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the enhancement theory for the present. Our re-
sults imply that the additional mechanisms (orbital
and dipolar interactions and differential chemical
shifts) mentioned (and dismissed) by Narath and

Weaver do not play a dominant role in Korringa

enhancement. However, until this is demonstrated
by explicit calculations, we would caution against
using a Korringa enhancement calculation to test
the suitability of a particular exchange-correlation
potential.
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A quantitative explanation of the observed enhancements of the Korringa product and the
ratio of Zeeman to dipolar spin-lattice relaxation times in sodium is given. The explanation
is based on an extension of the theories of Moriya and Wolff, using for the generalized para-
magnetic susceptibility the expression given by the self-consistent theory of Singwi et al. of
spin correlations in a low-density interacting electron ga,s. The theory also predicts that the
Korringa constant in the alkali metals is almost constant —a result in agreement with experi-
ment.

I. INTRODUCTION

It is well known' that the many-body effects of
electron-electron interactions are manifested in
a direct way, at least in simple metals, via the
enhancement of the paramagnetic susceptibility
over its free-electron value through the so-called
Stoner factor (l —o.') '. It is also known that these
correlations lead to an enhancement of the Knight
shift K, and the nuclear spin-lattice relaxation
rates T, , thereby giving a value for the Korringa
constant which is again different from its free-

electron value [KzT, T = (gps/v„)~ (h/4pk~) =—K,].
The Korringa, relation is valid provided the domi-
nant hyperfine coupling between the conduction elec-
trons and the nuclear spins is of the s type. Re-
cently Narath and Weaver have made a, careful
experimental investigation of the Korringa relation
in the alkali and noble metals. These authors have
attempted to understand their data in terms of
Moriya's theory which is ba, sed on several assump-
tions: (i) the existence of a spherical Fermi sur-
face, (ii) a S-function electron-electron interac-
tion potential, and (iii) the random-phase approxi-
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mation (RPA); they find that they are unable to ex-
plain their results quantitatively. The values of the
parameter 0. they obtain are not consistent with the
values obtained directly from the susceptibility
measurements. Narath and Weaver, ' after examin-
ing several alternative explanations for the dis-
crepancy between theory and experiment, were led
to postulate a nonzero electron-electron interaction-
potential range, and hence a q-dependent n of the
form n(q)=o/(1+q /X ), where n is determined
from the paramagnetic susceptibility data and X

is an arbitrary parameter. For sodium, for which
the theory is expected to be most applicable,
Narath and Weaver find that agreement with experi-
ment is obtained for &/2k+ = l. 1. These authors
also comment in their paper that the most surpris-
ing result of their experimental study is the obser-
vation that the Korringa constant stays almost
constant (- l. 6K,) for all five alkali metals —a re-
sult which they did not anticipate and is not yet
under stood.

Another physical quantity in whose calculation
many-body electron-electron interaction effects
enter in an analogous manner is the ratio 5 of the
Zeeman spin-lattice relaxation time T, to the dipolar
spin-lattice relaxation time T2. For a noninteract-
ing electron gas, this ratio has the value -2. 01.
The observed departure of this ratio denoted by
c = 6 —2 from its value in a noninteracting electron
gas is an order of magnitude larger both in sodium
and aluminum. A very critical discussion based
on Wolff's theory' for these two metals has very
recently been given by Tunstall and Brown. ' The
basic assumptions of Wolff's theory are the same
as those of the theory of Moriya. Here we shall be
mainly concerned with sodium, since the theory
is best applicable to it. The theory of Wolff with a
5-function interaction gives for e for sodium a
value of 0.06 using a constant n = 0. 42 + 0. 03,
whereas the experimental value is 0. 12+ 0. 03,
where the value of n is fixed from an independent
spin-susceptibility measurement. In an attempt
to account for this remaining discrepancy, these
authors following Narath and Weaver' assume a
q-dependent n of the form as mentioned before. They
find that for a certain value of the parameter X

(X = 0. 42&& 2k+), it is possible to obtain a reasonable
agreement between theory and experiment as far
as the value of e is concerned, but then, unfortunate-
ly, agreement is lost between the theoretical pre-
diction and experiment for the Korringa constant.
The discrepancy to date remains unresolved.

From the foregoing discussion it is clear that
we are here faced with the problem of explaining in
a consistent manner the observed facts regarding
the spin susceptibility, the Korringa constant, and
the ratio 5 of the two relaxation times in alkali met-
als and in particular for sodium for which the the-

-=te (t) Z „"&[+„"„;,&„-, , s (- q, 0)])

=Zj-, Gg(q, t), (2)

where 8(t) is the Heaviside unit step function. The

ories of both Moriya and Wonf should be most ap-
plicable. From the analysis of Narath and Weaver'
and of Tunstall and Brown, and also from the neu-
tron inelastic scattering data on paramagnetic nick-
el of Allan and his co-workers, it seems clear that
what is chiefly lacking in the theoretical treatment
is the proper q dependence of the effective exchange
correlation potential and hence the q dependence
of o.(q). As far as the value of ct is concerned, it
is most reliably given by the measured value of
the spin susceptibility.

The purpose of this paper is to demonstrate by
explicit numerical calculations that it is possible
to account quantitatively and in a consistent manner
for the observed Korringa product and for the ob-
served & for sodium. It is somewhat unfortunate
that experimental values for e are not available for
other alkali metals. The observed constancy of
the Korringa constant in the alkali metals is also
predicted by the theory. Our explanation is based
on the theories of Moriya and Wolff, with the mod-
ification that instead of having a 6-function electron-
electron interaction, we have a q-dependent effec-
tive exchange correlation potential. The latter is
determined by the self-consistent theory of spin
correlations of Singwi et al. for a low-density in-
teracting electron gas and not in an ad hoc manner.
The relevant formulas and the results of calcula-
tions are presented in Sec. II.

II. MATHEMATICAL FORMULAS AND RESULTS

A Spin Susceptibility

The central quantity in discussing the hyperfine
effects in simple metals (alkali metals) is the
generalized spin susceptibility of an interacting
electron gas. Many equilibrium correlation func-
tions of spin densities can also be expressed' in
terms of generalized spin susceptibilities. We
shall give here a very brief discussion of the spin
susceptibility of an interacting electron gas for
the sake of completeness and introduce the relevant
formulas which we shall be using. The electron
spin-density operator is defined as

s(q) =-.'Z &f,o tt„-, (1)
k

where ~k- and Sk are, respectively, the two compo-
nent creation and annihilation operator s, and the a' s
are the Pauli spin matrices. The spin susceptibility
is determined by the linear response of an electron
gas to an infinitesimal external magnetic field.
We define the following retarded response function:

y'(q, t) = (( s'(q, t); s (- q, 0)))
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angular brackets denote the equilibrium ensemble
average with respect to the total Hamiltonian

&=&0+&i=+ ~ref)"v@rg
k, fy

1+ph Z v(q)@)-„Q)-,...6)"., g», » +„" g, » (3)
kgb k ~ fy y(

where s'(q, t) are the circular components of the spin-
density fluctuation. G~(q, &o), the Fourier trans-
form of the response function G„-(q, t), satisfies, the
following exact equation:

(~ —~)-, + (o)-„q) Gf(q» (o) = (nf» - ng, q, )

«[~;.&,a;„If,]; (-q, 0))&,

where np, = &@.„;8)-„).
In Eq. (4) the main problem in proceeding further

is to m Re a suitable approximation for the last
term. If one breaks the Green's function appearing
in the last term of Eq. (4) using the random-phase-
approximation (RPA) decoupling scheme, one ob-
tains the following integral equation:

G), (q» (u) = G)", (q» (d)+ G), (q» (o)Z v(k —k') Gf, (q, )d),

(5)

where G„.(q, v) is the free-particle Green's function.
It has been shown by Wolffm that Eq. (5) can be
solved exactly in (i) the static case and the limit
q-0, and (ii) when v(k-k')=const&&(2v). In the
latter case, the result for the paramagnetic spin
susceptibility is

Xoq &)
X(q»'»))=2g t)s

1 2- (-, )vip q~ v

where

Xo(q» '&) =+ . , 'q = 0
(d —V& + (d k+ g + g g

where g is the electron Lande factor (g= 2 for a
free electron) and )us is the Bohr magneton. In
case (i), the uniform paramagnetic spin susceptibil-
ity is given by

D(Ep)"' 1 —(Xy,/2v) ln(1+ ~/X~, )
'

(s)

where 2D(EJ, ) is the electron density of states at
the Fermi energy and X = (4/9)) )~ 3. In obtaining
Eq. (8), the Coulomb potential is screened by the
Thomas-Fermi dielectric function.

Recently Lobo, Singwi, and Tosi" have developed
a theory of paramagnetic spin susceptibility of an
interacting electron gas by suitably breaking the
higher-order Green's function such that the sus-
ceptibility becomes a functional of the difference
between the correlation functions for a pair of elec-
trons with parallel and antiparallel spins. In their

theory, the expression for X(q, )d) is the same as
that given by Eq. (6) except that v is replaced by

d
)(») = —

Cq) ( „ I&P») -»» )-')
n q" (2m)

n being the electron density. It is important to
note here that although the formal structure of I(q)
[Eq. (9)] is the same as that of G(q) of the dielec-
tric-screening theory of Singwi et al. , there is
one fundamental difference in that in the latter
[S(q) —1] of (9) is replaced by [S(q) —1], the Fourier
transform of the full pair correlation function
g(x) —1. In the theory of Lobo et al. ,

" the suscep-
tibility sum rule is violated by a factor of 2 and the
internal field I(q) decreases rapidly as a function
of q. Since this theory yields satisfactory pair
distribution functions for small values of the inter-
electronic distance, it is believed to be better for
larger values of q. In a, more recent publication,
Singwi et al. have modified their theory by intro-
ducing a screening of the Coulomb potential v(q)
appearing in Eq. (9) for the internal field with a
static self-consistent dielectric function. This
improved version of the theory gives much better
values for the uniform static spin susceptibility
and is, therefore, more trustworthy for small
values of q. In the Hubbard and modified Hubbard
approximations the internal field is given by

() 14me2
(12a)

(
1 4ve
2q +qza+q~r

(12b)

respectively. In the static and q-0 limit, the
exchange-enhanced paramagnetic susceptibility is
defined in terms of the Stoner parameter n as

X = X~/(I —o'),

where

n = lim 2I(q) X0(q, a& = 0) = 2D(E ) I(q = 0)

and

X~ = ~g tLs D(EJ, ) (14)

is the Pauli spin susceptibility of a free-electron

where.r;) ) ",-f-)-, r') „~ e)).„'d-. -, ))o)

and g(r) is the usual pair correlation function.
The pair correlation function is determined in a
self-consistent manner using the fluctuation-dissi-
pation theorem:

4
S(q) = ~ q d(o ImX(q, »d),

psg p,g
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( )
Xp (q/qF )

1 —2D(Ez)I(q) U(q/qr)

where

( )
1 1 ——,'x~ 2+@
2 2x 2 —x

The Fourier transform of Eq. (16) is given by

(16)

3

X(r) = „" P dr@sin(qrrx) X(&) .
2v (grr

0

In the absence of exchange enhancement, i.e. ,

(16)

TABLE I. Comparison of n in various theories
for three values of ~,.

Values of n from

Sum
rule Eq. (8) Eq. (12a) Eq. (12b)

Landau
Eq. (1,5),theory

gas. Also Brueckner and Sawada'2 have obtained
in the RPA from energy considerations the result

n=0. 166r, —0. 204r, (0. 225-0. 0676lnr, ) . (15)

In Table I we have given the values of a obtained
in various theories for three different values of x,.
It is interesting to note that in the theory of Singwi
et al. n almost remains constant in the entire
metallic density range. It is, of course, under-
stood that complications resulting from the non-
sphericity of the Fermi surface are ignored in the
theory. For calculations of interest, we need I(q)
for all values of q. As mentioned before, although
in the revised version of the theory of Singwi et al.
the susceptibility sum rule is improved consider-
ably, there is still some discrepancy left. In order
to rectify this discrepancy for small values of q
in I(q), we have scaled it by a constant factor, the
latter being determined to give correctly the ex-
perimental static susceptibility of sodium. Sodium
was chosen for the reason that band effects in this
metal are negligible. The same scale factor is
used for other values of r, . The scaling of I(q) was
continued till it smoothly joined the I(q) of the theory
of Lobo et al."which is believed to be reliable
for large values of q. In practice, they smoothly
join around q = qr. The values of 1(q) thus deter-
mined are plotted in Fig. 1.

Localized magnetic fields in a metal, such as
those due to a magnetic impurity, induce spin polar-
ization in the conduction electrons which can be
calculated by taking the Fourier transform of the
susceptibility function X(q, &u =0) = X(q). From Eq.
(6), replacing v by the self-consistent I(q) of Eq.
(9), we have

3.0

2.5

1.5

1.0

0.5

I

2.0
0

0
I

2.5
I I

.5 1.5

FIG. 1. Function I(q) (eV/electron) vs q/q& for
x~=2, 4, and 6.

I(q) =0, one obtains from Eq. (16) the well-known
expression

XpqJ (sin2q„r —2qrr cos2qFr)
Sv (q,r)' (19)

which is often referred to as the Rudermann-Kittel
function. In Fig. 2 the dimensionless quantity
X(r)/Xpqz is plotted as a function of r for sodium
using the I(q) of Fig. 1. For the sake of compari-
son the Rudermann-Kittel function is also plotted.
It is seen from Fig. 2 that the effect of enhancement
due to Coulomb interaction is sizable only for small
distances.

B. Korringa Constant and Nuclear Relaxation Rates

1. Korin ga Constant

The contact hyperfine interaction between the
conduction electron spin s and the nuclear spin I
is

II„=—asvgpsy„I s6(r), (20)

where y„ is the nuclear gyromagnetic ratio and r
is the position of the electron relative to the nu-
cleus. The nuclear spin-lattice relaxation rate due
to the fluctuating internal magnetic field 6X is
given by'5

T,' = —,'y„ f dt cos&uot((6Ã '(t), 6Ã (0))), (21)
2 0.22 0.231
4 0. 25 0.305
6 0. 224 0, 346

Reference 8.

0. 332
0.663
0. 995

0. 143
0.182
0. 272

0. 187 0. 235
0.236 0. 28
0. 233

"Reference 13.

where ~0 is the nuclear resonance frequency and
curly brackets denote the anticommutator. Equa-
tion (21) can be rewritten in terms of the circular
components of spin density fluctuation as
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Knight shift K, is given by

K, =J,(,D(z, )(g,) /2(1 —u) . (2V)

Finally, using Eqs. (26) and (2V), we obtain for the
Korringa constant E, the expression

E —= KTjT

.02-

x
[1 —2D(z )1(~) v(x)]'

(28)

where K,'=gs(lss/4Ilksy„ is the Korringa constant for
the free-electron gas. For the case f(q) = v, Eq.
(28) 1'educes to tllat glveI1 by Mol'lya

.Ol-

&,'=-.')"„Z, l&»l' f d'f "cos(~,f)

)& ( fs'(q, f), s (-q, 0)].), (22)

FIG. 2. Susceptibility )((r) (units of )(I qIP) vs r (in A):
curve 1, as obtained from Eq. (18); curve 2, the
Hudermann-Kittel function as defined in Eq. (19).

Numerical results obtained from Eqs. (28) and

(29) are presented in Table II for r, = 2, 4, and 6.
Notice that K, /K,' as given by Eq. (28) remains
like &, almost constant (- 1.63) over the entire
metallic density range. This feature is borne out
by experiments in the alkali series. It is worth
remembering that in the earlier attempts, where
m was treated as a constant adjustable parameter,
it was not possible to fit both the susceptibility and
the Korringa constant. The present calculation thus
demonstrates that in the calculation of the Korringa
constant, it is necessary to take the q dependence
of the effective exchange correlation potential into
account. Numerical agreement with experiment
also justifi. es a Posteriori our scaling procedure
for I(q).

~» = s IIg )Is I II»(0) I' (23)
2. Relaxation Rates

T,I= ",' Z l~, l'im)((q, ~,).
g Pg QPO

(24)

u, (0) is the amplitude of the conduction-electron
wave function at the nucleus. Using the fluctuation-
dissipation theorem, Eq. (22) can also be written
as

It was first pointed out by Hebel and Slichter~e
that the ratio of the Zeeman relaxation time T&

to the dipolar relaxation time T2 is sensitive to the
degree of correlation between electron spin den-
sities on adjacent nuclear sites. Following %'olff, '
this ratio can be written as

(3Oa)

81Ilce Ids« AT, we llave fl'onl Eq. (6) wl'tll f(q) 1'e-
placing U and using Eq. (V):

"' ' I 2D(Z, )f(q) V —-(26)

s =Q'(KII/rII
i, j

KII =@;;/tt«

' (I/r'II ), (3ob)

(3Oc)

for q & 2' and 0 otherwise. Equation (24) then
becomes

&,'=sy„'u, T D'(Z, )( iW, i'),

(26)

The angular bracket average is to be taken over the
entire Fermi surface. The expression for the

8;& is the time integral of the spin-density correla-
tion function and is given by

( (;, ) ~ („o)), (31)
weo

which again on using the fluctuation-dissipation the-
orem can be written as

IrI tgpIIs T 1 sin(qrrI;x)
2q,r„„[1—2D(Z, )f(~)V(x)]'

(32)
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TABLE II. Comparison of the experimental values of K,/K,' and e with theoretical predictions.

Eq. (29)

z,/z,'

Eq. (28) Expt

Eq. (34) Eq. (33)

I(q) of
Fig. 1

I(q) of
I(q)=P Fig. 1 I(q)= v

Expt

0.370
0.420
0.376

1.24
1.29
1.24

1.69
1.71
1 ~ 50

1.60 +0.08 0. 094 0.061 0. 054 0. 026 0. 12 +0.03"

~Reference 3. ~ Reference 17.

Using Eq. (32) in Eq. (30c), we have

p21
K]~ ——

@F&tg
4p

sin(qr r„x)
[l —2D(E )I(x)U(x)]

Jp [l —2D(E )I(x) U(x)]' (33)

However, Wolff' has argued that Eq. (32) should
be used to calculate the spin density when i+j. For
i =j, one should neglect the exchange enhancement
in Eq. (32). In this approximation, K,&

becomes

sin(q Fr„x)
2q,r„J, ' [l —2D(Z, )i(x) U(x)]' (34)

In Fig. 3 we have plotted K,&
for sodium as a

function of r;& using Eqs. (33) and (34). The corre-
sponding result for the free-electron case is also
plotted. Also, using the same equations and carry-
ing out the lattice sum in Eq. (30b) up to five neigh-
bors, we have calculated e for sodium (r, = 4). Our
results are presented in Table II.

Unfortunately, the only available value' for E in
the alkali series is for sodium. It is gratifying to
see that the calculated value for e from Eqs. (34)
and (30a) for sodium is within the experimental
error. The agreement with experiment that we
have obtained both for the Korringa constant and

e for sodium leads us to believe that our function

I(q) is a reasonable one. From a comparison of
the values of & in columns six and eight of Table
II, it is clear that the suggestion of Wolff for the
evaluation of 6« is the correct one as we should
expect on physical grounds. For a constant value
of I(q) such that n= 0.42 at r, = 4, Eq. (34) gives
for E a value of 0.061. This again emphasizes the
importance of the q dependence of I(q). The free-
electron value of E for sodium is 0.01.

Disregarding, for the moment, the fact that the
applicability of the theory in its present form to
aluminum is of somewhat doubtful validity, we have
calculated both the Korringa constant and & using
for I(q) the values as given in Fig. l for r, = 2.
Our r'esults are K, /K, = l. 69 and @=0.056, where-
as the corr esponding experimental values are

Extending the theories of Moriya' and Wolff, ' by
using the expression for the generalized paramag-
netic susceptibility of an interacting low-density
electron gas as given by the self-consistent theory
of Singwi et al. ,

' we have been able to account for
the experimentally observed enhancements of the

Korringa product and the ratio of Zeeman to dipolar
spin-lattice relaxation times in sodium. We have

also been able to give a semiquantitative explana-
tion of the observation of Narath and Weaver that

I.O

0.8

0.6

0.2

0
0 1.0 2.0 3.0 4.0

q
5,0 60 70

FIG. 3. The function K&&(~) vs q&x: curve 1, as
obtained from Eq, (34); curve 2, as obtained from
Eq. (33); curve 3, for the free-electron case.

1.26+0.08 and 0.15+0.07. If we believe in the
analysis of Tunstall and Brown, it is hard to under-
stand this discrepancy between our theory and ex-
periment.

III. CONCLUSION
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the value of the Korringa product in the alkali met-
als is almost constant. As a further test of the
theory, it would be desirable to have experimental
data for the ratio of Zeeman to dipolar spin-lattice
relaxation times in other alkali metals. Applicabil-

ity of the theory in its present form to metals for
which band effects are significant is somewhat
questionable. For such cases a crude approxima-
tion is to assume an effective band mass for the
electrons.
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The pressure dependence of the Knight shift K of Al and Nb metals was measured with a
digitally slaved signal averager. The maximum hydrostatic pressure utilized was 8000 kg/cm .
The observed value of dlnK/dlnV is —1.01+0.02 and —0.29+0. 02 for Al and Nb, respectively.
Since it is essential to know the volume dependence of the (electron-electron-enhanced) spin
susceptibility d lnx~/din V in order to analyze the observed d InK/dlnV, the theoreti'cal impli-
cation of the previously proposed methods to estimate ding~/dlnV was explored. The linearly
temperature-dependent thermal expansion at low temperature o.~ gives rise to the volume de-
pendence of electron-phonon-enhanced density of states at the Fermi surface. o., includes
only a temperature-independent part of the enhancement factor 1+A,. The pressure depen-
dence of the superconductor parameters renders the volume dependence of the density of states
clothed with a full electron-phonon interaction, which inclpdes the temperature-independent
part as well as a possible temperature-dependent part. A semiempirical scheme to deduce
the volume dependence of 1+X, the density of states for the bare electrons N(E&)p, &, and the
band-structure effective mass m* is proposed. These values are derived from the pressure
dependence of the superconducting transition temperature and 6~. The volume dependence of
g,*~ is deduced from d lnN(Eg)~s/d ln V by taking into account the effect of the electron-electron
enhancement factor. The volume dependence of the density of wave function at the Fermi sur-
face (, l g(0) I ) was deduced for Al as din( I $(0) [ )/dlnV= —2. 12. The volume dependence of
the orbital Knight shift Ko for Nb is estimated as dlnKO/dlnV= 0. 4 (or 0. 1). The possible
origin of the discrepancy between the density of states derived from o, ~ and from the pressure
dependence of the superconductor parameters is discussed. The origin of inconsistency in the
previously reported temperature dependence of K for Al is also suggested.

I. INTRODUCTION

The Knight shift K and the spin-lattice relaxation

time T, of metals are directly associated with the
properties of the electronic wave functions. The
three main contributions to K and T, are the con-


