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The transport properties associated with vortex motion in type-H superconductors are re-
formulated in terms of linear response theory (LBT). In particular, in the dirty limit we

establish a simple relation between LBT and the time-dependent Ginzburg-Landau equation.
In the more general case of a type-II superconductor with arbitrary electronic mean free path,
we present the expressions for the transport coefficients in terms of retarded products. These
expressions will be particularly useful in determining the transport propqrties of clean type-
II superconductors.

I. INTRODUCTION

Recently there has been a, great deal of interest
in transport phenomena associated with vortex
motion in type-II superconductors in the mixed
state, and type-I superconductors in the intermedi-
ate state. ' In particular, these states exhibit a
finite resistivity, and also a large transverse
thermoelectric effect, if the eleetrie field is ap-
plied perpendicular to the static magnetic field.
This is in strong contrast to the behavior of super-
conduetors in the Meissner state.

So far, two different theoretical approaches to
this problem have been proposed: (i) a generaliza-
tion of linear response theory to include the effects
of dynamical fluctuations of the order parameter~'3;
and (ii) methods which make use of the time-depen-
dent Glnzburg-Landau (TDGL) equations. However)
the consistency of these two methods, as well as
the region of validity of the simple TDGI, , remains
to be clarified. For example, in the case of the
electromagnetic conductivity, the expressions ob-
tained by the two methods did not agree in the dc
limit. In particular, ' the expressions obtained by
Caroli and Maki' (CM1) diverge in the dc limit,
when the electric field is perpendicular to the
static magnetic field. This is, of course, in Qat
contradiction of the experimental observation of
resistive behavior in the vortex state. This prob-
lem ha.s recently been reexamined by Thompson,
who found that in this geometry certain terms had
been omitted in CM1 . %'hen these terms were
included, the correct de limit was obtained —that
is, the reactive part of the eonduetivity is exactly
equal to zero. The dc limit of the absorptive part
of the conductivity thus obtained still differed
from the TDGL calculation by Caroli and Maki
(CM2). Thompson was then able to show that if,
in addition to the flux-flow conductivity of CM2,
certain "anomalous" contributions to the intrinsic
conductivity were taken into account, the two re-
sults agreed in the dc limit.

In this paper we present a general formulation

of the transport p1operties of supel conduet01'8 ln the
presence of fluctuations of the order parameter.
In doing this we are able to clarify, in the dirty
limit, the relation between linear response theory
(LRT) and TDGL. In particular we give an explicit
calculation of the Ett1ngshausen coefficient in
LRT which is found to agree with the earlier TDGL
calculation. This new formulation can be used in
cases where simple TDGL is not applicable, for
example pure type-II superconductors.

II. GENERAL THEORY

We consider a situation in which the dc magnetic
field 8 is in the z direction and the dc electric field
E in the y direction. The field E can be described
by either a vector potential 6A or a scalar poten-
tial 6P, at least in the resistive state. Then in
I.RT the change induced in a physical observable
S', for example the electric current, by a heat cur-

'rent, in the presence of fluctuations of the order
parameter, can be written

&„&w&„;=&[w,q, ]&„;»„(~,qg

+ &[ii', +']&.„-«(~,q)+ &[~,~]&.„-~&'(~,q)

= I&[~,~.]&.„-.&[ii",+']&.„-L(~, q)&[+,&.]&.„-

+ &[g, +]&.„-f-(~,q)&[~', ~.]&.,r}».(~, q) .
(I)

I,(~, q), the fluctuation propagator, is given. by

L(~, q) =
~~~ /{I -~&[~,+ "]&.„-},

where g is the BCS coupling constant and

&"(r, f) = 0 "(r, t) 0'(r, f) .
In Eq. (I) the electric current operator j(r, f) is
given by

j(r, t)=e- . Z 0'.(r', t')4. (r, t) --; (4)

and the thermal averages are taken in the absence
of dynamical fluctuations.

In a similar way, if the electric field is expressed
in terms of a scalar potential 5$, then the change
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Here the density operator n is given by

n(r, t) =Q q' (r ', t ') g (r, t)
~

p. ; . (6)

in 5'is given by

6,&W&„;=ef&[W, n]&„„-+&[W, g"]&„„-i(~,a)&[~, s]&.„-

+&[W, +]&„;1.(~, j)&[@',s]& „-j64'(~ 4) .
(6)
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Within the framework of LRT, these expressions
are completely general. If we replace S'by the
electrical current operator, the electrical conduc-
tivity is obtained; on the other hand, if W is re-
placed by the heat current operator j~, where

j",= — Q rr, +v' —q', (r', t')g (r, t) p p,o 2m
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we obtain the heat flow.
In Sec. III we use these expressions in the dirty

limit to establish the relationship between LRT and

TDGL. In Sec. lV we give as a specific example
the LRT calculation of the Ettingshausen coefficient

III. DIRTY LIMIT

We limit ourselves to the vicinity of H, 2 where
the order parameter is small and given by the
Abrikosov' solution

g(r) )~ g etnkye-eB(x-kn/2eB)~n ne (6)

6& w&g = (Qg'", g„+ Qw~'g„+ Qw', g„)6&~(~~ 0) ~

where Q~()&, the contribution of the last two terms
in Eq. (1) is represented diagrammatically in Fig.

and we can calculate it by expanding in powers of the
order parameter. It is convenient to break up
([W,j,]&„;into two parts Q~ ~ and Q~~2'; which we
represent in Figs. 1 and 2, respectively. We write

FIG. 2. Diagrams which contribute only in the geom-
etry E J.B. These terms contribute only when the exter-
nal perturbation can couple the ground state of the order
parameter to excited modes.

3. The contribution to 5&w&„arising from Q~ &

is independent of the geometrical configuration of
E and 8; on the other hand, the contribution from

Q~& only exists if E has a component perpendicular
to B. The physical origin of this term lies in the

fact that in this geometry the external perturbation
can couple the ground state of the order parameter
to excited modes. Finally Q)'

&
involves propaga-

tion of the excited modes of the order parameter.
As Thompson has pointed out, only Q~ &

and

Q~ &
were taken into account in the original CM 1

1

calculation.
In a similar way we may write

6& w), = (q,"', + q"', + q,"',)6y(~, q) . (lo)

In the dc limit the relation

%1 J I

r
I ~

~ ~

%% ~

6&w&„= 6&w&,

follows from gauge invariance, provided we put

t~6A= —V5&b=E

~ A

~, \ g~r
~ ~

FIG. 1. Diagrams contributing to Q . These terms
exist in the absence of fluctuations.

FIG. 3. Diagrams which involve propagation of fluctua-
tions of the order parameter.
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(14)

where Q&,
'" are the so-called anomalous terms dis-

cussed by Thompson. ' In fact Thompson originally
pointed out that if Q&,

" is added to the CM 2 result
then the dc limit of the LHT calculation with a vec-
tor potential is obtained. This follows in the above
formalism by comparing (13) and (14). We can
therefore still describe the dc limit behavior of the
resistive state in terms of TDGL if the original
expression for the current is slightly modified.
The TDGL is now given by

—Riett) 6(r, t) = [D(v —2/eX) + a, ]6(r, t[,~ ~

(»)
e7'tr N

j = o, E+ ':i (V, —P', —4ieA)4~mr

where

xg"'(—', + p)&(l)~(s)
1=2=(%,t)

(16)

6p
o, = lim —. Q, ,(i~)

(17)
In Eqs. (15) and (16) all the notation is the same as
CM 2; in particular f"' and gN'are the tri- and the
tetragamma functions p= co/4vT and so = 2eDH, z(T).

It should be noted that a recent calculation by
Ebisawa and Takayama' has shown that Eqs. (15)
and (16) considered separately are only correct in
the vicinity of the transition temperature (T= T,o),
and that, in general, both the order parameter and
the current obey much more complicated equations
containing higher-order differential operators. It
is of importance to note, however, that this simple
set of equations (15) and (16) (i. e. , TDGL) results
in the correct expression for the conductivity if
both Eqs. (15) and (16) are used together. Further,

and E is in the plane perpendicular to B. Therefore
generally speaking we may evaluate the transport
coefficients using either Eq. (9) or Eq. (10). This
statement is of course applicable in the case of
arbitrary mean free path. In the dirty limit Eq.
(10) has a very simple relationship to TDGL; we
will show that such a relation only exists if Q~(~,'= 0.

In the Appendix we show explicitly that Q~,'= 0 if
V is either j of j+0. Therefore in these cases all
the effects of fluctuations are contained in Q(((,,'.
Further, it is easy to show that Q- and Q-a re-(3) . (S)

3P 30»
duce to the values calculated previously in CM 2.

In the specific case of the electric current we
have

6( j&.= (e;""e;"')6e, (»)
where the term Q&,", which arises from the intrinsic
conductivity, can be shown to be given by

Making use of the results of Sec. III, we can also
calculate the transverse entropy flow using LRT.
We first note that it is easy to show that Q& =0;

. 0 (3)further, as we have shown in the Appendix, Q~~ =0.
Therefore we anticipate that a LRT calculation- in
a gauge where the electric field is introduced by a
vector potenti. al —should yield the result obtained
previously by TDGL. This is verified below by a
direct calculation.

If we consider again the geometry in which the
dc magnetic field 8 is in the z direction and the dc
electric field in the y direction, the transverse en-
tropy flow is given by

(jo".& =~(l'&, .
The Ettingshausen coefficient n„'~ can be simply
expressed in terms of the retarded product of the
heat-current operator j0 and the electric current
operator j as

n~(" =lim (I/i(u) ([j()„,j„]&„',
w 0

(16)

(19)

by comparing the expression for the complex con-
ductivity thus obtained with microscopic theory we
can show that the set of equations (15) and (16) de-
scribe correctly the frequency-dependent phen-
omena if & is sufficiently smaller than eo(0)(= T,o).
Therefore, the TDGL determines completely the
low-frequency behavior of dirty type-II supercon-
ductors. We also emphasize here that enormous
conceptual economy is achieved by using TDGL,
since it involves only the time-dependent order pa-
rameter 4(r ~ f) as the dynamical entity, whereas
in LRT we have to treat both electrons and order
parameter on an equal footing.

Recent experiments in dirty superconductors'-'o
seem to be described quite well by only the
TDGL terms (i.e. , Q~", '). This is, we believe, be-
cause the experimental slope of the flux-flow re-
sistivity as a function of the dc magnetic field H is
not taken in the immediate vicinity of H,~ but in a
region where the resistivity changes almost linearly
with H. However, in this field range, the TDGL
term completely dominates the flux-flow resistivity
(at least in the dirty limit). Q~(3' is proportional to
lM I/B (M is the magnetization and B is the induc-
tion) and therefore increases very rapidly as H

decreases below H,&, whereas the anomalous terms
depend strongly on H in the vicinity of H, ~ but al-
ways remain of the order of o. Therefore in order
to compare with the complete theory it is important
to have a precise experimental determination of the
slope near H,z, where the contribution from the
anomalous terms can become appreciable. How-
ever, experimentally the slope changes so rapidly
in the immediate vicinity of H,~ that an accurate
comparison seems to be very difficult at present.

IV. ETTINGSHAUSEN EFFECT
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where, making use of Eq. (1),

&hoi]&.'=&[it, i])+&[io, ~']&-1.&[~, i]&.

(bl, q]&.~. & [~', I]&. . (20)

Using the prescription of Sec. III we break up
( [jo"„,j„])„into the two terms Q&)I,&

and Q&z

corresponding to the diagrams in Figs. 1 and 2,
respectively. It is easy, using symmetry, to see

(i)
that the off-diagonal elements of QJ& &

are 0. It
can also be shown that, if the energy dependence of
the density of states is neglected, the diagonal com-

(p)
ponents of Q.&, which give rise to the thermo-

Jox gx '
electric power (or Peltier effect), vanish identically.

(8)
The term Q&I given in Fig. 2, as'we pointed

.&OXo&3i

out in Sec. III, does not necessarily vanish when the
electric current has a component perpendicular to
B. In fact direct calculation gives

(2) 1 1
Q,),, = ~ » ~ + Z (2(o„+(o„)-„.o „„"" (ko„l+-,'&o) (l(d„,„l +-,'eo) j l2o)„+(o,[+3&o

(21)

where

f~(q) f',
2D2 I 2()0 ff + co p l + 3& p

(22)

q„= (-,') (ll'+ ll-), q, = (1/2i) (fl'- fl-),

where cd„and ~„are the even and odd Matsubara
frequencies, respectively. In deriving this result
we have made use of the fact that

11 = (1/i) V —2sAo, (24)

and Ap is the vector potential describing the static
magnetic field. We remark that in the BCS state,
for example, we would have q4 = 0 and there would
consequently be no contribution from the diagrams

(2)
corresponding to Q&a, . It is of interest to note
that the diagonal terms, for example Q&p'

from the same class of diagrams, vanish identi-
cally because of the exact cancellation of diagrams
(a) and (b), and of diagrams (c) and (d).

If we now perform the summation over n and make
the analytical continuation (d„- —i&, we obtain

Q(o) (
.

)
0'6o 1 6o —i(o y(() 1 i(o 6o+io) ~(() () ~p)

&o& &3 2e AT 2&o+i+ 2 2mT 2&o —i()

(3)
In the low-frequency limit, Q&~ reduces to

&Ox'&y

Q a = —2& — 2+3P — ~+P —
4 T

' ~+~ —
4 2 T z

'
—, +P (26)

66 o 1 2 1 6E p 1 2(d 1 2Q)

(2e —iw) 2 4wT' (' ~ (2a iw) 2 4trT 2 2mT )I
(25)

Finally the contribution Q o coming from the last two terms in Eq. (1) is represented in Fig. 3. The
comPonents of diagram (a) are (i) ([jo„,)l' ])„, (ii) I.„, and (iii) ([+,j,])„. We find

(()0* ~ I) =-N(0)Da)&(to )' —.
—((!+p)-) ' . )) --) +p)2&o- 2e ' 2&p+2& 2 2n T

2~p 2(d 26p +2@) 2 477T

while L(~) and ([4', j]) have been calculated in CM 1 and are given by

-1I ((d) = -N(0) )))
—— + 3p —f( + p)2 4gT (23a)

([e, j„])=—(2eo-i(o) )i) —— +3P —)1)(o+P) + (2eo+i(o) ())
—— +3P )I) —— +P -2q„&oq .

0',
y 1 2(0 1 2' 1 2'

2e 2 4gT 2 4wT 2 2rT

(28b)
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Combining these factors and adding diagram 3(b)
we obtain in the low-frequency limit

(29)

In deriving this equation we have made use of the
relation

( q „a*)(q,a) = (e, /2'»)
I
&

I

'
~ (30)

e 4m' &a+Pe

V. CONCLUSION

In this paper we have used LRT to obtain general
expressions for the transport coefficients of the re-
sistive state. In dirty superconductors, the dc lim-

I

It should be noted that the diagonal part of the fluc-
(3)tuation contribution Qp~ J„(or Q&II &, ) vanishes

owing to the exact cancellation between diagrams
(2) (2)3(a)and3(b), asinthecase of Q&» J (or Q&g& ).

The Ettingshausen coefficient is now obtained
from the sum of Eqs. (26) and (29) as

(2+p) l+ &» & ~(3l)
(1& o i+l &1& & p g (k+p)

e 2gT 2 —, +p
which agrees with the previous calculation of the
constant by TDGL. 4 The same expression has very
recently been derived by Ebisawa and Takayama'
who have chosen the gauge V6&t& = —E.

We should point out that Eq. (31) only contains the
electronic contribution to the Ettingshausen coeffi-
cient. However, as pointed by one of us (KM"),
when the magnitization is time dependent there is a
further contribution to the Ettingshausen effect as-
sociated with the magnitization current. If this
term is added, we obtain the complete Ettingshausen
effect

it of these results was shown to be equivalent to the
predictions of simple TDGL. Therefore in the dirty
limit, where TDGL is given by a set of differential
equations, TDGL is a simple flexible scheme which
can be used to determine those various physical
phenomena in which motion of the order parameter
is important. On the other hand, in situations
where expansion in powers of the order parameter
is not valid, TDGL itself is given by a set of very
complicated integral equations. In this case the
most straightforward approach is to use the exact
expressions of LRT to determine the transport
coefficients. We propose in a future publication to
use this approach to determine the transport prop-
erties of clean type-II superconductors.
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APPENDIX: DEMONSTRATION THAT Q&~) = 0
FOR &&&=i AND W=j)

We assume, as in the text, that the dc magnetic
field and the dc electric field are applied in the z
and x directions, respectively.

Let us first consider the case where 8'= j, the
electric current. The diagrams contained in Q&~3',

which are of the type shown in Fig. 2, are easily
calculated if we note that they are equivalent to
Q&&'when the loop containing the vertex j„|&A„ is
replaced by ply. More precisely, Q~&P is simply
obtained from Q&&' by repla, cing 2iDq, 5A, by
&„/[+„~5P before evaluating the frequency sum
(~„ is the internal frequency of the electron loop).
If we compare with Thompson's calculation of
QJ&@ [we note that there is a factor-of-2 error in
his Eq. (9)], we find that

n=- v
1 2 10,",'= o(q„~')(~y~) 4i~r Z —F +„p 2 I (d„,„I + &p 21(o„I + &p I cd„+co„,„I + 3&p

(Al)

We have assumed that j is perpendicular to the dc
magnetic field. From the form of Eq. (Al), it is
easy to see that Q) p vanishes identically. The
cancellation between the two sums in (Al) has its
origin in the additional frequence ~„/l + „1 men-
tioned above.

When W= jp, it is easy to show that Q», vanishesh (2)

(2&
by making use of the same replacement in Q &

Vgiven in the text.
The cancellation discussed above occurs because

I

the quantity in question takes a different sign in the
frequency ranges „& 0 and „+ v & 0. Rearranging
the function under the summation signs, it is easy
to show that these two terms exactly cancel. It
is important to note that, although the present
proof was only ca,rried out in the dirty limit, the
conclusion that @~2»—= 0 (for W=j and W= jo) is in-

P
dependent of the electronic mean free path of the
system under consideration.
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