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Microwave and Fluctuation Resistance of Superconducting Alloy Films

Richard S. Thompson'
Brook'haven National I aboratory, Upton, Nese Fork 11973

(Received 21 October 1970)

The microwave resistance of dirty superconducting films with magnetic fields just less
than the critical values applied parallel to their surfaces has been calculated, together with
the paraconductivity due to fluctuations just above the critical fields. Maki's results for the
microwave resistance of the surface sheath are corrected and extended to include films of all
thicknesses. Singularities similar to those observed in tunneling measurements are predicted
to occur at the critical thickness for flux entry. Anisotropies for different relative orientations
of the electric and magnetic fields are predicted, which are at a maximum at the Qux entry
and vanish only in the thin-film limit.

I. INTRODUCTION

Recently, considerable theoretical progress has
been made in calculating the dynamic response to
electric fields of dirty type-H superconducting al-
loys in the gapless regime. Schmid' and Caroli
and Maki~ (CM) have used the linearized time-de-
pendent Ginzburg-Landau (GL) equation for the order
parameter' to calculate its response near the upper
critical field H~~ and then used the static GI. equa-
tion for the current to calculate the flux-flow resis-
tance. Gor'kov and Eliashberg4 (GE) have investi-
gated the dynamics of superconductors containing
paramagnetic impurities and found the situation
generally much more complicated than envisioned
in Refs. 1 and 2 due to the appearance of so-called
anomalous contributions, which arise when products
of both advanced and retarded response functions
must be considered. We' have shown that such an
anomalous term, which mas not considered in Refs.
1 and 2, does contribute to the flux-flow current at
nonzero temperatures and must be added to their
results.

Similar techniques ean be employed to calculate
the response of superconduetors to microwave
fields. Such calculations have been made by Maki, 6

valid only for E parallel to the static field Ho, and

by Caroli and Maki, ' illustrating the anisotropy be-
tween the two geometrical configurations E ll Ho and
E j Ho. Unfortunately, the latter results mere also
incorrect and did not reduce to the correct zero-
frequency limit until certain other corrections,
which me found, mere included to obtain the com-
plete anisotropy of the penetration depth for static
electric fields (no Meissner screening of E when
Ei H,).

The method of CM7 was applied by Fischer and
Maki to the impedance of the surface sheath of very
thick films near H~3, and an anisotropy between the
tmo geometrical configurations was noted. e How-

ever, the deficiency of the calculation of Ref. 7

was continued in Ref. 8. We therefore correct
these calculations in Sec. II of this paper using the
results of our Ref. 5. The corrected results are
simpler than those of Ref. 8, and a temperature-
independent value of the anisotropy is obtained.
The new result is not so strikingly different from
the previous one as in the flux-flow case since the
anisotropy is no longer total. The two results dif-
fer by less than the experimental errors 6ming to
the unfortunate choice of strong-coupling lead alloy
samples, whose properties may differ significantly
from predictions of the weak-coupling theories.

In Sec. III we extend these results to films which
are thin compared with the rf skin depth but of size
comparable with the temperature-dependent coher-
ence length $(t). Just as for the tunneling charac-
teristics, ' me find discontinuities of slope of the
response at the critical thickness d, = 1.812((t) for
vortex entry, which suddenly marks the change be-
tween the thin-film and surface-sheath regimes.
The anisotropy of the response reaches a maximum
at d, and disappears entirely for very thin films.

As previously in Ref. 5, we can easily extend
these results for the response of the mean-field
superconducting state to find the leading corrections
to the normal-state conductivity o above T,(H) or
H, (T) due to superconducting fluctuations. Usadel'"
and Maki'3 have already noted that in bulk samples
just above H~a the temperature or fieM dependence
of the paraconductivity 0 should be completely dif-
ferent depending on the relative orientations of E
to Ho, reflecting the anisotropy to be observed be-
low Hcz, where the conductivity is infinite along the
vortex lines but finite perpendicular to them. In
Sec. Dt we calculate o'for the surface sheath of
thick films d» $ (t) and, more generally, for all
film thicknesses in a parallel field. The results for
E ~~ or ~ Ho have the same temperature dependence
but are generally anisotropic. As a function of Ho
we predict a singularity at the flux-entry field
HFs = 1.623/2ea = 0. 812go/va, where a = —,

' d and

1617



1618 RICHARD S. THOMPSON

po is the flux quantum. For very thin films, the
isotropic result of Aslamazov and Larkin" (AL) in
a parallel field is recovered.

II. SURFACE RESISTANCE OF THICK FILM

(- s„'+ 5 ')G(x, x') = 5(x- x'),
C(x, x') = —.

' 5e-)"-"')" .
(2)

The solution A(x) may be written immediately
using G:

A(x) =A,e "/'+
$ "G(x, x')47r j'(x') dx'

0

e-R/()+ 5f (-R2R )/64 2( )de
0

+ —,'5 f"e'" " '/'4vj'(x') dx'. (2

The impedance Z may be computed knowing A(x):

Ao+2)T5 fo e "/'j'(x) dx
2v5 f" -""'( ) d (4)

To obtain the leading correction to Z, j is computed
in the presence of the normal-state potential
Aoe

" '. For example, if Q is local, then j'(x)
= —Q (x)Aoe "/', and if further Q is constant, we

get

Let us consider microwaves emitted at x= —~
striking the surface x=0 of a film, which is thick
compared with the skin depth. The incoming wave
may be characterized by a vector potential
A, =e'"'" ''. (We choose units c=h=ks= 1.) The
impedance is Z= 4nE(0)/H„(0) = 4vi&A(0)/S„A(0).
Inside the film the vector potential obeys —S„A(x)
= 4mj(x). The current j may be divided into two

parts: the normal-state current j„=—Q„A= i~0.4
and the additional current j arising from the change
Q' in the response function Q due to superconduc-
tivity. We assume a static field Ho is applied par-
allel to the film surface with a magnitude near H~3
so that j is a small perturbation and will find the
leading correction to Z„. In terms of the skin depth
5= (-4'(do) '/~ we must solve

( —S„+5 )A(x) =4vj'(x) . (1)

This equation is conveniently solved by introducing
a Green's function G:

[(d/v(T„—T)]'/' «v 2 x .
This condition excludes only a small range of tem-
pertures T near the zero-field critical temperature
T,o since we assume the microwave frequency
Q) «7fT 0 and the GL parameter g must be
& 0. 59/v 2 for the transition to be second order.

The previous results for the vortex state' ' may

be easily extended to calculate Q for the surface
sheath by changing appropriately the average value

of the order-parameter squared ( I & I
~) and the

spectrum of excited states and matrix elements.
As before, we consider first the simpler geometry
with the rf electric field E parallel to the static
magnetic field IIO. In this case Q is a local func-

tion of x. The principal contribution to the surface
resistance comes from ReQ, which is typically
larger than ImQ by a factor of SvT,D/(d. From E(ls.

(2), (2), and (5) of Ref. 5 we obtain

2

R~0»'(~)= 2 0'(l+0)(l0(*)l'(1' —,

As in Ref. 5, p= eo/4nT is the solution of (f( —,'+ p)
—)f (—,

'
) = ln(t), where t = T/T, o. g is the digamma

function, and g' and g" are its first and second de-
rivatives. For the surface sheath, the ground-state
energy &0=0. 590D2eHcs=D) 2(t), where D is the
diffusion constant. The last term in E(I. (7) is only
important for x» 1, since otherwise condition (6)
will be violated before o3- v(T, O

—T). Maki' has
evaluated I 6 I using the Gaussian approximation:

7TT
g'( —+ p)$ (t) t

~
A(x)~ dx

0

n i/ 0. 59e Hc2(t) —H()
(

2 v 2xz(t) —0. Sl1
~

~

~

Inserting E(ls. (7) and (8) into E(I. (4), one gets a
result which, when & «e'~, is the same as one al-
ready obtained by Maki':

Z4'6145" cs)0
2 v ((t)Hc3(t)

4~i~ Q'

(4vQ )'" 2Q.

which is the correct first-order expansion of

Z= 4'~/[4v(Q„+ Q')]'" .

(5) 1 1 QF

2&, (2) —0. 311 2 2+a', )

6o Hc2(t) - Ho
R)( = ReZR = Itn 1 —(2v) ((t) H (t)

The response function Q' of the surface sheath

is, however, not constant but becomes exponentially
small at distances greater than the temperature-
dependent coherence length $(t) from the surface.
To simplify the integrals we consider the case
$(t) «Re5, which for the "dirty" alloys we are con-
sidering requires

1 1 co~

2e', (2) —0. 311 2 '+a~ )

where 50' = Re5 ' = (2mdo)'/2 and R„= (2v~/o)'/~
Our numerical calculations show that the correc-

tions to the Gaussian approximation are only a few
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percent. The factor (2v}'+= 2. 51-2.63, and the
last constant in the denominator (W2 —1}(4—v}/
(&- 2}= 0. 311 0. 328. Since this leading correction
to Z is purely real, corrections to X=ImZ will be
smaller than those to R in this limit. The leading
correction -&u/(T, p

—T) is obtained by replacing
Re@ by Imp from Eqs. (2) and (5} in Ref. 5, and
the correction -x '[&u/(T, p

—T)]' by expanding the
exponent in Eq. (4} to get a correction factor
—2(x)/5= —2(0. 59}'~ $(t}/5. Very near T,p, where
the inequality (6} is reversed, Q is approximately
constant over the skin depth, and the leading cor-
rection to Z is that given in Eq. (9} multiplied by
45/(qv}((t).

If F. is oriented perpendicular to'80, two addition-
al contributions to Q' arise. The first one Q'„was
the only one considered by Maki. This contribution
results from the change of b, produced by E and is
expressed in terms of a sum over the normalized
excited states of the surface sheath In) with n nodes
and corresponding eigenvalues &„. To simplify the
algebra we will ignore corrections - u&/v(T, p

—T)
here and assume for the moment z» 1. Again the
main interest is in Re@'. Referring to CM' or to
Eqs. (3) and (6) of Ref. 5, we have

Re@,', = —16o I ti(x}IPD 2 [(OI 2eHp(x —xp)ln) ]P
n&0

,4(p+p. ) 4(p+ p—}
(.„-.p}'

where p„=&„/4vT and pp= p as before. In general,
xp=(OI xl0), which equals 0. 590$(t) for the surface
sheath, minimizing cp. The terms (OIHpxpln)
=Hpxp(0ln) =0 by orthogonality. Near Hop in the
vortex state, @0=0 and the only nonvanishing matrix
element is (Ol 2eHpxI 1) = (eHp)'~ . Inserting the
value p, =3p, the previous results for the vortex
state are recovered. For the surface sheath our
computer calculations" show that the matrix ele-
ment squared for n =1 contains most of the sum:

((0!2eHpxl 1) }'= 0. 934(OI [28Hp(x —xp)]P I 0)

= (0. 934) (0. 590) eHp .
A good approximation, used by Maki, ' is to replace
&„by z

&
= 5. 62&0 and then sum over n. Maki thus

obtained a temperature-dependent anisotropy coef-
ficient A, (t):

Re f,"(q,', +q,', ) dx

x 0'(2+ p) 4(p + p. ) —4(p + p)
4vT(e„—cp) (e„—ep)'

(12)

Just as in the vortex state, there is considerable
cancellation between Q,', and Q,'„and a simpler
temperature-independent result for the anisotropy
coefficient is obtained:

+ 4D(( 012eH xlp)n)P

n&0 ~n —%
(13)

For the vortex state the matrix element squared is
8H'0 & g

= 3&0 2eDH~, = &„and therefore A = 0. For
the surface sheath, Maki's approximation gives
A = 0. 57, and actually summing over e by computer,
we get A=O. 586.

For smaller values of ~-1 there are further
corrections to Q~, due to the finite value of the skin
depth. Referring to Eq. (10), the matrix element
of the product of the rf and static fields is actually
(012eHp(x -xp) e " ' In). For large a'» 1 we could
neglect terms -x/5 and replace the exponential by

1, so that the n = 0 matrix element vanished. Keep-
ing the first term in the expansion --x/5- —$(t)/
5 «1 results in afinite value for the n =0 matrix
element, which is important because the denomina-
tor of Eq. (10) vanishes as one higher power of
e„—ep than the numerator. [If we check Eq. (11),
we find no such problem arises for Re@~. ] Hence
the value of the n =0 term is considerably enhanced,
and me must look for small corrections to the de-
nominator. Referring to CM, the extra denomina-
tor factor is the inverse of the time-dependent GL
equation [- u&t+5+eO(lhl )] . When 5e=e„—ep

vanishes, these extra terms become important.
There are two types of terms - l&l . The anoma-
lous term of Eliashberg is

the vortex state varies between 0 at T,0 and 0.45
at e=0

As we pointed out earlier, ~ these results of CM
fol E l Hp are wrong, and A(t) must vanish for all
T in order for the flux-flow resistance to be finite
as observed. Since Maki's calculation is based on
CM, a similar conclusion is obtained for the sur-
face sheath, although the results of their error
are not so dramatic here since the anisotropy is
incomplete, AW 0. Maki's result, Ap(t), is also
only correct at T,p. The additional terms Q', p are
obtained by generalizing slightly Eqs. (11) and (12)
of Ref. 5:

Re@,'p = —16o I h(x) I

P DZ [(0!2eHp(x —xp) I n) ]P
ea

2[4(-'+ 5 62p) —4(2+ p)]
(4. 62)'py'(-."p)

This function varies between 0. 57 at T,0 and 0. 84
at T= 0. A similar function A(t) found by CM for

—i~ lAl' —/col zl'
—g++DV

The validity of the theory, as in the vortex case,
is restricted to the gapless region where l&l «0,
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where we can ignore this term in comparison with
the —i& term. The second type of term - l~l is
the one which appears in the usual static GL equa-
tion, whose standard evaluation has been referred
to and used above in Eq. (8). The matrix element
squared [(0 i2eHo(x —xo)x/510)]' is easily evaluated
to be (0. 590)s/45 = —xi&ac(0 59.0) . Taking the limit
of Qu [Eq. (10)]as e„-eo, we obtain the additional
correction Q~:

00 4D' OO

Q' dx = — (0. 590)
l
& l' dx g'(-,'+ p)

(14)—i&+ 4eD[Hcs(t) —Ho]

In order to study the response of a film in the in-
teresting range of thicknesses d $(t) we now as-
sume d «50, which is the opposite of the assumption
made in Sec. II. We again assume an incoming
wave in a vacuum A, =e'"'" ". An infinitely long
and wide film lies between x = +a = + —,'d. First we
consider the case where the film is backed (x &a)

by a thick insulating substrate with index of refrac-
tion n. (The problem of a substrate with thickness
approximately equal to the microwave length and
the resulting resonances can be easily handled at
the expense of somewhat more cumbersome
algebra. 's) Using the Green's function (2) to calcu-
late the leading correction to the response satisfying
boundary conditions at x = aa, we find the magnitude
of the reflected wave A„and of the transmitted wave

A, :

A = 1 —n —8vca —(i~) '4v f' j'(x) dx
r 1+n+ Stoa

2 —(iu)) '4v f' j'(x)dx

1+n+ 87roa

(18)

The value of A inside the film is to lowest order
the same as A, Thus, in terms of the average val-
ue of the change of the film conductivity o' =

f',Q'(x) dx/(-i~2a), we can evaluate

(i~) '4vf j'(x)dx= 1 8av' c(/In +8+sea).

Thus we see that in the limit d «50 only the average
value o' enters and, as expected, appears exactly
as the expansion of the combination o+o':

1 —n —Stoa 16go'a
A„= 1+n+ 8vc'a (1+n+8vca)

Taking the real part of Eq. (14), we obtain the cor-
rected value of the anisotropy coefficient A:

A=0. 5S6

(0. 590)
4(1.20')' (o + (2e o[Hcs(t) —Hol/Hcs(t)]s

(i5)

III. DYNAMIC RESPONSE OF THINNER FILM

1 —n —8v(c+o')a
= expansion of 1+n+ Sm(cr+o'ja

2 16go'a
1+n+ 8vca (1+n+ 8gca)

ReQ i' 2~OImo'= "=L-- ' 1+—
CO (d 2 40 +&

where L is a common amplitude coefficient,

(i8)

—&lt ')("(s+» ~2' TK o
(i9)

The spatially averaged magnitude of the order pa-
rameter squared (i& i ) may be evaluated numer-
ically for any film thickness using the procedure
developed in Ref. 10. For the tunneling experi-
ments in Ref. 10 we were interested in calculating
the order parameter at a boundary 16(aa) I . We
obtained this value in terms of functions J& and J2
defined and illustrated in Figs. 9 and 10 there:

8vTD (1.20') Jq
l
+(+a)

l
=

( )
s J 2e(Hcg Ho) ~ (20)

J, a,nd Js are functions of &= [a/$(t)] =a & /D, owhile
res is a function of both e and t. Using Eq. (20), we
obtain

2
= expansion of 1+n+ Sgjo+o'ja

The leading corrections to the reflection coefficient
and the transmission coefficient ~A, ~ only

involve Reo'. The phase shift is proportional to
Imc'. In practical units, 8vo'a =Zo/Rp where Zo
= 376. 6 0 and R& is the resistance per square area
of the film.

If the thin film is backed by a thin insulator (to
eliminate proximity effects) and then by a thick nor-
mal metal (such as the wall of a microwave cavity)
instead of by a thick insulator, the thin film will
play the same role the surface sheath played in
Sec. II. From Eq. (4) we obtain the impedance Z
including the leading correction due to o', the dif-
ference between the average conductivity of the film
and of the backing metal: Z = -4o'i&@5(l —o'd/c5).
As before, the leading correction to the surface re-
sistance ReZ' involves only Imc' and not the (real)
difference in the normal-state conductivities. Thus
by varying the backing medium both Reo' and Imo'
may be measured by absorption experiments.

We will calculate o' when a static field Ho is ap-
plied parallel to the film with a magnitude near the
critical value Hc~, (t) so that the film is gapless.
Then for El(Ho we can again use Eqs. (2), (8), and

(5) of Ref. 5:
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TABLE I. Limiting values of six functions of

& = fa/$N]'.
0»=-» =0.821»~4 Gaussian approx.

for»-~
Q. and B using»g)

0.6

(g») r 0.361 0.241
J~ 0. 80» 0, 535
C 0.30» 0. 260
N 1 0, 912, 0, 608
A 1-1.60» 0
8 1, 30» 0. 541

0. 385
0. 164
0. 877
0. 657» '~2

0. 586
0. 177

0.42
0. 156
l. 00
0.63» 1r2

0. 57
0. 187

0.2

00

FIG. l. Three functions N, A, and B necessary for
calculating the microwave conductivity and its anisotropy.

(In I ) ~ (1 20)() (~ ) ( )It) (+a) I'

It is useful to compute a function N(e):

(It) I )
e l~(~a)I'

where, the dimensionless quantity h = 2eH~„a . Then

The results of the computer calculation for N (along
with two functions A and & which are important for
E J. Ho) are shown in Fig. 1. The most interesting
feature is the discontinuity of —,

' at the critical
thickness, which was verified in the tunneling mea-
surements. We have improved our numerical cal-
culations slightly recently, so in Table I we sum-
marize. the interesting limiting values of the pre-
vious functions J„J'z, and C (although the changes
are rather insignificant, always & 1%) along with
the new functions N, A., and &.

The leading corrections to our formulas (1V) for

the reflected and transmitted waves A.„and At, are
obtained by taking the next term in the expansion of
tanh(a/5). Each factor

4moa- . ———— =4ooa(I+ & i(d4((oa ).8 1 9 ~ 3
i(d 5 6 3

[Those corrections falling under integral signs for
o' will be smaller if a & )(t) since aa will be replaced
by $ (t). ] The most important effect of these cor-
rections will be on the magnitudes ~A.„( and jA, , I

because the correction factor is imaginary and thus
allows Imo, which is generally»Reo', to contrib-
ute. Relative to the previous effects proportional
to Rea' this correction

2Img' 2 3 2 +rgD 3-- +go'a, -—r04mog --
3 a

3 Reo' 3 o 3 t'(t)

Recognizing that the temperature-dependent static
penetration depth X(t) = z$(t), the corrections
-0. Ia~/X (t) and result from a mixing between the
static and dynamic screening. Generally these
corxections will be very small in the interesting
region a- t'(t), since )(3 must be &0. 535 for the
transition to be of second order and the theory to
apply at all. Consequently we will not calculate
these screening corrections in detail but merely
notice that they could be important for thick films
before the condition a- 6o is obtained, since
X(t) &5o when (o &o (T„—T).

Turning to the other geometrical arrangement
8&HO, we can obtain the additional contributions
Q,&

and Q,)) by generalizing E(ls. (3), (6), and (11)
of Ref. 5:
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&Q„&= —
18o&~ ~'&DQ (&O~ 2eH~(n&)'

n&0
(24)

0'(-.'+p) |j(o+p.) —4(o+p)
4v T(e„-&o) (c„-eo)'

&Ca)

AT
&"(o+p) &'(o+p.) —0'(o+p) &

4vT(c„- eo) (~„—eo)

The expansion here is in powers of &u/(e, —&o),
which doesnotdivergeat T,o since lim&, =Dr /4a
as &0-0. Thus

2
Jim"rc&

where $ (f) =$ /(1 —f) near T,o. In terms of TFz,
the temperature at which the flux entry occurs at the
critical value Hc„(u/e, - 0. 4&/m(T, o

—T»). Thus,
if the film is not too thick, so that T~E is not too
close to the limit as T- T„we can ignore these
finite frequency corrections, since we assumed
~«gT, p. As above in this section, we will not
calculate in detail here the corrections- ~ includ-
ing those of the Q,'o type of Sec. II.

Again considerable cancellation occurs in the
sum Q,', +Q,o, and only g functions of the ground-
state value p survive, so that the sums over eigen-
values will depend only on the thickness ratio
e = [a/$ (f)] and not: also explicitly on temperature.
Adding these results to our previous results for
oo Eq. (18), we obtain o, :

$2
Reo, =L

o ', +B~(1+2A)p
CO +&0

2Ep 1 (d
mo'~= J A+—

2 co +~0

(28)

where L is given by Eq. (23), A by Eq. (13), and

((0 I 2eHox In))'&= 8&pD .&o ("-'o) (28)

The frequency-dependent corrections - & /&o
only become important as &0-0, where the functions
A and B take their limiting values and the anisot-
ropy vanishes for thin films if we assume as above
that ~«2w(T, o

—Tps) = 2wT, o(o/ao. Thus the anisot-
ropy of Imo

' is just given by the function A(e) as
illustrated in Fig. 1. Complete anisotropy is ob-
tained at the flux-entry field HFE, just as for the
bulk vortex state.

The anisotropy of Reo' is slightly more compli-
cated:

Reo,' 1+8+(I+22)piO"(-,'+ p)/g'(-, '+ p) 7)Reo 1+ 3pg "(-', + p)/g'(-, '+ p)

The function pg "(—,'+ p)/g'( —,'+ p) varies smoothly
between —1 at T=O and 0 at T,„. A plot of it plus
2 is given in Fig. 1 of Ref. 2. The combination

occurring in the denominator is plotted in Fig. 2 of
Ref. 6. The denominator, Reo,', is predicted to
vanish at t = 0. 6 and to be negative for lower tem-
peratures. If e is large (&2) at low temperatures,
Reo, will vanish at t=0.4. Reo, will always be
positive at e„and have a peak with a. discontinuity
of slope. If E is between 0. 64 and 0. 96 at T= 0,
Beo, will remain positive at all temperatures. Out-
side this range it will change signs only once and
be negative at T=O.

IV. FLUCTUATION CONDUCTIVITY OF FILMS IN

PARALLEL FIELDS

Anisotropies like those derived in Secs. II and III
for the leading changes in the conductivity of films
just below the critical field Hc„(t) are also found in
the paraconductivity due to fluctuations above
Hc„(t). Usadel" and Maki' have already shown that
a large anisotropy, and in fact different power
laws, are obtained in bulk superconductors just
above Hco(f). These references considered only
the regular Ai contributions to o'. (Maki'o made
reference to his previous calculation" of the anom-
alous contributions but did not explicitly state that
the two contributions should be summed. ) They
found the paraconductivity much greater for E ~l Ho,
diverging as T —T, or H- H, to the pomer ——,,
whereas for El Ho the power is ——,'. [Inclusion of
the anomalous terms results in the multiplication
of o'by the function" Ln(t) when El Ho. ]

We will here consider the most important fluctua-
tions just above Hc„(f), which will be in the surface
sheath for thick films. Near Hog(f) the anomalous
contributions to o'are suppressed by the field as
for thin films, ' and we will recover the AL result
for thin films. We mill consider explicitly only
fields which produce small shifts of T, and which
are very near the transition Ho —He„(t) «He„(f).
Results for large shifts of T, are obtained simply
by multiplying by the factor g'(-,' + p)/[1 —pg (-,' + p)]
xg'( —,') derived by Fulde and Maki. "

We assume a field Hp is directed along the z axis
and take the vector potential A, = Hpx. The lowest
eigenvalue &0 of the GL equation is found with an
order parameter n(x, y) = F(x)e'"':

D[ 8„+ (2eH x —k -) ]F(x) = e F(x),
(28)

s F(x) i „,,= 0 .
The value of kp is determined by minimization of
eo, which implies seo/sk=0, s eo/sk &0. If we
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consider ivigiving additional spatial dependence to 6
, the minimum ei

Do+ q +~(6k) B~E /Bka

d lt f'
sons or 6 with hi hhigher eigenvalues„n, x~ having n nodes but

near the transit' b
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fixed and II varied, 0,' should peak and o'„should dip
at kpE .

Qf course, all contributions to o'), will not vanish
at A&E along with this one, which is usually domi-
nant. In fact, the anomalous contribution to g',
which is the same for II and I, will peak:

p 27p 7+
(q )

ln (22)

Furthermore, the peaks will not be infinite when
corrections -$ (5k) are added to the fluctuation
propagators. The coefficient of these corrections
will be of order unity and will not vanish at h&E like
the coefficient of the (5k) term. These corrections
effectively result in a cutoff in the integral over 5k
in Eq. (29) when $4(5k) =7+5. Consequently we
obtain a more realistic result for o'„as A- 0:

A plot of this result is given in Fig. 3 as a function
of field for several different temperatures for the
particular choice of film thickness a'= 20)s. One

can see from the curves that experimentally the
peaks could be smeared out completely by varia-
tions of 10%%us in the film thickness.

V. CONCLUSION

We have calculated the first corrections to the
normal-state conductivities of films in parallel
magnetic fields above and below the critical-field
values. We have predicted interesting anisotropies
and singularities which we hope will be investigated
further experimentally.
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