the second derivative of
the ratio 0,,, ,, with respect to (z+ 3)™'; the extrapo-
lated value of #, depends predominantly on the first
derivative of these ratios and remains reliable to
better than 1%. Given the rapid variation of @

with y (Fig. 9), an unreliability factor of 43% ren-
ders this technique meaningless for o determina-
tions.

By using the TE to join the known expansion co-
efficients for a=0.5 with the experimental value
of ¥, we were able to obtain reasonable agreement
with the shape of the susceptibility curve immedi-
ately above T, (as determined by the y*-vs-€ curve)
and with the susceptibility magnitude both immedi-
ately above T, and in the high-temperature region.
This consistency between theory and experiment
was limited to the range of values @=0.5+0.2, 24
corresponding to J;/%=(0.53+0.005) K°.

The previously reported*®'?° value of ax~-0.12
is clearly incompatible with any of our results.
Although the measurements of Boyd*® and of Hen-
derson et al.?® were conducted at or below 4.2 K°
while ours were near or above T, it is unreason-
able to attribute such a large discrepancy to a tem-
perature variation of the exchange parameters
caused by a change in lattice dimensions.? Direct
evidence to the contrary is provided by measure-
ments of the pressure dependence of T,, which show
dT,/dP to be small and positive in EuO, 2628

The NMR results were obtained'® by parametriz-
ing the magnetic properties of EuO in terms of the
near-neighbor exchange interaction J; /%, the ex-
change ratio «, the magnetization M, and an ef-
fective field. Curves of M(0) - M(T) vs T for var-
ious values of the parameters were then calculated
on the basis of spin-wave theory as given by Charap
and Boyd, 2° and compared with the measured values
of f(0) - f(T) vs T, where f(T) is the NMR frequency
at temperature 7, and f(0) is obtained by extrapola-
tion to 7=0. A “best fit” was then obtained for
a=-~0.130+0.005. However, in a similar experi-
ment on EuS,? it was noted that for all the values
considered (- 0.6< a<0. 3) it was possible to find
a value of H(>0) which produced a set of values of
J,/k such that the rms deviation was of the order
of 1%. No such discussion was given for EuO, and
it would be of interest to know if the value of the
parameters J; /% and @ obtained here are consistent
with the NMR results for some positive value of H.
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APPENDIX A

It is convenient to rewrite Eq. (7) as
* n
B-14 5 al(e,9(2)', A1)
C - T

where a, = a,/a}, since a,(a,S)J,=kT,. Considering
the convergence criterion in terms of alternate co-
efficients defines a new function

o‘mrl /2 = (arll+1/ay,l_1)1 /2 n- o Tc/TM = tc . (AZ)

The assumption of a power-law divergence of
susceptibility upon approaching T, from above re-
quires that

T (1 _ L)
C T

as T-T,. The right-hand side of Eq. (A3) can be
expanded as a power series in T,/T. Equating the
coefficients of corresponding powers of 7" in Egs.
(A1) and (A3) leads to

y+n\[v+n—1\]1"
Ont /2= le [(;‘T)(_n—)] ’ (ad)

which can be written as

Ons1/2= tc[( 1+ b :1(1125_”1; 2) )2 _ ( 272727;11))3]1 2

=tc<1+ (r=1)+3)

nw+1)
X=(y=-1)/[2n(n+1)+(y =1)(2n+1)].

Taking y=1.3, we note that for n=2, X2 0.0005
and for =3, X2Z 0.0001. Therefore, to an excel-
lent approximation,

Opa172 =1c [1 +(y =D(n+3)/nln+ 1)]

for such a divergence. The assumption of power-

law behavior only in the limit 7= T, still requires

that this expression be valid for sufficiently large

n. Therefore, the slope of the plot of successive

values of 0,,1/z Vs 1/(n+3) will become equal to

t,(v =1) in the limit as 1/(n+ 3) approaches zero.
Using Eq. (A5) in conjunction with the slope

method leads to the new functions, completely anal-

ogous to those found by Stanley?' on the basis of

Eq. (8),

(A3)

->(1—%X2—%X4-'-‘),

where

(A5)

1
teasa,n-1/2= 2(0qi1y 2+ Opar/2)

+(n- 1/2n)(0,,,,1/2 - n-l/Z)’ (A6)
Yaitson-1/2=1=[n(n+1)/n+ 3]
X (1 - Gmllz/tml/z, n-1/ 2) ’ (A7)
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which approach #, and 7, respectively, as n- «.

APPENDIX B

Equations (A6) and (A7)£0r ty,1/5,1-1/230d Y a1/ 2,n-1/25
respectively, were obtained by writing out Eq. (A5)
for both 0,.1, and 0,.1,, and then solving this pair
of equations for ¢, and yv. Therefore, substitution
of fpi1/2,n-172 A0d Y12, n1/2 MUst necessarily satisfy
Eq. (A5) for 0,.,2. Since similar consideration of
the pair of equations for 0,33, 4.1/2 Fequires that the
substitution of #,.5)2,4.1/2 and ¥,.3/2,n4/2 fOr £, and
y must also satisfy Eq. (A5) for 0.1/, it follows
that

Opia/2=thas2,m-1/2 [1 + (le/z,ml/z -+ %)/n(n+ 1)]

=t/ zmise [1+ Vngyonay2 =1+ 3)/n(n+ 1)]

(B1)
Assuming a linear extension
7’,,+1/z,n-1/a=7—a/n (B2)
and arbitrarily expanding
tast/2,ne1/2= b1+ Dy/m+ by/nrees), (B3)

it is found on substitution and multiplication by
n(n—1)/(n+3) that

n n+3

bl bz oo n(n+1) a
<1+n+1+(n+1)a+ )(n+é +Y—1—n+1)]
_ by n(n+1) (1 1
_tc[n+% b n+s (;'z_z—(n+1)2>
1 1
+[by(y =1) - 4] (;-Ml)*"‘]

:tc( b11+[2b2—'a+b1('}’—1)] +.‘°>
n+z

n(n+1)
Since the coefficients must vanish for all orders

0=tc[(1+b1+£§-+"'> (n(_nill_) +y—1—%>

(B4)

of n, it follows that

b;=0 and by,=3a. (B5)
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Cooperative Dynamic Jahn-Teller Effect. II. Crystal Distortion in Perovskites

B. Halperin and R. Englman
Soveq Nuclear Reseavch Centre, Yavne, Isvael
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A molecular-field-type theory is given for the second-order phase transitions occurring in
perovskite crystals, in which a Jahn-Teller (JT) ion (Mn®, Cu®, Cr?) occupies an octahedral
B gsite. The dynamic character of the JT effect is taken into account and excited vibronic states
are included. The ordered system consists of two sublattices, each having the same tetragonal,
but opposite orthorhombic, mean distortion amplitudes. Near the transition temperature T},
the two amplitudes behave as T;— T and (T; - Y/ %, respectively, Increasing the anisotropic
JT coupling B enhances the mean tetragonal distortion amplitude and diminishes the orthorhombic
one. The transition temperature is studied as a function of the molecular field strength and of
B, and characteristic regions of solutions are distinguished. The temperature dependence of
the specific heat for some typical systems is presented.

pounds is less extensive. On the other hand, in
the perovskites there exists rather definite experi-
mental evidence from the anisotropic ESR spectra
due to Cu?* in low concentrations, ' that there are
individual distorted JT centers even in the cubic
phase.

Perovskites are seldom found to have a simple
cubic structure; owing to packing-induced distor-

I. INTRODUCTION

In a previous paper! (henceforth referred to as
I), atheory of cubic-to-tetragonal phase trans-
formations in spinels due to a cooperative Jahn-
Teller (JT) effect has been given. Compared to
spinels, the experimental material®~!* concerning
JT-induced transformations in perovskitelike com-



