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For conduction-electron-impurity scattering the conduction-electron density of states is
calculated by making use of the thermodynamica1 Green's-function technique with particular
respect to its spatial structure. If the interaction depends on the momenta of the scattered
waves in such a way that it is important only in the neighborhood of the Fermi surface (char-
acterized by the corresponding energy width &), a coherence length can be introduced:
=vz/4, where vz is the Fermi velocity. Present experimental data obtained for different
Kondo systems can be interpreted as yielding 5-50k, for ]z. The spatial variation of the
change in the electron density of states is found to be as follows: (a) In the short-range region
r«$z, the change is negative definite because of the interference between the incoming and
outgoing scattered waves, and (b) in the long-range region r &g~, it shows the Friedel oscil-
lation. The results are expressed also by a phase shift 6. Only the amplitude of change in
the electron density of states depends on the scattering amplitude; however, the spatial struc-
ture is unaffected.

I. INTRODUCTION

About fifteen years ago Friedel' called attention
to the charge oscillation around an impurity atom
in a metallic host. This charge oscillation is a re-
sult of the change in the electron density of states
caused by the perturbing impurity atom, which
change shows a similar oscillation. This modifica-
tion of the electron density of states (EDS) is of
particular importance in the case of a resonant
conduction-electron-impurity s cat tering associated
with the unfilled d level. The problem has taken a
new striking feature by the discovery of the Kondo
effect: It has been shown that the conduction-elec-
tron-paramagnetic-impurity scattering exhibits a
resonance at the Fermi energy usually called
Abrikosov -Suhl resonance.

The purpose of the present paper is to investigate
the change in the EDS in the vicinity of the impurity.
We treat a simple model, where we make the as-
sumption that the conduction-electron-impurity
scattering amplitude is a separable function in the
momenta variables of incoming and outgoing elec-
irons and the energy. In this case the change in
the EDS shows a spatial structure of a fixed value
of the energy, which is determined only by the mo-
mentum dependence of the scattering amplitude;
however, the amplitude of this structure is given
by the energy-dependent scattering amplitude. (A
further generalization of our result to the sum of
separable scattering amplitudes is obvious but will
not be discussed. ) We derive detailed formulas
for the case where the momentum dependence shows
a peak at some value of the momentum k, . The
main application of our results is to the case of the
Kondo effect, where we adopt the result for the

scattering amplitude from recent theories and we
calculate the expressions for the EDS.

The problem of the EDS in the vicinity of a para-
magnetic impurity has not been investigated in de-
tail considering the Abrikosov-Suhl resonance.
Everts and Ganguly' have calculated the conduction
EDS around a paramagnetic impurity on the basis
of the Kondo exchange model applying perturbation
theory of second order. This calculation has not
led to the Kondo anomaly associated with the ap-
pearance of the characteristic logarithmic terms.
To our knowledge no calculation of higher-order
contributions have been reported so far for the
one-impurity problem. However, the effect of a
paramagnetic impurity layer on the EDS of the host
metal has been investigated in detail by Sdlyom and
Zawadowski with respect to the zero-bias anom-
alies observed in metal-metal-oxide-metal junc-
tions doped by magnetic impurities. ' The result
of these calculations is that the EDS may be de-
pressed by the resonant electron-paramagnetic-
impurity scattering in the vicinity of the impurity.
This phenomenon can be understood as a strong
destructive interference between the incoming and
outgoing waves. The extinction occurs always be-
cause of the phase shift of the scattered wave.

The Kondo effect has been investigated particu-
larly during the last few years, " and at very low
temperature it is interpreted as the resonant scat-
tering of conduction electrons on a spin-compen-
sated state formed continuously below the charac-
teristic Kondo temperature T~ by an impurity spin
and the magnetically polarized conduction-electron
cloud in the neighborhood of the impurity. Recent-
ly, many authors' have investigated theoretically
the spatial structure of this spin-compensated
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state. According to Nagaoka's paper, ' the electron
magnetization is damped out beyond a coherence
length. Nagoka's coherence length is given by the
Kondo temperature 1'~ and the Fermi velocity e~
as err =a~/kT„or err-a eJ, /kTr, where a and e~
denote the atomic distance and the Fermi energy,
respectively. The coherence length must be of the
order of $~~- 10'-10' A for z~ ™1-10 eV and ATE- 10 '-10"' eV. Similar resu1t has been obtained
by Heeger et al. ,

' who have investigated the struc-
ture of the ground state proposed by Appelbaum
and Kondo. ' Unfortunately, the latter ground state
is determined by a variational method, where im-
portant terms have been omitted, furthermore,
Nagaoka's approximation' has been proved to be
very poor. " Recently, Muller-Hartmann' and
Bloomfield et a/. have provided a very careful
analysis of the problem based on Nagaoka's de-
coupling scheme of the Green's-function equations.
These 1.atter investigations have shown that the
electron polarization consists of two parts, namely
an oscillating part and a nonoscillating part, where
the latter one has a short-range as well as a long-
range contribution. The short-range part falls off
beyond a coherence length $D which is determined
by a cutoff energy D reflecting the band structure
(the conduction-electron bandwidth). The coher-
ence length introduced by Bloomfield et al is ap-
proximately $n-aaz/D, which must be of the order
of one atomic distance. ' The long-range part has
the asymptotic form —r SS(S+l) log~(r/$r ), where
r stands for the distance measured from the im-
purity and S denotes the value of the spin. The
spatial dependence of the change in the EDS for a
single impurity has not been investigated until
now. However, studying the zero-bias tunneling
anomalies, Solyom and Zawadowski have calcu-
lated the EDS in the vicinity of an impurity layer
and found that its expansion in space must be char-
acterized by the same coherence length as in the
problem of a single impurity. They have pointed
out that the cutoff energy, which gives the coherence
length, may be determined by the momentum de-
pendence of the exchange coupling constant J». ~

which is usually neglected. Since this dependence
may be stronger than the energy dependence of the
bulk EDS, the proposed coherence length $~ might
be much longer than $~. Actually, if the width of
the energy region where J». changes essentially
are denoted by 4, $~ = e~/4, and $~-a~~/n; hence
$~)) (~ if b &&D.

The existence of a coherence length of the order
0

of 5-50 A may be regarded as confirmed by ex-
periments made on different dilute alloy systems.
First of all, Golibersuch and Heeger have con-
cluded from the analysis of their NMR data to a
conduction-electron polarization of the range of
9 A around the impurities. Recently, Edelstein

has studied superconducting dilute alloys by tun-
neling, which show the Kondo effect. Conduction-
electron states have been found inside the super-
conducting energy gap. This result may be ex-
plained by assuming that superconductivity is de-
stroyed inside of the spatial extent of the spin-com-
pensated state. This size has been found to be 7 A.
Experiments on tunneling anomalies caused by an
impurity layer in the vicinity of the junction surface
made by Mezei could be explained by coherence
lengths of 15-50 A. Preliminary neutron- scattering
measurements of the impurity form factor by Stas-
sis and Shull yield a spatial extent of the polariza-
tion of the order of several atomic distances. Thus,
the available experimental results suggest a co-
herence length being about 5-50 A, which could be
a consequence of the momentum dependence of J,z,
as it has been suggested by Solymon and
Zawadowski.

In this paper the EDS will be calculated. We will
suppose that the EDS of the bulk host metal is con-
stant at the Fermi energy and it will be denoted by
po for one spin direction. Muller-Hartmann has
first pointed out that the spatial structure of the
change in the EDS is independent of the conduction-
electron-paramagnetic-impurity scattering am-
plitude and only the amplitude of the effect is de-
termined by this scattering amplitude. Hence, the
momentum dependence of J». must be in the center
of our investigations. It will be assumed that the
exchange coupling constant J». is essential only
if the momenta k and k ' correspond to energies in
the neighborhood of the Fermi surface (charac-
terized by the energy width 6). The actual form
of this momentum dependence is not yet known. In
the present calculation, a Lorentzian shape has
been supposed, which enable us to carry out the
calculations in an analytical form. It can be seen
that the final results are not very sensitive to the
details of the momentum dependence. It may be
mentioned that the momentum dependence of J».
and the energy dependence of the bulk EDS enter
into our calculations in a similar manner and thus
the final results will be the same (if only one of
these dependences is assumed to be of importance),
the only difference being in the parameters 5 and D.

As will be seen, the EDS at the impurity site de-
pends very much of whether the conduction-electron
scattering is of s or d type, therefore, the calcula-
tions will be carried out generally for l type. In
the real case the scattering is of d type, but usually
the simplest case, s-type scattering, is discussed
in the literature.

In Sec. II the mathematical model will be de-
scribed. The subject of Sec. III and Appendix A
will be to determine the thermodynamical Green's
functions involved in the problem, and the oscil-
lating as well as the nonoscillating part of the EDS
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Let us consider the basic assumptions of the
Kondo model which is given by the Hamiltonian
H =H0-H, where

Ho=+ 6-„a; a; (2. 1)

H, = —Z (Z-„x./N)ax a sax'))S. (2. 2)

Here E ~ denotes the energy of the conduction elec-
trons, a„creates a conduction electron with mo-
mentum k, Zx"„. /N is the s-d coupling constant, S
is the impurity spin operator, and the Greek indices
stand for the electron-spin variables. In the usual
treatment, J». is taken to be independent of its
momentum indices. However, the purpose of the
present work is to point out the importance of this
dependence on the momenta in the formation of the
spin-compensated Kondo state. J-„g. is taken to be

Z g "„.= 2 'x „.= (2 l"+ 1)7) P) (cos 8 x -„.)F(k )F(k )

=4')F(k)E(k ') P (-) Y, (k) Y)~(k '),
me ) (2 3)

where the angular momentum of the scattered states
has the value I, I', is the Legendre polynomial,
8"„"„.denotes the angle between the momenta of the
incoming and outgoing electrons, and J, is a coupling
constant. The dependence on the absolute values of
the momenta k and k ' is written as a product
F(k)F(k '), where the cutoff function E(k) will be
given below. The suppositions made here are in
agreement with the Anderson model if the effective
Kondo Hamiltonian given by (2. 2) and (2. 3) is de-
rived by the application of the Schrieffer-Wolff'
transformation. This transformation yields an
actual expression for the function F(k), which exhib-
its a maximum roughly at the Fermi momentum
k+. The result of the Schrieffer-Wolff transforma-
tion, however, can be regarded as rather informa-
tive because the effect of the terms neglected at its
application have not been estimated until now; fur-
thermore, the momentum dependence of the s-d
mixing amplitude V~ is not known. Therefore, in-
stead, we choose a very simple analytic expression

will be calculated. At low temperature, the Abri-
kosov-Suhl resonance scattering amplitude for en-
ergies near the Fermi energy can be expressed by
a single phase shift; therefore, in Sec. IV, all of
the important results will be expressed by the phase
shift. The conclusion concerning the Kondo effect
will be presented in Sec. V. The alteration of our
results caused by dropping the assumption of con-
stant bulk EDS p0 is estimated in Appendix B. In

a further publication, the change in the EDS caused
by an impurity layer is calculated with respect to
the zero-bias tunneling anomalies.

II. MATHEMATICAL MODEL

for it given by two parameters b, and &0 as follows:

where

2 Q2

+ (Ex —eo) LP+ ~x
(2.4)

EA,
—

Ck - &0

Considering the s-d interaction, the one-particle
Green's function may be expressed by the non-spin-
flip scattering amplitude t",-„.(i&u„), which is, on
the other hand, the self-energy contribution due to
one impurity in the notation system used by Abri-
kosov. ' The behavior of the scattering amplitude
will be discussed in Sec. V. Making use of the
definition of the double Fourier transform

C»(r, r'; iu}=(2w) jdk)dkxt«(k), kx, i)dx)

X ef( ~~&-q~'& (3.2)

we have

)&!(k, k '; i)d„) = )))")(k; i&a„}t)(k—k ')

+«)'"(k, i(o„)t;;.(i(u„)

x)«")(k'; iu&„) . (3.3)

The scattering amplitude t -„-„.(i&a„) can be written
in the following form:

t„„(i~„)=4 Zv(-) Y, .(k)

x Y,„(k')t, (i~„)E(k)F(k'), (3.4)

which is a consequence of the structure of the
Hamiltonian given by (2. 2) and (2. 3).

The EDS at the point r, p( r, &u) can be calculated

This choice has the advantage of being simple and

shows a rough similarity to the results of the
Schrieffer-Wolff transformation. This similarity
occurs if we choose the values t0 and b to be of the

order of the Fermi energy and of the energy of
the impurity d level, E~ measured from the Fermi
energy, respectively. However, «x/er «1, hence

b)/co «1 will be assumed.

III. DENSITY OF STATES

The thermodynamical Green's-function tech-
nique" will be applied. The one-particle free-
electron Green's function is

(t) (0)(x» x»). t~ ) &
) x ~ (x-x ) (h)(0)(k i& )x x x „—

( )x

(3.1)
()) '(k, i&@„)= (i&@„—$x) ),

where

(d„= 1(2)n 1+)T and $x = ex —ep
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by the analytic continuation of the Green's function
(» (r, r; i(o„) as

p(r, (o) = v 'Im[((((r, r; (d —if)] . (3.5)

Introducing a modification of the Green's function
by the cutoff function E(k) and the spherical har-
monics F,~,

(((™(ff (r, i(o„)= (2(() ' f dke' '(»' „„(k,i(d„)
(3.6}

It is worth mentioning that the change in the elec-
tron density of states due to the impurity as a func-
tion of the energy (o and of the distance r (measured
from the impurity) can be factorized, as has been
first pointed out by Muller-Hartmann. To deter-
mine the spatial dependence we calculate the mod-
ified Green's function t~&'(r, (osis) introduced by
(3.10) in Appendix A. Similarly to (2. 5), a new
notation for the real part of the energy variable will
will be used,

where
(d = (d —(fo

—f r) (3.14)
(((,'„"„„(k,iiu„}=(i(o„—t', )-'E(k)Y( (k) (3.&)

and taking into account (3.3)-(3.7) the EDS in the
point r can be written in the simple form

pt„(r, (d) = po+4lm[ Z (-) (((™„„(r,i(d„) t(((o —i&)

x (»'„-,.„(-r, i~„}], (3.8)

cutoff( s i u}

= Y, (r)i', k'j, (kr) . &(k)

where p(,(( r, (o) stands for the total EDS.
The modified Green's function can be calculated

by integrating first with respect to the direction of
the momentum k and making use of the following
identity:

f dgie ' 1', (k) = 4 ij'(,((kr) Y,„(r), (3.9)

where j, is the spherical Bessel function of the sec-
ond kind. In this way we get

Inserting the result (A9} derived in the Appendix A

into the expression (3.13) of p,'„(r, e), we obtain

p,'„(r, (d) = po —(2f+1)((poim t(((d i5}

& Re h,"' ko+iv '4 r
2 2"

+ih,'"[(ko+v (d)r] o, +P, (r, (o)
+ CO J

(3.15)

where h,'" and h,' ' are spherical Bessel functions
of third kind, and the function p, (r, (o) is a small
correction given by (A10) and (A11); furthermore,
v is determined by (A3).

The arguments of the Bessel functions contain
three different characteristic dimensionless quan-
tities, which are proportional to the distance r:
(a) kor, which is of the order of unity if r is of the
order of a few atomic distances; (b) (v 'h)r, which
may be rewritten as r/$o, introducing a character-
istic coherence length

]o = v/n, (3.16)
=i'Y', (r) ((l'(r, i(o„), (3.10)

where (»' is independent of the direction of r.
Equation (3.8) can be further reduced taking into
account the relations

Y, (-r)=(-)'Y, (r), (3.11)

(3.12)

and (3.10). Thus we obtain

p'„,(r, (o) = po+[(2l + I)/7i]

x Im[t, ((o —ic)((('(r, (o —i&) ] .
(3.13)

$ rc
= v/(d (3.17)

and (d'(d)r- I if r
To understand the physics contained in the result

(3.15}, we are going to discuss the short-range as
well as the long-range limits where the formula
can be written in simpler forms. The change in
EDS consists of two parts, a nonoscillating and an

oscillating one.
To facilitate the detailed discussion of the result

(3.15), we given it for the special case l =0:

determined by the momentum dependence of the ex-
change coupling constant, hence (v 'g}r 1if r--$o;
(c) (v '(d)r, which can be expressed as r/$. „-, where
the energy coherence length is

(=o( . , o t, - . , sin(k, +iso,')r .cos(k, +if'')r
(ko+igo)r (ko+i$o)r

sin(ko+$ „)r .cos(k-o+(=()r (3.18)
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where the coherence lengths given by (3.16) and
(3.17) have been introduced.

A. Short-Range Limit: r&&$,. and r&&$- for ~&«

The special expression for l = 0 shows that the
terms containing the coherence lengths can be ne-
glected in this limit. The validity of this approxi-
mation, however, is not restricted to the special
case l = 0. Neglecting the corresponding terms in
(3.15) and replacing the Bessel functions of the
third kind by the ones of the second kind [see (A4}],
the following expression is obtained:

terms cancel each other.

2. Density of Strztes for I(I+1)/kp«r«$(k

In the range z»l(I+1), the Bessel functionj, (z)
can be replaced in (3. 20) by its asymptotic form
given by (A5). The result consists of two parts, an
oscillating and nonoscillating one as follows:

p,'„(r, (d ) = p p+ tkp,'„(r, (d ) + /kp,'., (r, (p), (S. 24)

where

tkp) (r, p)) =-,'(2l+ I) sp()(kpr) cos2(kpr —2'I)—/)

pI!k( (r, (k) ) = p, + (2l + 1) )/pp Im t)((d —i5) x 1m[t)((d —i5)], (s. 25)

Two cases have to be distinguished: l = 0 and l t 0.
We get

p', ,, (0, p)) ==pp spplmt ( ()i(5d) j for I =0, (3. 22)

p(.i(0, (p) = pp for leo . (3. 23)

The density of states at the point x= 0 changes owing
to the perturbation only in the case l = 0, because
in the other cases the incoming and outgoing scat-
tering wave functions vanish at this point. In the
derivation of the results given by (3. 22) and (3. 23},
the assumption (d « ~ has not been used.

It is worth mentioning that pp(r, (d) and the n,
Bessel functions appearing in (3.19) diverge as r
tends to zero. These terms have been neglected in
(3. 20) because their coefficients are very small.
Nevertheless, the result given by (3. 22) and (3. 23)
remains valid because these spurious divergent

e Re !,fk r) . . — ~ ! , (k r) . )
Q2 t2'

+i[j,(kpr)+in, (kpr)] 2 2 + p, (r, (J )
~

(3. 19)

For ~ « ~ as has been assumed, this formula can
be further simplified by inserting ~ = 0 into the con-
tributions of the modified Green's functions with the
result

P'„, (r, (d) =Pp —(2l+ I) zo() Im[t)((d —i5)]j, (kpr) .

(s. 2o)

In (3. 19), P,(r, (p) represents a negligible correc-
tion for k ox & 1.

1. Density of Strites nt Impurity Site

The EDS at the impurity site can be derived using
(3. 20) and the expansion of the Bessel function j,(z)
into power series

(21 ~ !)!! 2(2!~ k) )
(3. 21)

tkp) . (r, (d) = ——,'(2l+ I) )/p() (k()r} 'Im [t)((p —i5)].

(3. 26)

B. Medium Range: l(l+1)/kp&+ &

N.'aking use of the asymptotic form (A5) of the
Bessel functions, the formula of the EDS (3. 15) can
be written in the form

p('„,(r, p)) = p, +(2l+1)vppp(kpr) 2[tk /(&2+!F2)]2

x lm([e- /i(k(1 t~/t() e((kpr lr/2)-

(I -//2) ) -i(kpr lr/2)-
2

—e '(kpr lr 2'r/ '] t, (u —i5)), (3. 27)

where P, (r, (k)) has been neglected.
The nonoscillating part arises from those terms

of the square in (3. 27} in which the two different
oscillating exponential functions e" o" cancel each
other. We obtain

tkp), (r, (p) = —(2l+I) vo(ppk p)r' [62/(6'+(p')]'

x{e "/'k Im[(1 —i(d/tk)e '" '~t)((d —i5)]

—
—,'e '/(k [S2/(t(2+(p2)] ' Im[t)(p) —i5)]] .

(s. as)

C. Long-Range Limit

It is important to notice that the nonoscillating
part of the change in the EDS falls off very rapidly
beyond the coherence length $ ~. The oscillating
part consists of many terms. It contains a long-
range term which is the only existing one outside
of the coherence length (~. For r» $ ~ it is the
following:

/kp,
) (r, p)) = (2l+ I))lppp(k()r) [a2/(t(2+p)2}]2

X 1m [i (~ 25)e-2((kpr tr/2er/ia)]-
(3. 29)

This term corresponds to the Friedel oscillation,
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as will be seen in Sec. IV.

IV. DENSITY OF STATES GIVEN BY PHASE SHIFT 5I(m)

In special physical problems the scattering am-

plitude can be expressed by phase shifts. If there
is only one scattering channel, the scattering am-
plitude can be written in the following form:

t, ((u ~ i~) =+ (2oipo)-'(e~ "~' ' —1)

(op )-1e ti5$(id& sin5 (~) (4. 1)

where 5, (&u) denotes the phase shift of the predom-
inating l-type scattering.

Some of our previous results can be expressed by
the phase shift in a very simple way. The EDS at
the impurity site for l = 0 given by (3. 22) is

p to~ (0 ~) = p o c os 5o(~) ~ (4. 2)

For the nonoscillating part of the EDS given by
(3. 26) and (3. 28) for r»l(l+1}/ko and 2«n, we

get

&p,', (r, &u) = —(2l+1}p,(kor) 'e "~'&

x (sin[5, (m) + (r/$„)] —~o-e
'~ o sin5, (&u)] sin5, (&u) .

(4. 3)
The oscillating part is of interest in two limits.

Making use of (3. 21), the short-range limit l(l + 1)/
kp«$~ and co «b is obtained,

zp.', (r, ~) = l(2f+1) po(kor) '

x sin2(kor —,'lo+ —,'w) sin 5,((u),—

(4. 4)

and in the long-range limit (r» (o),considering
(3. 29),we get

r p,' (r, (o)=(2l+1)po(kor) 'sin5, ((u)

x sin2[k, r —,'fr+ ,'5, (u))+—(r/&—„-)].

op,'„~o.(r) =-', e(2f + 1)pork, (k,r)-'

x sin5r cos2(kyar —o l o'+ o 5l)

for r «g~, where Ep = &p and kp = k~ have been in-
serted. Furthermore, the contribution to the inte-
grals arising from the lower limit cannot be given
in general since it depends on the band structure
or the cutoff. The phase is assumed to be inde-
pendent of the energy, and e denotes the electron
charge. In the long-range limit, the second ex-
pression (4. 7) yields the well-known expression
for the Friedel oscillation. '

V. CONCLUSION

For an arbitrary conduction-electron-impurity
scattering, a formalism has been developed to
determine the conduction-electron density of states
around a single impurity. It has been assumed
that the scattering amplitude depends on the mo-
menta of the incoming and outgoing electrons, and
the important contribution arises from the momen-
tum region centered at kp and with a width corre-
sponding to an energy b, . If such momentum de-
pendence does not occur, 6 has to be replaced by
the conduction-electron bandwidth D. The formal-
ism can be applied to resonance scattering as well
as to potential scattering of special form.

The change in the EDS has different features in
the short-range and long-range limits which are
separated at a distance corresponding to the co-
herence length $~. In the short-range region, the
change in the EDS is always negative definite at
energy &0 near the resonance (l 9 I & 1), as can be
seen from (3.20) and in Fig. 1, where the form of
the scattering amplitude expressed by the phase
shift is considered [see (4. 1)]. The amplitude of
this depression part takes its maximum value at
the impurity site or at about one atomic distance,

(4. 5)

It is worth mentioning that there appear different
phases in the variable of the sines in expressions
(4.4} and (4.5). The phase in (4.5) will be shown
to be in good agreement with the phase of the
Friedel oscillation. In the short-range limit, the
phase does not depend on the phase shift 5„but it
contains an additional —'m.

The charge oscillation around the impurity can
be obtained by integrating (4.4} and (4.5}with re-
spect to the energy up to the Fermi energy E&.
Vfe obtain

ape, o, (r)= —e Jd~ vapo(r&u)

p~ (r)
P,

1.0

0.5

z
2 2

I

10

—e4(kyar) po cos2(kyar ——,
'

lm) sin 5, (r~)

for l (l 1)/+k «rr«(~ (4. 6)

FIG. 1. For s- and d-type scattering the KDS is
plotted versus the distance measured from the impurity.
The scattering amplitude given by (4. 1) and expressed
by the phase shift is used with the value of the phase
shift 4 = 2 ~.
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depending on whether the scattering is of s type
or not. %ith increasing distance, the change of
the EDS has a nonoscillating part given by (3.28),
illustrated in Fig. 2. , which spreads over a dis-
tance determined by the coherence length $~, while
in the long-range region only the oscillating terms
survive, which correspond to the Friedel oscilla-
tion. The total change of the EDS in the short-range
region is inversely proportional to the square of the
distance (r ~), which dependence assures at small
distances the convergence of the total EDS inside a
sphere. In the long-range limit it shows an x de-
pendence. In this case the total change of the EDS
inside of a sphere with radius R falls off as R '.

The different behavior of the EDS at the impurity
site makes it possible to distinguish between scat-
tering of s type and of type of higher order by NMR
experiments looking for the Knight shift and Korrin-
ga relaxation on the impurity nucleus. In the latter
case these quantities are unchanged. However, in
the case of 8-type scattering, we may expect drastic
effects; namely, if the scattering can be described
by a single phase shift, in the case of a resonance
5 = —,

'
v the EDS given by (4.2) and represented in Fig.

1 becomes zero, and therefore the Knight shift and
Korringa relaxation caused by the direct conduction-
electron nuclear interaction must disappear. In the
case of paramagnetic impurities interacting with
the conduction electrons via, s-d interaction, the
scattered waves are of d type; therefore, no effect
can be expected by NMR on the impurity nucleus.

If a coherence length is observed it might be pos-
sible to distinguish whether it is due to some unusu-
al form of the conduction-electron band D «E„or
to the momentum dependence of the conduction-
electron-impurity scattering. In the first case it

must depend only on the host metal; nevertheless,
in the second case the coherence length must vary
for different impurities.

Throughout the presented calculation a constant
bulk EDS and a special form of the cutoff function
given by (2. 4) are supposed. By dropping this as-
sumption the results change only slightly if the
cutoff energy is smaller than the bandwidth D as is
shown in Appendix B, where the results (3.22) and

(4. 2) for the impurity site are recalculated.
One may ask how it is possible that the EDS is

always depressed at the impurity site while, e. g. ,
in the case of a simple attractive potential it does
not happen. In this paper we have supposed a spe-
cial momentum dependence which involves the van-
ishing of the potential at the impurity site. There-
fore, our results do not hold for a simple attractive
potential.

The most striking application of our results is to
the Kondo effect. In this case the scattering ampli-
tude shows a resonance at the Fermi energy, and
we may expect a momentum-dependent scattering
as well. The energy dependence of the scattering
amplitude has been investigated extensively in the
last few years, but the problem has not been solved
yet. There are good solutions of the scattering
problem worked out by Rxhl and Kong, Bloom-
field and Hamann, "Brenig and Gotze, "etc. , if
only the one-particle intermediate states are con-
sidered in the scattering process. However, re-
cently it has been pointed out by Nozieres from the
low-temperature side and by Fazekas and Zawadow-
ski from the high-temperature side that the many-
particle intermediate states can play an important
role too.

The one-particle scattering amplitude can be
written as

6
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FIG. 2. The change in the nonoscillating part of the
EDS is plotted versus the distance measured in coherence
lengths units $z,. the amplitudes of the changes are given
in units ~ (2E+1)(ko(&) . The different curves corre-
spond to different values of the energy and cutoff energy
ratio y = ~ /&.

where t(&u) indicates the non-spin-flip part of the
scattering amplitude, while v (&u) stands for its spin-
dependent part; furthermore, a, P and o, o' denote
the spin indices of the initial and final impurity spin
and conduction-electron states, respectively.

It is worth mentioning that it is common in the
above-mentioned solutions of the scattering problem
that well below the Kondo temperature and at the
Fermi energy (&@=0), r(&u) becomes zero and only
the spin-conserving scattering channel is open. In
this case the scattering can be described by a, single
phase shift 5=&, and our result derived in Sec. IV
can be applied. The amplitude of the depression of
the EDS takes on its maximal value. If the energy
variable ~ moves off the Fermi energy or if the
temperature is raised above the Kondo temperature,
the amplitude of the investigated effect is gradually
reduced in both cases as the scattering amplitude
decreases.
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As is well known, below the Kondo temperature a
magnetically polarized electron cloud is formed
around the impurity spin. We have shown that the
formation of the magnetic electron cloud is asso-
ciated with depression of the EDS inside the coher-
ence length $~. There is an essential difference
between the change in the EDS and the magnetic po-
larization considering their long-range parts. The
first quantity does not contain any nonoscillating
negative definitive part while the magnetic polariza-
tion does, which is proportional to r ln (r/fr ).

The purpose of a further publication is to extend
our results to the case of an impurity layer where
the effects become more pronounced and this makes
possible their observation by tunneling experiments.
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formed by the contour integration method; however,
particular attention must be paid to the asymptotic
behavior of the Bessel functions. Instead of the
Bessel function of the second kind j,(z) and n, (z),
it is convenient to deal with the Bessel functions
of the third kind,

h,"'(z)= j,(z)+in, (z), k,' '(z)= j,(z) —in, (z), (A4)

which show proper analytic behavior in the asymp-
totic region, namely,

(A5)

for z»l(l + 1). The disadvantage of the use of these
functions is that they have a pole at z=0, since

x r ((d - e s i 5) ' 6'/(6'+ &'),

where the integral in the momentum space is re-
placed by another one with respect to the energy
variable,

(2w')-'f k'dk- p, f de, (A2)

which identity is correct in the ease of constant
free EDS. The latter assumption is reasonable
because in the integral the cutoff function E(k),
given by (2. 4), makes the energy regions far from
the Fermi energy, i.e. , le I/6&1, ineffective.
Furthermore, in (Al) the momentum in the neigh-
borhood of the Fermi energy is taken as a linear
function of the energy, i.e. ,

k= k()+v
-1-

where v is the velocity of the electrons at the en-
ergy &0, and ko is the value of the momentum at
&=O.

The integration over the energy E can be per-
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APPENDIX A

Introducing the notations given by (2. 4), (2. 5),
and (3.14) in the definition (3. 10) of the modified
Green's function, we get the quantity to be calculated,

~~i'(r, ~ ~ i5) = p, f dK j,(k, + v ' e)

(&)'(r, u +i5) = &ll""(r, ~+f5)+ (~i"@(r, ~+i5),
where

(~)'~'(r, ~~i5) = —,
'

p, f d~ k, '"'[(k, +v-'e)r]

x (~ —R ~ i5)-'(n, '/A'+ e'),

n=1, 2 (A8)

and the integrals can be performed by the method
of contour integration on the upper and lower half-
plane, respectively. The important contributions
arise from the zeros of the denominators which
are near the Fermi energy. The poles of the Bes-
sel functions are very far from the Fermi energy
and therefore they yield only a small correction
which will be given by the function p, (r, u).

The straightforward calculation gives

(~)'(r, (u -i5) = p,m(Re[kI"(k iv0'+n.)r]

+ ik I
' [(k0 + v 's) )r] g2/(A2 + (j~)

+j,(r, ~)) (A9)

where (AV) has been taken into account. Further-
more, the contributions of the poles of the Bessel
functions for l = 0 and l = 2 are the following:

Disregarding the point z = 0, the functions k,"'(z)
and k,"'(z) are analytic on the upper and lower half-
plane, respectively, and

k"'(z *)= [h"'(z) ]* (A7)

holds.
Making use of (A4), the modified Green's function

ean be written as a sum

p(r, (o)=-v b 1
r a'+(k,v)' ~+vk, -i5 (Aio)
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v ~ 1 A' 1 2~'vk,
4 ~ 6'+(u,v)' ~+vr, -i5 ~ ([v+v4-i5)' &'+(&ov)' ("+»o-i5)' I~'+(&0»']

k, —'5 [a'+ (k,v)']' [L' ~ (k )']') (A11)

APPENDIX 8

It will be demonstrated how the results derived
in this paper change if the cutoff energy b, is not
much smaller than the bandwidth D. The result
given by (3.22) will be reinvestigated for s-type
scattering at the impurity site.

The derivation of (3.22) is based on the expres-
sion (3.13), where the bulk EDS occurs in the
Green's function (~) too. Inserting the value r = 0
and an energy-dependent bulk EDS po([d) into (3.13),
and assuming that t(&v) is pure imaginary, we obtain

p,'„(0, [d) = p, ([d)+v 'Imt([d -ie)

& [[Re(~](0, &u —i&)p —[Im [[](0, [d —ie)]' j .
(»)

Instead of making use of the cutoff procedure
given by (2. 4), we introduce sharp lower and upper
cutoff energies E, and E„, respectively. In this
way, the Green's function is

1 dp
(N(0, [d —je) = . 2 3, (B2)

j

where g& =i] /2m —u. It can be easily calculated
and the result is

Re(~](0, [v —ia) =2p, (&u) g &o+ l[,

1 ]t([d+ p)+v'E„
2 -g(u)+]],)+v'E„

]['([d + l], ) + v'E,
v( ~ u) —Kz, )

Im(9(0, [d —ie) = v[[]0(&d) .

(B3)

(B4)

In the previous result (3.22), the real part of b&

does not occur because it vanishes in the special
model investigated in the present paper. In this
case the modification of the EDS for (d =0 can be
characterized by

p'.='(0, 0)/po(0) = (4/v') ~"' (1 —]] '
) . (B6)

One can see that without a small cutoff (e. g. ,
]].= 2) the result changes by 30%. However, with
smaller values ~=1.25 and X=1.1 the change is
1@a and 5%, respectively.

1 ~(E„/V)"'+I ~ (E, /]])" +1
2 (EJ )&~2 1 (E / )&/2

(B5)

where (B4) and (B5) have been considered. At

present, the EDS does not vanish at the impurity
site, for phase shift 5=-,'m; furthermore, the ratio
of its remaining part to the bulk EDS is given by
(B5) as can be seen from (Bl). This ratio can be
small, but not negligible, for a wide region of cut-
off energies. For the sake of simplicity one can
use the values given by one parameter ~, E„=Xp. ,
and E, =& 'p, , respectively; then the ratio is
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Effect of Electron-Shell Rearrangement Due to K Capture on the Intermediate-State
Reorientation of Oriented Nuclei
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The effect of electron-shell deexcitation following electron-capture decay on the intermedi-
ate-state reorientation of oriented nuclei is studied by considering various final electron-
shell configurations of the daughter atom. It is known that these configurations are reached
in a time interval much shorter than the lifetime of the intermediate state. The reorienta-
tion, affected mainly by the hyperfine interaction of the nucleus with the atomic electrons in
the new configurations, is calculated using a technique previously described by Daniels and
Misra. The numerical results indicate that this model is capable of explaining the observed
reorientations following E-capture decay of Sm 5 and Co 7 in a double-nitrate lattice, and of
Sml45 in a neodymium ethyl sulfate lattice.

I. INTRODUCTION

The interest in the physical picture behind the
reorientation of oriented nuclei is rapidly growing.
This problem becomes inportant when the anisotroyy
of the angular distribution of y radiation from an
ensemble of oriented nuclei is measured in order
to determine, among other quantities, the spin and
parity of a nuclear level. In the past it has not been
possible to determine conclusively the mechanisms
responsible for the observed reorientations. This
has been due partly to the lack of sufficient experi-
mental data and partly to the uncertainties in the
measured values of reorientation. The latter un-
certainties are due mainly to the uncertainty in the
mixing ratios of the various multipole radiations,
to the perturbation of the original nuclear orienta-

tion by internal fields, and to temperature inhomo-
geneities and uncertainties. However, as further
data become available and as experimental tech-
niques are improved, the mechanisms responsible
for reorientation are becoming better understood.
The recent revision of the low-temperature scale
and the availability of more precise data (for ex-
ample, data for Sm"' consistent with two different
imbedding lattices') have provided the motivation
for the present theoretical investigation.

Reorientation of oriented nuclei has been treated
in detail by Daniels and Misra' on the basis of a
static interaction being the sole effective mecha-
nism in the intermediate state (static model). They
concluded that the static model could not explain all
known cases and that other mechanisms must be
sought. Apart from the static interaction, two


