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The thermal smearing of the positron-annihilation-angular-correlation curves is studied.

In the case where the medium is a homogeneous interacting electron gas in thermal equilibrium,
the analysis applied by Stewart and co-workers to the thermal smearing is shown to correctly
give the effective mass. In conjuction with previous calculations of the effective mass, our
results indicate that the observed thermal smearing cannot be explained as mainly caused by
electron-gas effects. It is shown how the model can be modified to take into account the posi-
tron-phonon interaction. This reduces the discrepancy between theory and experiment, but

not sufficiently to account fully for the experimental data. It is argued that new experiments
are needed before one can decide whether it is necessary to consider new mechanisms in order
to explain the effect. A convenient formalism is presented, which allows one to calculate all
positron quantities at moderate nonzero temperatures within a given approximation scheme.
The "ladder" approximation is used to illustrate the argument and to estimate correction
terms.

I. INTRODUCTION

The temperature dependence of the 2y angular
correlation from positrons annihilating in alkali
metals has been studied experimentally by Stewart
and co-workers. ' Employing a model described
in detail by Kim, they used their data to determine
the ratio m* of the effective and bare masses, and

found the values 1.8 + 0. 3, 1.8 + 0. 2, 2. 1 + 0. 3,
2. 3+0.3, respectively in Li, Na, K, and Rb. Cal-

culations of the electron-positron, ' positron-
phonon, ' and, in the case of Na, the band effective
mass ' all tend, however, to give values of m~

close to unity. This discrepancy makes it desirable
to reexamine whether the experiment actually can
be expected to give the positron effective mass.

The main purpose of the present paper is to dem-
onstrate that, in the idealized case of a thermalized
positron annihilating at moderate temperatures in
an interacting electron gas, the above-mentioned
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data analysis mould indeed eorreetly give the effec-
tive mass. This is so provided allowance is made
(as was done by Kiril) for the deviation of the zero-
temperature angular-correlation curves from free-
electron parabolas. If only electron-gas effects
are taken into account the discrepancy between the
observed and calculated thermal smearing persists.
This leads us to believe that other effects need to
be considered in order to account for the data.

Because of the smallness of the thermal effects,
the reported measurements were carried out over
a wide temperature region. The most significant
experimental points were those taken near the melt-
ing point of the metal under study. For certain
metals there is a rather dramatic change in the
mean lifetime in this temperature region due to
trapping of positrons at vacancy sites. This change
is associated mith a marked change in the angular
correlation. ' Recent measurements in the alkali
metals lndlcate, however, no significant change ln
the positron lifetime before melting. '~3 This may
mean that the vacancy potential is too meak to trap
positrons. %e are not convinced that the available
evidence completely rules out vacancy trapping. If
trapping does occur the interpretation of the exper-
iments would, of course, be strongly affected.

%'e mentioned that the positron-phonon interaction
has been found to contribute negligibly to the posi-
tron effective mass. It has been pointed out, hom-

ever, by Mikeska, 6 that thermal phonons signifi-
cantly contribute to the imaginary part of the posi-
tron self-energy in a may which causes a non-Boltz-
mann-like momentum distribution for the positron
quasiparticles. As mill be seen, one can neglect
this effect in the electron-gas case. %hen modified
to take into account the electron-positron interac-
tion, in a manner which will be described here, the
Mikeska model gives rise to an increase in the
"apparent" effective mass. The interactions with

the phonons will also contribute to the high-momen-
tum tail in the angular correlation. This contribu-
tion will, homever, be swamped by core annihila-
tion and one cannot expect to see the effect.

A crucial factor in the theory is that, for kine-
matical reasons, the thermal variation in the elec-
tron momentum distribution should be insignificant,
in the interesting temperature regiori, compared to
the momentum resolution of the angular-correlation
technique. ' Neglecting thermal effects on the
electron momentum distribution me find, in Sec.
II, sufficient conditions on the real and imaginary
parts of the positron self-energy for the validity of

the relationship between the thermal smearing and

the effective mass assumed by Kim. In Sec. III
me show that in the electron-gas case these condi-
tions appear to be well satisfied. For this purpose
we have developed a convenient formalism which
alloms us to discuss all relevant quantities in the

electron-positron system mithin the same approxi-
mation scheme. This enables us to estimate the
effect of possible correction terms by using a mod-
el, the "ladder approximation, " which is relatively
crude, but which has been found to give reasonable
results. One of the a,ssumptions is not valid, when
the positron-phonon interaction is taken into ac-
count, and me indicate horn the fundamental formulas
should be modified in this case. Our formal start-
ing point is temperature-dependent many-body per-
turbation theory as adapted to the positron problem
by Majumdar, ' who, like Mikeska, based his ef-
fective-mass formalism on the independent-particle
approxlmatlon.

In assuming constant electron density as the tem-
perature varies me ignore thermal expansion. The
thermal expansion of the alkali metals is not small
in the interesting temperature region, but the nu-
merical method used in Refs. 1 and 2 automatically
compensates fox' lt.

II. THERMAL SMEARING AND EFFECTIVE MASS

Angular-correlation measurements performed
mith the parallel-slit geometry give the relative
probability for one component of the c.m. momen-
tum K of the annihilating pair to have a given value.
This means that one measures something propor-
tional to

(P(ff.)) = f dx„ f dec, z(K). (l)

E(K), the "enhancement function, " is the expecta-
tion value of the operator

(2)
QtQ ~8

Here dK, ;b. are, respectively, electron- and posi-
tron-creation operators in momentum space. For
notational convenience we have suppressed the pos-
itron spin index. %e have for ¹ noninteraeting
positrons in thermal equilibrium with a noninter-
aeting electron gas

&o(K) =(l/&') ~;g (q')f ((K-0)') (3)

We can, in the limit of low density N'/V, use in
(3) a positron momentum distribution

g (q')- (eP/3~re"'v"')e "'
The corresponding electron distribution ean, for
sufficiently lom temperatures, be written aa

f ( )-n(l — )+~( —l)
where g = lK —ql2 and

n(z) = l (z & o)

=0 (z&O),

8(.) = l (.& o)

= —l (z & 0).
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At moderate temperatures (3) deviates from zero-
temperature behavior for K values close to the
Fermi surface. We write

Since for sufficiently small values of ~ we have '

the deviation from T =0 behavior in (3) at moderate
temperatures comes only from (4) and not from
(5). We will in what follows use zero-temperature
electron-distribution functions and only take into
account the temperature dependence of the positron
functions. This gives in the noninteracting case

Eo(K) =(~T) "'fd'«(I IK--ql) e "" (9)

It is easy to see by evaluating and comparing (3)
and (9) that, at metallic densities, the thermal ef-
fects in (5) have a negligible influence on (3) even
at temperatures as high as 7.'=400'K, which is the
maximum temperature of interest to us.

Let E(K) be the T = 0 enhancement function for the
interacting system. Kim assumes

E(K)=(nm*T) ~ ~f d'qf:(K —q)e' . (10)

We wish to check the validity of (10) by evaluat-
ing E(K) formally and finding out what kind of as-
sumptions are needed in order to obtain the equa, -
tion. Adding a term XP(K) to the total Hamiltonian
gives

80
Z(K)= —.—N' 8A.

Flo. 2, (a) Typical dia-
gram containing two proper
self-energy insertions to a
positron-hole line. The
single arrow on a line indi-
cates the free-electron prop-
agator. Wavy lines repre-
sent the electron-electron or
the electron-positron inter-
action, awhile the dotted line
means a "rooted vertex. "
(b) Diagram with more than
one hole line and nonrepeated
hole-momentum label.

p. ~ is the positron chemical potential which gives
rise to an equilibrium positron concentration ti'/N.
We write

Wr = ~o+» Jn =~a —& ~

where p, is the energy one must contribute to the
system per positron added to it. We call' a ver-
tex "rooted" if it arises from the term X&(K) in tbe
Hamiltonian. Let" S(q, K, y„) be the Fourier coef-
ficient for the sum of all proper self-energy inser-
tions to a positron line with momentum q, and let
S(q, K, y„) be the sum of all such self-energy inser-
tions which do not contain any positron-hole lines.
Clearly the difference between these two quantities
is proportional to the positron density. We find
from arguments simila, r to those of Luttinger and

Ward

s ~---~ s

FIG. 1. Positron contribution
to the grand potential is given by
the sum of all linked vacuum-to-
vacuum diagrams made up of one
closed positron loop into which is
inserted any number of proper
self-energy insertions S. Lines with
double arrows represent free-posi-
tron propagators.

where 0 is the grand thermodynamical potential.
In perturbation theory this quantity is the sum over
all linked vacuum- to-vacuum diagrams. These
may contain zero, one, two, etc. , positron loops.
Only diagrams that contain positron lines contribute
to the derivative in (ll). In the physical limit of
low positron density, only those diagrams contribute
which contain one positron loop. This loop may
have any number of self-energy insertions at-
tached to it (see Fig. 1).

The free-positron thermodynamical propagator
has the Fourier series

Go(q, t) = TZ„(z„—q') 'e'n'

where z„=(2n+1)izT+pr, n=0, +1, + 2, etc. , and

where 00 is the electron contribution to the grand
potential. The symmetry factor / is the number of
times each contraction is included when all dia-
grams with l self-energy insertions are summed
over. Note that it is S(q, K, y„) and not the complete
self-energy S(q, K, y„) which enters in (14). The
reason is that otherwise a diagram such as Fig.
2(a) would be considered both as having one proper
self™energy insertion to the positron line labeled by
q+k and as having two proper insertions to the line
labeled k. This would lead to overcounting of dia-
grams. ' The restriction to diagrams with no pos-
itron-hole lines in the self-energy insertions forces
one to omit diagrams like Fig. 2(b). The contribu-
tion of such diagrams vanishes, however, in the
limit of low positron density. From Ref. 13 we
note that it is correct to take the limit of low posi-
tron density before the other thermodynamic limits
and (14) is therefore exact. Our discussion differs
from that of Majumdar, '3 in that his prescription
to omit diagrams with more than one hole line ex-
cludes diagrams such as Fig. 2(a), where the label
of the hole line is repeated. Such diagrams give a,

nonvanishing contribution in the limit of low posi-
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tron density. ' We write

$(q, K, y„)=Z(q, y„)+ XM(q, K, y„)+O(X ), (15)

where Z is the position self-energy without any
rooted vertex, so that (14) can be differentiated
with respect to & to give

Xp

2

FIG. 4. Infinite sum in
(16} can be transformed
into an integral along the
contour marked by C.

E(K) = —Q Q G(q, ,z„}M(q,K, y„)e'~o', (16)&gn--
where

G(q, z„)=T/[z„-q'- Z(q, y„)] .
Pictorially, (16}corresponds to the sum of the
"mug" diagrams of Fig. 3.

The Fourier coefficients G(q, z„) and M(q, K, z„—p)
can be analytically' continued as functions with a,

branch point at z = p, . On the Riemannian sheet de-
fined by a cut along the real axis there are no
singularities off the axis, and for large values of
z the functions approach, respectively, z ' and a
constant. Since we have defined Z and M not to
include any hole lines, the branch cuts extend from
z = p. only in the positive direction. When the pos-
itron-phonon interaction is taken into account this
is, strictly speaking, not true, since the positron
can emit and absorb thermal phonons, which will
cause the cut to extend below z = p, . There is no
corresponding effect from the electron-positron
interaction because we have used, following the
argument below (8), T = 0 distributions for the elec-
trons. In our discussion we are primarily inter-
ested in positron momenta for which q'- T, where
T-100-400 K. In this region q'»qc, where c is
the sound velocity. Therefore, we may also neg-
lect the discontinuities of Z and M below z = p, for

+O((N /N) )'
Here we have put

e"0"= 8N'v/8NT'""v'", (20)

where v is a normalization constant to be deter-
mined by the requirement that there will be an

equilibrium density of N'/N positrons. In the non-

interacting case (4}, we have v=1. Writing

Z(q, y+ie) = &(q, y} vii'(q, y)

M(q, K, y ~is) =A(q, K, y) ~iB(q, K, y)

we find

(21)

(22)

the positron-phonon interaction. In Sec. III we
discuss assumptions 1-4 below.

AssumPtion 1. None of the quantities G, Z, or
M have any isolated poles on the real axis below
the cut in the case of a, homogeneous system.

We can now transform (16) into

1 + g (z —p, r)M(q, K, z —g}
2viN' ~ z —q'- Z(q, z —p)

(18)
where the contour C is shown in Fig. 4 and

g (z —pr) =1/[e' "r'~r+ I]
= (8PPp/8NT'~2/'~ )

e&'-»~r

E(K)=(v/T' v' ~) d'q dy e '
0

T(q, y}&(q, K, y)+[y-q'+u —~(q, y}]&(q,K, y}
[y-q'+~- ~(q, y)]'+I'(q, y}

(28}

where p, = &(0, 0). We define

(24)

b.
m*(q) = q~Z=, [q + h(q, 0) p] '

T(q y}=2 T(q y}

(25)

(26)

FIG. 3. Diagrams of the form given in Fig. 1 can be
redrawn as "mug" diagrams. (a) The "handle" is made
up of a positron-hole propagator, (b) which may contain
any number of proper self-energy insertions, none of
which contains any "rooted vertex. " The "mug" proper
is a proper self-energy insertion containing one "rooted
vertex" (a).

When expanding in terms of a dynamically
screened effective interaction one gets convergent
integrals for &(q, y) and its derivative with respect
to y, at least in low-order perturbation theory, and
there seems to be no reason for divergences in
higher order. Thy signs of the leading terms are
such as to prevent the denominators in (24) and

(25) from blowing up. '9
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I (" I" (q, y)e "/
dy

y q2 ~g~ 2+/ q y
2 (so)

The positron-phonon contributions ' to Z& and

mf and also OA(q, K, 0) have been estimated and
found negligible. For a metal such as Na it is
therefore justifiable to use estimates from elec-
tron-gas theory for all quantities in (29) and (30)
except I"(q, y).

Assumption 3. For moderate temperatures we
may put

o(q, T)=e "/ (sl)

In Sec. I1I we argue that (31) holds well when only
the electron-positron interaction is considered.
As first pointed out by Mikeska, the assumption
breaks down when the positron-phonon interaction
is included, causing a non-Boltzmann-like quasi-
positron momentum distribution. In any case we
can only have significant contributions to (30) for
small momenta q at low temperatures. In the same
sense a.s explained in the paragraph below (26), the
quantities Z~ and m& are well behaved and approach
a constant value for small q, and we can, at low
temperatures, use the q = 0 values for these quantities.

Assumption 4. For low temperatures we may

At moderately low temperatures the dominant
contribution to the y integration in (23) comes from
small values of y. It is then warranted to approxi-
mate &(q, y) by the zero- and first-order terms in
the Taylor expansion of this quantity with respect
to y. Furthermore, we will argue in Sec. III:

AssumPtion 2. For moderately low temperatures
we may approximate

A(q, K, y) = A(q, K, o), (27)

B(q, K, y) =0. (26)

This gives for (23)

E(K) = [v/(mT)s™]J d'qZ;A(q, K, 0) o(q, T), (29)

where we define the resolution (or smearing) func-
tion

approximate

A(q, K, 0)=A(0, K —q, 0). ( 32)

E(K) =z,A(o, K, o). (s5)

Substituting (35) back into (33) finally gives (10).
Since the phonon contribution to either side of (32)
is negligible, assumption 4 is quite innocent as
far as this interaction is concerned. We must,
however, take into account that (31) no longer is
valid, and when the positron-phonon interaction is
included, we obtain

E(K) = (mm* T) '/ J d'q E(K —q) o (q, T) (36)

instead of (10). This equation is a natural general-
ization of Mikeska's result.

III. VALIDITY OF ASSUMPTIONS

Assumption 1. In order to understand what is
involved, consider the positron self-energy in the
ladder (or t-matrix) approximation of Ref. 4:

16 p ~ v(k, p) t)-...-, t-,.y (&o+&')
Zq, ~= 2 2 ~ ~2 ~

Sm& r&~, g&~ o/+& P-(q+k-p) +f&-

(37)
where

t; „-;(~)= v(p, k) -Z
s&g (d -s2 q s 2+g~

(ss)
A more complete theory would have the positron

self-energy substituted self-consistently into all
internal positron lines. This gives (neglecting the
electron self -energy)

We then get

E(K) = [Zov/(m T)"']jd'q A(0, K —q, 0) e "'*'.
(33)

In Appendix A we show that

(mg )
3/2

For T=o, (30) becomes (as is shown independently
in Appendix B)

(39)

(4o)

From a practical point of view, (39) and (40) may
not be a very useful approximation since the numer-
ical problem may be too tough to handle. The equa-
tions illustrate an important point, however, name-
ly, that Dyson's equation

~(p)=t'+&(p, ~(p) —v)

16 p ~ v(k, p)tf. ;. r. ;(&+&')
smN „-&q g&q ~+km —p2 —(q+k-p) —Z(q+k-p, &-Pm +~2 —I/)

6p v(p, s) t;,;,;(&)
t;;;(&u)=, v(p, k) -Z, '- -'p" - -

m
smN ',» &u —s —(q —s) —Z(q —s, o/-s —V, )

t

will not have any discrete solutions below the con-
tinuum. Suppose that such a solution exists for a
given value of p. Because of the homogeneous na-
ture of the system such solutions must exist for a
range of p values. %'hen the corresponding self-
energy is resubstituted into (40) and (41) the con-

(41) tinuum is dragged down to the discrete level which
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K-q +

l' K-q + ——- q-p+gcwp iv f(

FIG. 5. Ladder approximation for the "mug, " i. e. , self-energy insertions with a rooted vertex. The box marked
by T represents the t matrix.

thus no longer remains discrete. The argument
also holds for M(q, K, s —t1), and in neither case
is it limited to the particular diagrams we have
considered.

We will later use the approximation (SV) to illus-
trate our argument. We will not carry out the self-
consistent program indicated by (S9) and (40), but
instead just shift the energies by the appropriate
amount to avoid energy gaps. This was done in (SV)
and will be done without further comment in what
follows.

%'e have discussed assumption j. in some detail
because one finds in the literature approximation
procedures which lead to isolated poles in the t
matrix. These have incorrectly been attributed to
positroniumlike bound states. This need not mean
that one cannot, in the low-electron-density limit,
work with Rpproxlmatlons ' wh1ch expllcltly 1n-
troduce "bound states, " as long as they are not
taken too seriously.

Note that the argument that there are no isolated
poles below the continuum need not hold for an in-
homogeneous system, e.g. , if the positron can be
trRpped Rt VRcRIlcy 8ltes ~ Ill this cRse one wouM
also expect a quite different temperature dependence
of the angular correlation.

A.ssurnPtion 2. Inorder to demonstrate the valid-
ity of (2V) we must show that A.(q, K, y) is a slowly
varying function of y over the range of y values for
which the Boltzmann factor e '~ is sizable. When
considering temperatures T & 400 'K (roughly the
~siting temperature of sodium) this means that we
are only interested in y values that are of the order
1' or less of the Fermi energy. In order to obtain
order-of-magnitude estimates of the quantities in-
volved, let us consider M( q, K, y) in the approxi-
mation of Fig. 5. The last term is quite small.
Using the effective interaction of Ref. 4, we have

estimated the term to contribute, when integrated
over K, not more than 1% of the total enhancement.
We consider it here in order to illustrate the be-
havior of contributions to the enhancement factor
which, at T=O, are continuous at the Fermi sur-
face. A high degree of cancellation must, however,
be expected among such terms. a The first four
terms in Fig. 5 canbe summedup to give

M, (q, K, y) =q(1 —
~
K-q~)

tK.s,x-;(y+ (K —q)')—'-'3
2

- »3,"&1 y+(K-q) -p —(K-p)
(42)

while the last term yields

M, (q, K, y)

q(l —
I K —q+p-kl, )tom. ;;f (y+k~)

( )
a(1,5» [y+&'-t' —(q-p+k)']

We first consider the y dependence of the real part
of (42). Anticlpat1ng the d18cu881on of a8811111pt1011
4 we will only compare A1(0, K, y) with A1(0, K, 0).
The y dependence of (42) cannot be expected to be
sensitive to the details of the potential used in cal-
culRtlng the t matl 1x Rs long Rs this only g1ves 1'18e
to reasonable electron-position correlations. We
note that Imtg; g(y +K 1) vanishes unless 1 &Z& 1
—

& y. This range is insignificant for the small
values of y- 1' considered here. In the special case
of the separable potential model of Ref. 4 we have

X,(0, K, y) = 1l(1-Ic)[1+ReI(K, y+K')]-', {44)

va [y -s' —(q —s)'+is]
b&s&1
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R I(K Ka) ~~
b —1 —2b y--K

h
b K-b-2y

m 2K b +Kb=, y

2 -y -K~ 1 -K --,'y (K2+2y)

[ I)'+ b(K'+ 2y)'"+-,' y] [1 —(R'+ 2y)'"+-,' y]

Since the derivative of (46) with respect to y is infi-
nite for K = 1, we have checked numerically the y
dependence of (44) and (45), using the parameter
values a=0. OV5V, b=8. 22, which at the sodium
electron density (P = 2. 07) gives the correct total
displaced charge and the experimental sodium an-
nihilation rate. It was found that A, (0, K, y) does
not differ from A, (Q, K, 0) by more than I/o, when

y amounts to 1% of the Fermi energy.
We have already mentioned that terms such as

(43), which are continuous functions of I K —q I, are
quite small. Their y dependence therefore repre-
sents a correction to a small correction, and cannot
be expected to be important. We therefore conclude
that the assumption (27) is valid. Just as is the
case~''with a(q, y), the phonon contribution to
A(q, K, y) must be expected to be negligible, and,
thus, inclusion of the electron-phonon interaction
cannot a@set our conclusions.

Turning to (28) we first consider terms such as
(43) which are continuous functions of I K —ql. In
the separable potential model of Ref. 4,

p a3 q(I -u) d'I
B(q, x, v)= q

—
Im) ( 1(~ H

)

q (I —lK-q+p -kl)d P
[y+0'-p2 —(q-p+k) ]

=q(I -Z) —,—IPa
7t

q(I - a) d'u

1+I(k+q, y +42)

(47)

for small q. The result in (47) depends on the vol-
ume of phase space in which the energy denominator
in (45) can vanish. The proportionality to y holds
for any potential as long as a screened effective in-
teraction, which is nonsingular for small momentum
transfers, is used.

When only the interactions with the electrons are
considered we find, in connection with the discussion
of assumption 3, that I'(q, y) is proportional to y
for small y. The dominant contribution to (23) then
comes from y values y= q'/m*(q) for which the
factor in front of B in (23) vanishes. The effect of
B2 is then of the same order of magnitude as that
of the higher derivatives with respect to y of A(q, y)
which we have ignored. When the positron-phonon
interaction is taken into account one has instead

I'(q, y)- y '~T. In this case, important contributions
to (23) come from y ~ T, q ~ T. The second term
in the numerator of (23) will still be asymptotically
small compared with the first.

The imaginary part of contributions, which are
discontinuous at (l K-q i = 1) such as (42), also will
be proportional to y for small y, but such terms
vanish unless 1 --', y & (K —ql &1. Considering that
the width associated with the resolution function (30)
is of the order 10' of the Fermi momentum, when
T Ilo of the Fermi energy the contribution from the
imaginary part of (42) must be truly insignificant.

The phonon contribution to B(q, K, y) is more
conveniently treated in connection with the following
dis cussion.

Assur. ption 3. The conclusion of our discussion
of this assumption will be in qualitative agreement
with previous results of Mikeska, but our results
are more general. The reader may find it helpful
first to study the simpler cases discussed by
Mikeska. The same kind of argument as is used
here has previously been applied by I uttinger, '
and the limits of validity should be the same, i.e. ,
our results are valid if many-body perturbation
theory gives correctly analytical properties of self-
energies near the quasiparticle energy. This has
also been implicitly assumed elsewhere in the pres-
ent paper.

We wish to study the properties of I'(q, y) for
small y. First consider the contribution from a
given "skeleton graph, " i.e. , a graph not containing
any self-energy insertions to internal lines. In this
case no two internal lines have the same energy and
momentum labels, so that zeros of energy denom-
inators correspond to simple poles. The contribu-
tion to I'(q, y) is then made up of 5-function contri-
butions from the different energy denominators.
These 6-function contributions will be proportional
to the area of the hypersurface in phase space on
which the denominators vanish. If the self-energies
are substituted back self-consistently into the inter-
nal lines of the skeleton graph the arguments of the
6 functions will, for small y, be the quasiparticle
energies and not the bare energies.

When only electron interactions are taken into
account the arguments of the 5 functions contain
contributions from the energies of the positron plus
a number of electron-hole pairs. Clearly, the
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2.0
the effect of a 5/o change in the effective mass in
both cases.

As first pointed out by Mikeska the picture
changes when the positron-phonon interaction is
taken into account. In the interesting temperature
region we have

l.5 qc «q /m* - T «Z~ (49)

KE(K)
{.5E (.5))

I.0

0.5

for typical yositron momenta q. Here c is the ve-
locity of sound. The calculation of the phonon con-
tribution to I'(q, y) involves the summation over 5-
function contributions from energy denominators
involving the positron plus a number of phonons.
The first inequality means that for y- T the phonon

energy has little effect on the area of the hypersur-
face in phase space with vanishing energy denom-
inators. This means that I'(q, y) will be propor-
tional to

J d'q 5(y —q')-A (50)

0.8 0.9 I.O

Kw
l.2

FIG. 6. Phonon effects on the thermal smearing, AD
curves are computed for T= 370'K and with (Ref. 2)
E(E) =1+0.34K +0.22K . Curve c is obtajned using (10)
and m* =1.1. The region a is delimited by curves ob-
tained in the same way, but with m* = 1.6 and 2.0. The
region b is delimited by curves obtained from (51); (30),
and (36) with &=1 using, respectively, Zp=0. 60, m*=1.1
and Zp=0. 86, m*=1.2.

one-pair contribution dominates and from (8), for
small positron momenta q and energy y, the area
of the hypersurface is determined only by the elec-
tron-pair energy. This gives

r( q, y) ~ f d'k x](1 - k) j d'p r/(p -1)5(y -p'+ k')
CC y (48)

This result is not valid in a perturbation expansion
in terms of the bare Coulomb interaction which is
singular for small momentum transfer. When an
expansion is made in terms of a more realistic dy-
namically screened interaction, this momentum re-
gion is dominated by a ylasmon pole which cannot
contribute to I'(q, y) for small y. It is easily seen,
by taking the imaginary part of (3V), that (48) also
holds in an expansion in terms of a statically
screened interaction in the t-matrix approximation.

We have estimated I'(q= 0, y) in the t-matrix ap-
proximation (3V) using the separable potential model
of Ref. 4 and the same values of the parameters as
in the discussion of assumption 2. We found
I'(q = 0, y) = 0.5 y~. We substituted both this value
and 2. Oy into (30) and found that for T ~ 400 'K the
deviation from (31) was insignificant compared to

The first inequality in (49) also indicates that it is
justifiable to consider the phonons in the high-tem-
perature limit. This gives rise to a factor of T
from the phonon-distribution functions. Factor s
involving the ratio m/M of the electron and ion
masses cancel in the leading term. To lowest order
in the electron-phonon interaction one obtains6'~4

Im D//(q —p, x)( i7/) 5(—z —pm/m*)[1+ coth(x/2T)]
x+z -y —i6

with

- 2 g &~T(~g)3/2yl/2 (51)

1m'(k, x) =~mck[5(x+ck) —5(x —ck)] . (52)

Here p is a constant, proportional to the square of
the positron-phonon interaction, and is unity when
Thomas-Fermi theory is used for the screening of
the ion-ion and positron-ion interactions. %'e use
Debye theory and assume that the positrons only
couyle to longitudinal phonons. This is justifiable
since, from (49), only phonons with low momenta
are involved.

In Fig. 6 we have plotted the function ZE(K) using
(51), (36), and (30) at T = 3VO 'K and different values
of Zo and m*. The results are compared with
curves obtained using (10) and different values of
an*. We see that for reasonable values of the pa-
rameters, I'(q, y) will be too large for (31) to be
valid.

Corrections to (51) arising from multiphonon
contributions will involve higher powers of T arising
from the phonon distribution function [1+coth(x/2T)].
As a check that such contributions are negligible
we have evaluated (51) substituting I'(q, y) self-
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FIG. 7. Contributions to ~ from the positron-phonon
interaction. Here M, is the contribution from electron-
positron interaction only. The wavy line represents a
phonon.

consistently into the positron propagator. In the
limit (49) this gives

qT, I'(p —q, y)
('Zt y) 4 P

( l l2/mg)2+ ZI2 ( )
p &kg)

(53)

(54)

(55)r = .' 7l&(m*)—"'T.
We have found that the change in the thermal
smearing, when (54), (55) was substituted instead
of (51) into (36) and (30), would not be visible in
Fig. 6. The electron-positron interaction affects
the parameters Zo, 7l, and m*. From (48) we can,
however, neglect the contribution to I'(g, y) from
energy denominators involving electron-hole pairs.

We next turn to the phonon contribution to
B(g, K, y), the imaginary part of M(g, K, y). Be-
cause of the order-of-magnitude difference between
(48) and (51) we need only to consider 5-function
contributions from energy denominators involving
yositrons and phonons. Consider first the diagram
in Fig. V(a). It gives

M7& &(g K, y)

7i g ImDn( Q —
pq x)

(27f) X+ 8 —y —26

xlm ' a'
~ . )2 [I+coth(x/2T)] . (56)

M(p, K, z)

Here M, is the contribution to I from the electron-
positron interaction alone and from (49), (51), (52),
and (56)

B7( )( tI, K, y)= ——A( tI, K, y) ~, 0 I'( q, y), (57)

where A is the real part of M, .
, From the discussion of Appendix A we note that

affixing a phonon line to a positron line is, in the

where k~ is the Debye momentum. For small values
of T, y, and q, (53) has the solution

I'(i, y)=r(y+l r'),

limit of low phonon energy and momentum, equiva-
lent to differentiation of M(q, K, y) with respect to
y. We therefore expect the diagram in Fig. 7(b) to
give a contribution similar to (5V). From (23) we
see that the effect of neglecting the term (5V) is es-
sentially the same as neglecting the y dependence of
A(q, K, y) for small values of y. This was justified
in connection with the discussion of assumption 2.
We therefore conclude that the approximation in-
volved in (28) is reasonable and phonons will thus
affect the positron thermal motion only through
Eq. (51).

Assumption 4. The approximation involved in (32)
is worst for terms which are discontinuous at I K
-pl= 1. Since the discontinuities of A(j, K, y) and
A(0, K —g, y) coincide, the validity of the assump-
tion depends on the effect of the difference between
the energy denominators in these two cases. This
difference involves terms proportional to q2 and

q
~ K. The former can be ignored by arguments

similar to the discussion of assumption 2. Unfor-
tunately, the q ~ K terms do not average to zero in
the angular integrations because of Fermi-surface
restrictions. We therefore felt that a numerical
check of (32) was needed. As before, we used the
separable potential model of Ref. 4 and the same
values of the parameters. Without making use of
(32) we would have

E(K) o de 7l(I -p)o'((p —K), T)
(58)(~T)'" [I+I(K, p')]'

where f(K, p ) can be obtained from (46). If (32) is
valid, then (56) should be approximately eclual to

&Ou ds o(p-K, T )n(I-P)
(n T)"' [I+f(p, P')]2

We found that (58) gives rise to a slightly smaller
enhancement factor near the Fermi momentum than
(59) does. At T= 600 'K and cr( j, T) =e ' ~~'8 the
effect would be indistinguishable from that of a
0.5% reduction in the Fermi momentum. The ef-
fect is even smaller at low temperatures, and con-
siderably smaller than that of the thermal expansion
which actually takes place. Since the numerical
method of Stewart and co-workers compensates for
thermal expansion, we feel that the approximation
involved in assumption 4 does not affect the inter-
pretation of the experiments.

IV. DISCUSSION

We have shown that when the electron-positron,
electron-electron, and positron-yhonon interactions
are taken into account, the thermal smearing of the
angular correlation is, at moderate temyeratures,
given by (51), (36), and (30). The computation of
the angular correlation at a given temperature then
requires the knowledge of the zero-temperature
angular correlation E(K), the quasipositron renor-
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APPENDIX A: DETERMINATION OF v

We can determine the mean positron number N~

in the ensemble by adding a term

~~ ~.-b'b. (Al)

to the Hamiltonian and evaluating

N'=
BX1 F10

(A2dz ~2'; z —q —Z(q, z —p, )

Here M1 is the sum of all self-energy insertions
containing a "rooted vertex" (A1). One contribution
to M1 contains nothing but the rooted vertex, in
which case we have

(AS)

The remaining contributions to M1 all have a,

rooted vertex attached to a positron line in a proper
self-energy insertion. The propagator to which the
rooted vertex is attached is then modified according
to

malization constant Zo, the positron effective mass
m*, and the electron-phonon coupling strength g.

In Fig. 6 we compare theoretical curves obtained
for T= 370'K using a phenomenological zero-tem-
perature angular correlation E(K). The region
marked a represents the thermal smearing which
is compatible with an "apparent" effective mass of
1.8 + 0.2, which is the quoted experimental value
for Na. From previous calculations ' one would
expect the effective mass, including the band con-
tribution, '7 to lie in the range re*=1.1-1.2 for
Na. Mikeska quotes a value Zo= 0.60 while the
calculation in Ref. 4 gives Zo = 0.86. From the
discussion of Ref. 6, the relative uncertainty in g
is probably of the same order as the uncertainty
in Zo. In the case g=1, re*=1.1, and Z0=0. 6, the
phonon effects enhance the apparent effective mass
by 15/o, while for q=1, m*=1.2, Z0=0. 86, the en-
hancement is roughly 80/o. With the latter choice
of parameters the discrepancy between theory and

experiment is sufficiently small that one hesitates
to make categorical statements about their incom-
patibility. For this reason we feel it would be
highly desirable if the experimental uncertainty
could be reduced by new experiments. On the theo-
retical side it should be possible to determine the
parameter q and the factor Zo(m*)3'~ more accurate-
ly and calculations should be made for all the alkali
metals.

1 1 — B 1
z.-q2 (z-q )~ sz z —q~

' (A4)

Summing up all the ways the rooted vertex can be
attached gives

B
M, (q, z —p)=1-—Z(g, z —p, ) . (A5)

Substituting (A5) into (A2) and grinding the expres-
sion through the same machinery as in Sec. II gives
(84). Note that because of the difference between
S and S [see the paragraph below (14)], the usual
expression for particle number

1 ~ g (z —p, r)dz
2vi; z-q'-Z(q, z —p)

(A6)

BEE(K)=-
BR,

where E is the ground-state energy. %'e have

~+I

Z(K) =-
BR.

d, ~,o.[S(o, K, y —u)]'
2vi, i f „(y—i&)'

(»)
Here S(0, K, y —y, ) is the sum of all proper self-
energy insertions (with or without a rooted vertex)
to a zero-momentum positron-hole line. Up to
terms which can be neglected in the limit of infinite
volume, no proper self-energy insertion contains
any positron-hole line. S(0, K, y —p) is therefore
analytic in the upper half of the complex y plane.
From (15), summing up and reexpanding a geomet-
rical series, using p, =Z(0, 0) and the, analyticity in
the upper half of the y plane, we get

&(K)= Z dze*"'M(0, K, ~)[ '( '2' &1 (z -ie)'

dl -1

, q (l —1)! dz' '

X $M(0, K, z) [Z(0; z) —Z(0, 0)]' ) l, 0

=z,M(o, K, o) . (Bs)

Since M(0, K, 0) is real, (B3) and (35) agree.

will not give the correct answer.

APPENDIX 8: ZERO-TEMPERATURE THEORY

In this case it is convenient to work with a 1-
positron N-electron system. The unperturbed sys-
tem then contains one zero-momentum positron in
the Fermi sea. Analogous to the previous discus-
sion we add a term &P(K) to the Hamiltonian and
evaluate
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