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The theory of Moriya is extended to include electron-electron interaction potentials with a

strong momentum dependence.
electron-gas response.

This extension is based on recent theoretical studies of the
It is shown that the observed enhancement of the Korringa relation in

alkali metals can be attributed almost entirely to electron-electron interactions described by
an effective interaction potential derived from the pair-correlation function for a low-density

electron gas.

I. INTRODUCTION

In the alkali metals, the s-contact hyperfine in-
teraction is the dominant mechanism coupling nu-
clear spins with the conduction electrons. Conse-
quently, one might expect that the Knight shift X
and the spin-lattice relaxation time T; would satisfy
the well-known Korringa relation!

KZTIT =S= (ye/yn)z(ﬁ/‘lﬂkB) ’

where 7, and v, are the electronic and nuclear
gyromagnetic ratios, respectively. However, ex-
perimental values of K2T,T are typically 60% higher
than predicted by (1.1). Since (1.1) was derived

in the independent-particle approximation, this
discrepancy has traditionally been attributed to
electron-electron interactions. 3 The experimental
and theoretical situation has been reviewed in a
recent paper by Narath and Weaver, * and these
authors concluded that the data could not be ade-
quately explained by Moriya’s theory, in which
electron-electron interactions are assumed to have
zero range.

Narath and Weaver®* have given a rather complete
discussion of various possible explanations for the
remaining discrepancy between theory and experi-
ment. Of these explanations, perhaps the most
appealing (and the only one we consider explicitly
in this paper) is that a zero-range interaction po-
tential is not realistic, and should be replaced by
an effective interaction obtained from detailed
theoretical studies of electron-gas response. Ac-
tually, Narath and Weaver* did consider this pos-
sibility briefly. They introduced an effective po-
tential (in momentum space) of the form suggested

(1.1)

by Hubbard® (a screened Coulomb potential in real
space) and found for Na a screening parameter of
about 2kz. However, they concluded that the re-
sult had only qualitative significance, primarily
because they felt that approximations made in de-
riving an expression for the enhancement factor
limited the result to potentials with constant Four-
ier transforms (that is, with no momentum depen-
dence). We have concluded, on the basis of recent
studies of electron-gas response, ® that constraints
on the effective interaction potential are less re-
strictive than suggested by Narath and Weaver. *

There exist in the recent literature® various
expressions for the effective exchange-correlation
potentials which are thought to be reasonable ap-
proximations at metallic densities. We demonstrate
in this paper that when these results are used in
Moriya’s theory of Korringa enhancement, essen-
tially all of the experimentally observed enhance-
ment can be attributed to electron-electron inter-
actions. This conclusion is based on the observa-
tion that Stoner enhancement factors determined
by equating theoretical and experimental Korringa
enhancement are found to predict correctly the
observed enhancement of the susceptibility in so-
dium and lithium.

II. THEORY AND CALCULATIONS

Since the relevant theory has been clearly re-
viewed by Narath and Weaver, * we will confine
the present discussion to a summary of the results
pertinent to our calculations. We will, however,
consider in some detail the validity of two essential
approximations involved in obtaining the results
we have used, introducing in this context results
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from a recent series of papers on the dielectric
response of an electron gas. ™1°

In the presence of electron-electron interactions,
the Knight shift is enhanced relative to the indepen-
dent particle result K, by the Stoner factor (1 - a)™%;

K=K/(1-a), (2.1)

where a is related to the strength of the effective
electron-interaction potential V(q) and the density
of states at the Fermi level po(Er) by @ =V(0)py(EF).
Following the Moriya theory, *® one obtains a
similar expression for the enhanced spin-lattice
relaxation time

Ty = (T, (1 - oV @F@)]) (2.2)

The brackets () indicate that the enhancement
factor is to be averaged over all scattering momenta
g connecting states on the Fermi surface. The
function V(q) = V(4)/V(0) appearing in (2. 2) is a
normalized interaction potential. If we approxi-
mate the Fermi surface by a sphere we obtain for
F(q) the usual Lindhard function

)

2
F(n):% ( 1 +4;n" In
where n=q/kp is the scattering momentum scaled
by the Fermi momentum.

Now, if we take the Knight shift K, and the spin-
lattice relaxation time T,y computed in the inde-
pendent-particle approximation to be related by
the Korringa constant S in (1.1), then, following
Moriya, 3 we can define a Korringa enhancement
factor K(a) by the relation

KT, T=SK(a)™*.

2+7m
2-1

(2.3)

(2.4)

By combining (2.1) and (2. 2) we obtain an explicit
expression for K(a):

—-a)2 (2 —
x@)-952 [*annli-aTmrmr, s
0

where we have expressed the average over a
spherical Fermi surface explicitly.

The approximations required in the derivation
of (2.5) are discussed by Narath and Weaver. 4
We concentrate here on two fundamental assump-
tions which have been shown to be less restrictive®
than had been thought previously, particularly in
the case of free-electron-like simple metals. The
first of these is the assumption that exchange and
correlation between conduction electrons can be
described by an effective potential V(§) depending
only on the momentum § transferred during the
interaction. Such a local function V(§) obviously
cannot give an exact description of the exchange-
correlation potential, but it has been demonstrated
in recent work™ ° that such an approximation has
reasonable justification at metallic densities.
Furthermore, model potential theories of metallic
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properties based on such an approximation for the
exchange-correlation potential have been found to
give excellent agreement with experiment. " We
should emphasize that this success in calculating
properties such as phonon spectra does not alone
constitute a rigorous justification of the g-depen-
dent potential approximation. Furthermore, the
theoretical developments we have cited, "~° while
based on plausible assumptions, are difficult to
defend rigorously. The theoretical response func-
tions, though asymptotically correct in both long-
and short-wavelength limits, 8:13 are still uncertain
in the intermediate wave-number region around
q = 2k which is most critical for calculations of
metallic properties.

The second, and related, assumption is that the
susceptibility for an interacting electron gas can
be written in the form

X@w)
X@ w) = 1-V(g)X(@, »)

Clearly, if V(g) is taken to be frequency dependent,
(2. 6) is a canonical form which requires no approx-
imation whatever and in essence simply defines
V(g, w). The work of Singwi® and co-workers in-
dicates that (2. 6) follows directly from a natural
extension of random-phase approximation (RPA),
and that V(g) is given by

Vig)=(41/4*)Glq) , 2.7

where G(g) is a function coupled to the pair-corre-
lation function g(7) by a simple set of transform
relations. !° A result similar to (2. 6) is obtained
from the work of Kleinman” and of Langreth® [there
is a subtle formal difference’® between the ap-
proach of these two authors and that of Singwi et
al., which, for the present purpose, we can take
into account by the selection of an appropriate
G(g) in'® (2.7)]. The essential point to note here
is that the recent derivations of (2. 6) do not con-
fine the result to situations in which V(g) is a con-
stant. Hence, the constraint on V(g) imposed in
the Narath-Weaver work can be lifted with some
confidence. In particular, we know that an electron-
electron dielectric function obtained directly from
X(q, w) of the form given in (2. 6) leads to screened-
model potentials which appear to provide accurate
descriptions of properties such as phonon spectra
for both monovalent and polyvalent simple met-
als. 'v'2 There is good reason to expect that the
same approach can be applied successfully in the
present problem.

It is worth inserting a further word of caution
at this point. First, we emphasize again that
while (2. 6) has the correct leading behavior at
both long- and short-wavelength limits, it is def-
initely not an exact result at intermediate wave-
lengths. Second, we remark that we are dealing

(2.6)
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with a result obtained from density-response
theory, in which the susceptibility function x(@, w)
is related to dielectric function by

€(q, w)=1-@1/¢Hxq, ) .

In principle, the magnetic-susceptibility function
should have precisely the same functional form
as (2. 6) with a change only in the interaction
strength. Note that in Eq. (2. 5) the strength of
potential has been extracted explicitly in the
Stoner parameter a.

The function V(n) appearing in (2. 5) describes
only the wave-number dependence of the potential.
If we adopt the notation of (2.7) we can write V(1)

as

(2. 8)

Vin)= G)/v? (2.9)
where v is defined as ¥ =1im[G(n)/7*] as 1= 0, so
that V(0)=1. Note that G(n) is also an implicit
function of y. An explicit expression for v, ap-
propriate for the dielectric response analysis,

can be derived in terms of the exchange-correla-
tion energy E, (py) of an electron gas with density

10,11,
Py

kL d?
Y=Une? Aot [P0 E.e(py)] - (2.10)
If we use the expression for E,(p,) given by Noz-

idres and Pines, *® we obtain

y=1+0.0123(agr,), %=(4/0mY%.  (2.11)
The first and dominant term in this expression
arises from exchange interactions, the second
from correlations. Recall that for alkali metals,
7s ranges between 3 and 6.

We emphasize again that (2. 10) is valid in prin-
ciple only for the compressibility «. If we apply
the compressibility sum rule to (2. 8) we obtain

LI ( 1 e 7) "
Kg T

(2.12)

where Ky is the free-electron compressibility. Com-
paring this result to the Fermi-liquid theory ex-
pression!®

KM a4y, (2.13)
Kgp m

which contains only the phonon-enchanced effective
mass and the Landau parameter A, we see that if
y= i then A= - ay7y/m, which is approximately
correct. * Now the long-wavelength limit of the
susceptibility is related to the Landau parameter
B, by an expression similar to (2. 13):

*
X =—W:n—(1 +By)t,

Xr
If we write X/Xr in the form of (2.12), withy re-

(2.14)
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o

placed by v/,

-1
e (a-t)” @19
we find that
m
y’ ='>’+401:07 vy (Ao-B) . (2.16)
S

It is ¥’ which determines the strength of the po-
tential appropriate to the susceptibility. We have
in effect written a=~ (4ay /)y’ in Eq. (2.5).

For the purpose of the present calculation, we
have introduced the following ansatz. We have used
two forms of G(n), both derived from independent
studies of electron-gas response, and both depend-
ing implicitly on the parameter y. We then regard
(2.9) as a parametrized function specifying the
wave-number dependence of the interaction, and
we use the value y [Eq. (2.11)] which is appropriate
to the actual derivation of the G(7) functions. In
effect, this ansatz assumes that the wave-number
dependence of V(1) is a general property of the in-
teracting system and the strength of the potential
alone is determined by the details of the response
being considered. As a test that this approximation
does not lead to serious inconsistency we later
compare the ¥’ obtained theoretically from (2. 16)
with that obtained from y’= ar/4ay, where we use
the a deduced by comparing the theoretical and
experimental K(a).

The first of the effective potentials we have con-
sidered is a result due to Kleinman’ which can be
written as

Vo =:[1+1/1+y73)] .

The second is a result derived by Shaw'® using a
pair-correlation function valid for a low-density
electron gas (a physical example of such a system
is an alkali metal). The function G(n) is given in
terms of the Dawson integral D(x), a standard tab-
ulated function, **!7 and the resulting V(n) is

(2.17)

-%@ D(é%)], B2 =(6v)1. (2.18)
These two functions V(1) are compared with V=1
in Fig. 1. At very short wavelengths (7= ),
Vo(n) =%, whereas V (1)~ 0. This difference arises
from the fact that Kleinman’ and Langreth® have
included self-energies in the noninteracting sus-
ceptibility Xo(d, w) which enters Eq. (2. 6). 131
What is most important for the present work is the
behavior of V(1) in the range 0<7< 2. It is clear
from Fig. 1 that both Egs. (2.17) and (2. 18) deviate
appreciably from V=1 over this momentum range.
The evaluation of K(a) requires only a simple
numerical integration, the accuracy of which we
can test by comparing the results for V=1 with
those given by Narath and Weaver. * We carry out

T/S(n)=7—1n—2 [
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FIG. 1. Comparison of three models of the normal-
ized effective interaction potential V(1) as a function
of 7.

a separate calculation for each of the alkali metals,
using Eq. (2.11) to determine the appropriate y.

III. RESULTS AND DISCUSSION

We consider first the case of exchange enhance-
ment alone (y =%), and compare the K(a) obtained
using the two effective potentials (2.17) and (2.18)
with the zero-range results of Narath and Weaver.
Numerical values for K(a) are given in Table I. It
is clear from a plot of these results (Fig. 2) that
use of a realistic exchange potential leads to a
substantial reduction in K(a), particularly in the
intermediate @ range. An increase in y tends to
further reduce K(a) at a given «, though reduction
is not dramatic as illustrated in Fig. 3.

The next step is to determine by interpolation
the value of a for which the theoretical and exper-
imental enhancement factors K(a) agree. We list
in Table II the results obtained using the two ex-
pressions for the interaction potential, V,(n) and
?5(77), and compare them to the Narath-Weaver re-

4

TABLE I, Comparison of K(a) obtained with three
different effective potentials. V = -1 is the case treated
by Narath and Weaver (Ref. 4). V, and V, are the
Kleinman and Shaw expressions discussed in the text
[Eqs. (2.17) and (2.18)]. These results are for ex-
change enhancement only, ¥=%.

a K(o)

V=1 V=V, V=V,
0.0 1.000 1.000 1.000
0.1 0.9566 0.9339 0.9231
0.2 0.9078 0.8622 0.8415
0.3 0.8523 0.7843 0.7550
0.4 0.7886 0.6993 0.6632
0.5 0.7147 0.6063 0.5657
0.6 0.6277 0.5043 0.4621
0.7 0.5234 0.3922 0.3525
0.8 0.3950 0.2692 0.2370
0.9 0.2307 0.1357 0.1171
1.0 0.0000 0.0000 0.0000
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FIG. 2. Korringa enhancement factor K(a) as a func-
tion of @ computed using the three interaction potentials
discussed in the text.

sults. Typically, the new values of o obtained
using the Shaw potential (for example) are smaller
by approximately 30%.

As a check on the suitability of our choice of v,
we compute the parameter ' defined in Eq. (2.16)
using theoretical Landau parameters given by
Rice. !® There is some uncertainty in the values of
A, Bg, and m*/m, and this in turn leads to some
variation in the computed y’. In Table III we give
two sets of parameters for Na and the resulting ¥’.
For comparison we compute ¥’ from the value of
a® given in Table II using the approximate result
that a=(4ag/7)y’. The value we obtain lies mid-
way between the two theoretical results. We make
a similar comparison for K and find a slightly
greater discrepancy than for Na. However, the
Landau parameters we have used are rather un-
certain for various reasons discussed by Rice,

0.70 , ; .

0,66

0.64
K(Q)

082 - EFFECTIVE POTENTIALS

SHAW
080  ——— KiLEINMAN
0.58 | 1 Il 1
025 0.30 0.35 0.40 0.45 0.50

FIG. 3. Variation of K(a) as a function of the param-
eter ¥ for @ =0.4. Results for the Kleinman and Shaw
interaction potentials are given.
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and consequently we regard the agreement as satis-
factory. The conclusion we draw from the results
of Table III is that the use of a v appropriate to
density-response theory to describe the g depen-
dence of the potential is a reasonable procedure and
leads to susceptibility parameters v’ which are
substantially in agreement with theoretical values.

To evaluate the internal self-consistency of our
results, we compare the values of @ given in
Table II with the Stoner parameters obtained in-
dependently from electronic susceptibility mea-
surements. As a specific example, we consider
sodium metal. The value of a determined by Nar-
ath and Weaver? from susceptibility data and
Ham’s® effective mass is o =0.42+0.03. We plot
in Fig. 4 the theoretical K(a) over this range of
o for the three models we have been considering,
and on the same plot we indicate the experimental
K(a) for sodium. The intersection of experimental
and theoretical enhancement factors occurs well
within the specified range of a for the Shaw model
but not for either of the other two.

A similar approach could be used for lithium
metal, for which susceptibility data are also avail-
able. However, there are two complicating factors:
(i) The effective mass for lithium is less certain
than it is for sodium and (ii) there is a substantial
p core-polarization contribution to the lithium
Knight shift. 20 It is therefore tempting to turn the
argument around and use the a determined from a
theoretical prediction of the Korringa enhancement
in lithium to estimate the band effective mass. The
result we obtain using the susceptibility data for
lithium is m* =1.52+0.07, a slightly smaller value
than the m* =1. 66 calculated by Ham. '°* However,
this calculation of m* may be somewhat misleading
since we have yet to take account of p-state con-
tirbutions. Gaspari et al.2® have calculated the p
core-polarization contribution to the Knight shift,
and they obtain a 23% reduction from the s-state
contribution. Using the Shaw model to calculate
K(a), we find that this reduction corresponds to a
60% decrease in @ and consequently a decrease
in the effective mass to m* =0. 86. Since various

TABLE II. Values of a obtained by equating the ex-
perimental enhancement factor taken from the work of
Narath and Weaver (NW) with theoretical calculations
of K(a) using Kleinman (K) and Shaw (S) interaction
potentials. The new values are compared to the V=1
results of NW,

Metal y K(@) gt oV o¥ oS
Li 0.271 0.637 0.59 0.462 0.420
Na 0.275 0.625 0.60 0.474 0.431
K 0.281 0.614 0.61 0.484 0.440
Rb 0.283 0.617 0.61 0.479 0.436
Cs 0.286 0.578 0.65 0.519 0.474
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TABLE III. Comparison of the parameter ¥’ com-
puted from (2.16) and the corresponding value computed
from the results of Table II assuming ¥’ =raS/4a .
The Landau parameters and effective masses used in
the theoretical calculation are taken from Rice (Ref. 18),

Metal A, B, m*/m vy maS/dagr,
-0.62 —0.14 1,26 0.131
Na  _0.45 —0.17  1.19 0.186  0-163
K -0.58 —0.24 1.11 0.188  0.135

independent calculations'®?! have shown that the
Fermi-level density of states in lithium is consid-
erably greater than the corresponding free-electron
density of states, we conclude that this m* is un-
realistic. This conclusion is further supported by
Hodgson’ s> measurement of the optical mass for
lithium, m*=1.57.

It seems clear that the difficulty here cannot be
with the exchange-correlation calculation. If we
take the value a=0. 365 obtained from Ham’s mass
and the measured susceptibility and compute the
enhancement factor K(a)=(1 - @)® which is applicable
to the extreme limiting case of an effective elec-
tron-electron interaction with infinite range [i.e.,
Vig)=Vbd(g)], we obtain K(a)=0.403. This value of
K(a), which is effectively a theoretical minimum,
still exceeds the value K(a)=0. 376 obtained by
reducing the experimental K(a) by 41% as suggested
by the results of Gaspari et al.?®

There remains the possibility that the calculation
of p core-polarization effects may be inaccurate.

It is difficult to assess from the analysis given by
Gaspari et al. 20 how sensitive their numerical
result is to variations in the wave functions or to
terms which were neglected when these wave func-
tions were expanded in powers of the Fermi mo-

080 T T l |
—
F — 4
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FIG. 4. K(a) for Na for a in the range determined
by susceptibility measurements (Ref. 4). Results for
three interaction potentials are shown, and the experi-
mental enhancement factor (Ref. 4) is indicated explicitly.
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TABLE IV. Measured susceptibility for the alkali metals in units of the free-electron susceptibility. The values of
a corresponding to each X/Xr are computed using the procedure of Narath and Weaver (Ref. 4), and an effective mass

calculated by Ham (Ref, 19).

Alloy Knight shifts

Metal Effective Direct Spin Wave
mass?® X/Xp o X/Xp a X/XF a
Li 1.66 2.61+0.12° 0.365
Na 1.00 1.72+0.08° 0.420 1.51+0,06¢ 0.337 1.73° 0.422
K 1.09 1.64+0,059 0.335 1,58! 0.310
Rb 1.21 1.71+£0.58 0.29 1.55% 0.219
Cs 1.76 2.05+0,58 0.14 h

*Reference 19.

PR. T. Schumacher and C. P. Slichter, Phys. Rev. 101, 58 (1956).
°R. T. Schumacher and W. E. Vehse, J. Phys. Chem. Solids 24, 297 (1963).
ds, Schultz and G. Dunifer, Phys. Rev. Letters 18, 283 (1967); Phys. Rev. B (to be published).

*Reference value taken from c.

Deviation is due to decreased density of the liquid.

3. A. Kaeck, Phys. Rev. 175, 897 (1968); J. P, Perdew and J. W. Wilkins, Solid State Commun. 8, 2041 (1970).
€These numbers are very crude and should be regarded only as estimates. The value By=—0.3x0.15 [G. Dunifer

(private communication)] was used in both cases.
Am, Phys. Soc. 12, 415 (1967)].

The Azbel-Kaner masses used are from C. C. Grimes ef al. [Bull.

"Kaeck (Ref. f) found x/Xr to be the same for Rb and Cs. If we then use X/Xp=1.55 and m* =1.76, we obtain a nega-

tive a.

mentum (& =0.598a.u. for lithium). It would be

of interest to recompute the p core-polarization
contributions to K(a) using wave functions obtained
from Ham’s'® band calculation. It is interesting to
note that a 5% increase in the Knight shift due to

p core-polarization is required to obtain consis-
tency between Knight-shift and susceptibility mea-
surements if we assume that the exchange-corre-
lation enhancement is given correctly by the present
theory.

There exist in the literature values for the sus-
ceptibilities of potassium, rubidium, and cesium
obtained in various indirect ways. We list in Table
IV the results which are available to us at the
present time. Direct susceptibility measurements
have been made only on lithium and sodium. We
feel that these results are quite reliable and have
made use of them in the preceding discussion. The
spin-wave results are obtained by fitting the ex-
citation spectrum to a theoretical dispersion re-
lation, !¢ thereby obtaining By The susceptibility
is then computed from (2. 14) using measured
cyclotron resonance or specific-heat masses. It
is worth emphasizing that the susceptibility is ob-
tained rather indirectly and depends on theoretical
interpretation of spin-wave data. In the case of the
results based on liquid alloy Knight shifts, the sus-
ceptibilities are inferred by normalizing to the
direct susceptibility measurement for pure sodium.
The reliability of this method, which depends on
calculated contact densities, is somewhat uncertain.
There is a rather obvious test of the method which
seems not to have been attempted and that is to
measure the Knight shifts of lithium-based alloys
in order to see if the direct susceptibility mea-
surement for pure lithium can be verified by ex-

trapolation of the Li-alloy results.

Several features of Table IV deserve further
comment. One is the discrepancy between direct
and spin-wave determinations of the susceptibility
for sodium. While our calculations are in rather
good agreement with the direct measurement, they
agree poorly with the spin-wave result. Note also
that the spin-wave result for potassium exceeds
that for sodium, whereas the opposite trend is in-
dicated by the liquid-alloy results. The enhance-
ment factors a which we obtain from the various
indirect measurements are substantially below
those suggested in Table II. In fact, they imply
that the effective exchange-correlation potential is
approaching the limiting case of infinite range.
Part of the difficulty may be due to the selection
of effective mass, or to the exclusion of core-polar-
ization effects. However, one thing seems clear,
namely, that direct susceptibility measurements
for potassium, rubidium, and cesium are essential
before a complete test of our model can be made.

Though the situation is still somewhat unclear
for lithium, due to uncertainty about the magnitude
(and sign) of core-polarization contributions, we
can conclude from the sodium results that if a
realistic electron-electron interaction potential is
used in computing the Korringa enhancement factor
K(a), one can explain essentially the entire enhance-
ment which is observed experimentally. This con-
clusion is based on the internal consistency be-
tween Korringa and susceptibility enhancement
factors which we obtain for sodium. If we assume
small core-polarization contributions in lithium,

a similar internal consistency is achieved. In our
opinion, the uncertainty of the experimental data
for the other alkalis rules out further checks on
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the enhancement theory for the present. Our re-
sults imply that the additional mechanisms (orbital
and dipolar interactions and differential chemical
shifts) mentioned (and dismissed) by Narath and
Weaver? do not play a dominant role in Korringa

enhancement. However, until this is demonstrated
by explicit calculations, we would caution against
using a Korringa enhancement calculation to test
the suitability of a particular exchange-correlation
potential.

17, Korringa, Physica 16, 601 (1950). See also C. P.
Slichter, Principles of Magnetic Resonance (Harper and
Row, New York, 1963), Sec. 5.3.
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A quantitative explanation of the observed enhancements of the Korringa product and the
ratio of Zeeman to dipolar spin-lattice relaxation times in sodium is given. The explanation
is based on an extension of the theories of Moriya and Wolff, using for the generalized para-
magnetic susceptibility the expression given by the self-consistent theory of Singwi et al. of
spin correlations in a low-density interacting electron gas. The theory also predicts that the
Korringa constant in the alkali metals is almost constant — a result in agreement with experi-

ment.

I. INTRODUCTION

It is well known® that the many-body effects of
electron-electron interactions are manifested in
a direct way, at least in simple metals, via the
enhancement of the paramagnetic susceptibility
over its free-electron value through the so-called
Stoner factor (1 — @)™!, It is also known that these
correlations lead to an enhancement of the Knight
shift K and the nuclear spin-lattice relaxation
rates T;!, thereby giving a value for the Korringa
constant? which is again different from its free-

electron value [K37T,T =(gug/v,)? (7/4nky)=K2).

The Korringa relation is valid provided the domi-
nant hyperfine coupling between the conduction elec-
trons and the nuclear spins is of the s type. Re-
cently Narath and Weaver® have made a careful
experimental investigation of the Korringa relation
in the alkali and noble metals. These authors have
attempted to understand their data in terms of
Moriya’s ’cheory4 which is based on several assump-
tions: (i) the existence of a spherical Fermi sur-
face, (ii) a §-function electron-electron interac-
tion potential, and (iii) the random-phase approxi-



