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A Monte Carlo computer program for following the trajectories of high~energy ions in a lat-
tice has been used to study depth dependence, half-angles, and minimum yields in channeling.
The program uses the Thomas-Fermi interaction between ions and lattice atoms and gives the
atoms’ independent thermal displacements appropriate to the temperature of the lattice. The
depth dependence of the nuclear interaction probability near the surface has been calculated
and shown to be of importance in understanding other phenomena as well as having an intrinsic
interest. Extensive calculations to explore the temperature and energy dependences of half-
angles and minimum yields were done, and analytical formulas are given that summarize the
computer results. The half-angle formulas give generally improved agreement with experi-
ment and resolve certain discrepancies noted by Picraux, Davies, Eriksson, Johansson, and
Mayer between their measurements and earlier theories. Minimum yields were calculated for
both single- and double-alignment configurations. The results reveal an energy dependence as
well as giving a better description of the temperature dependence and improved agreement with
experiment. A relationship is given between the minimum yield and the yield from the surface.
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I. INTRODUCTION

During the past several years much research has
been devoted to the understanding and application
of channeling and blocking. This work has been
summarized in several reviews'™ and conference
proceedings. *® Two frequently measured aspects
of these phenomena have been critical angles and
minimum yields. Experimental results” have gen-
erally agreed rather well with predictions made by
Lindhard® for critical angles but rather poorly with
his predictions for minimum yields. Recently,
Picraux et al.® have observed for materials of dia-
mond structure deviations from Lindhard’s results
for critical angles even after including modifications
to his results given by Andersen!? for the effects of
thermal vibrations. Part of these deviations has
been accounted for by an extension of Lindhard’s
treatment made by Picraux and Andersen.!* The
theory developed in the present paper on critical
angles is able to account for the results of Picraux
et al. as well as other reported results. Minimum-
yield results are also presented here for double as
well as single-alignment configurations; they give
an improved description of the temperature depen-
dence and the first presentation of what energy de-
pendence should be expected.

In the attempt to interpret the increasing number
of experimental results that are available, it is
necessary to analyze the implications of models of
channeling in more detail and to consider more
elaborate models. As the complexity of a set of

calculations increases, the difficulties of analytical |,

methods tend to rise more sharply than those of
numerical methods. In addition, the repetitive na-
ture of collisions in a solid and the random nature
of thermal displacements are features of a calcula-
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tion that can be handled very conveniently by a high-
speed computer. Accordingly, an extensive series
of Monte Carlo calculations has been undertaken,
and the results, to be given below, illustrate the
power of such techniques in the theory of channeling.

The first results presented are some on depth
dependence, since the other calculations are in-
fluenced by them. Then the main results of the
paper, based on Monte Carlo calculations of the
temperature and energy dependences of axial and
planar critical angles and minimum yields, are
presented. Several formulas are also given which
have been fitted to the Monte Carlo results and ex-
tend their usefulness by making analytical expres-
sions available.

1I. DESCRIPTION OF MONTE CARLO CALCULATIONS

Most of the results given below have been pro-

- duced by a computer program for following trajec-

tories of ions through a lattice. The main features
of this program are as follows:

(i) Calculations may be done for elemental mate-
rials that have the body-centered cubic, face-cen-
tered cubic, and diamond structures. The program
is written to give maximum efficiency for directions
near the most open axial direction in a lattice.
From the many possible combinations of beam and
target materials and beam energies, certain ones
were selected for extensive calculations because
they were early or frequent experimental subjects
or because of some interesting feature.

(ii) The motion of the ions is treated classically.
Such a treatment was examined by Lindhard'? and
found to be valid for protons and heavier particles.

(iii) For channeling calculations, the starting
points of trajectories are generally selected at
random over the surface of the crystal by means of
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a random-number generator but may be selected in
other ways for special purposes. Random numbers
may also be used to simulate the divergence of the
beam and the mosaic spread of the target; Gaussian
distributions have been used for these purposes, but
other forms could easily be substituted if desired.
The treatment of mosaic spread is applicable to
thin-film crystals having large enough mosaic
blocks that most ions pass through the crystal with-
in the same mosaic block they enter at the incident
surface.

(iv) For blocking calculations, the trajectories
start from the position of a lattice atom, either at
rest or at a position determined by thermal vibra-
tion. It would also be possible to start them from
an interstitial site if desired. To determine the
intensity of emergent particles in a given direction,
it is necessary to start a large number of trajec-
tories over a rather large solid angle surrounding
that direction. This makes the program inefficient
for most blocking calculations.

(v) Thermal vibrations may be simulated by giving
each lattice atom a random displacement with the
coordinates x, ¥, and z chosen from Gaussian dis-
tributions having the form

P(x) = (2mu3) V2 exp(-3 x%/uf) (1)
where
Uy = <x2>1/2 = <y2>1/2: <22>1/2 .

The value of #, is computed from the Debye theory
of thermal vibrations.'® Values of the Debye tem-
perature used in the calculations to be described
below were 170 °K for gold, 1* 400 °K for tungsten, !°
428 °K for aluminum, !° 543 °K for silicon, ! 290 °K
for germanium, *® and 2000 °C for diamond.!” In
order to economize on computer time, displace-
ments with the above distributions are selected by
a table look-up procedure in which the entry taken
from the table is chosen by a random-number gen-
erator. Alternatively, calculations can be done for

a static lattice.
(vi) Any desired form may be used for the inter-

action energy of the moving ion and a lattice atom.
The one used for the calculations of the present
paper was Moliére’s'® approximation to the Thomas-
Fermi function

V(’}’)= (ZlZzez/V)Z. i a{e-Bir/a , ' (2)

where Z, e is the charge of the incident nucleus,

Zjye is the charge of the target nucleus, a is the
screening length, i ranges from 1 to 3, {a;}

={0.1, 0.55, 0.35}, and {B;}={6.0, 1.2, 0.3}. The
screening length used for ions that could be expected
to be completely ionized was the Thomas-Fermi
value for the target atom only, :

a=0.885a4Z;"° , (3a)
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where a, is the Bohr radius. The value used for
ions that were only partially ionized was one sug-
gested by Firsov, '°

a=0.885a,(Z1%+2}/%)?° ,

Firsov set down Eq. (3b) to apply to interactions
between neutral atoms. Applying it, as done here,
to an ion-atom interaction may be expected to give
a value for the screening length that is somewhat
small. However, (3b) should be better than (3a) for
low degrees of ionization.

(vii) It is assumed that the ion has only one im-
portant interaction at a time as it moves through the
lattice. The deflection at each interaction is com-
puted by the impulse approximation. Following the
methods given by Lehmann and Leibfried, ?® one may
conclude that this approximation is valid if the en-
ergy E of the ion satisfies

E2Z.Z,X300 eV . (4)

(3p)

Appreciable amounts of computer time are saved
by calculating a table of deflection as a function of
impact parameter from the impulse approximation
and looking up the value for each collision.

(viii) Energy losses by the ions are neglected.
This omission is generally expected to have little
effect unless one is looking specifically at energy
losses or unless the ions lose a large fraction of
their incident energy during passage through the
crystal. In many of the calculations the ion energy
used was the average value along the path rather
than the incident value.

(ix) It is possible to compute a number of output
quantities of interest. The most useful of these is
the probability that an ion may have a sufficiently
close nuclear encounter to cause an event such as
a nuclear reaction, a large angle scattering of the
ion, or a high-energy recoil of a lattice atom.
These processes can be put on an equal footing if*
each is expressed as a normalized nuclear encounter
probability, defined as the ratio of the cumulative
probability computed in the course of a series of
trajectories to the cumulative probability for an
equal number of randomly oriented trajectories
through an equal distance within the lattice. The
motion of an ion past many different lattice sites is
equivalent to the motion of many ions past a single
site, each passage making a 6-function contribution
to the flux of particles. The nuclear encounter prob-
ability is the cross section for the process times
the integral of the product of the ion flux and the
probability of a lattice atom being at the point of
passage. For a frame of reference a major row
direction near the beam direction is used. Letx
and vy be the coordinates perpendicular to this row,
d the spacing along the row, and ¥ the angle of the
beam direction from the row. The area in the x-y
plane associated with the row is (Nd)™, where N is
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the density of atoms in the lattice. The normalized

nuclear encounter probability is

cosy mzc x%+p?
T2mENAT, i e""(‘ 25 ) ’ ®
where i labels the individual collisions and %, is the
“number of collisions.” 9, is given by the number
of trajectories multiplied by the thickness of the
crystal divided by d. Other output quantities that
can be readily obtained are the normalized number
of lattice atoms having recoil energies greater than
a specified amount and the angular distribution of
the emergent beam.

(x) Estimates are made of the uncertainties in
calculated values which arise because of the finite
number of trajectories computed. This is done by
dividing each group of trajectories for a given set
of conditions into several batches, computing sepa-
rate results for each batch, finding the mean value
for the whole group, and computing the standard
deviation of the batch values from the mean. These
standard deviations will generally be presented
along with the Monte Carlo results as error bars
or error limits to indicate the uncertainties of cal-
culation. Unless stated otherwise, the absence of
error bars on a graph indicates that they are small-
er than the symbol used in plotting the points.

(xi) The program is designed to run on either of
the IBM system/360 computers that are available
locally, a model 75 and a model 91. Part of the
program is written in IBM FORTRAN IV and part in
a local FORTRAN dialect. About 2000 collisions
per second can be computed on the model 75 and
6000 on the model 91,

P

III. DEPTH DEPENDENCE

When an ion beam is directed along a channeling
direction of a crystal, the nuclear encounter prob-
ability will vary with depth. This variation has two
ranges, near the surface and deep in the bulk of the
crystal, that show quite different behavior.

A. Surface Region

The depth dependence in the vicinity of the sur-
face can be understood more readily than the de-
pendence in the bulk of the crystal. Also, the be-
havior for a planar channel is easier to understand
than that for an axial channel since the motion
transverse to the channel direction is basically one
dimensional in the planar case and two dimensional
in the axial case. Figure 1 shows an example of
the depth dependence in the region at and near the
surface for a beam of 0.4-MeV protons incident
parallel to the (111) channel in aluminum. Because
the ions strike the surface of the crystal at random,
the normalized nuclear encounter probability at
zero depth is 1. As the beam proceeds into the
crystal, the ions are repelled away from the walls
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of the channel, and there is a minimum at some
small depth into the crystal. The trajectories that
entered the crystal near a channel wall move through
the center of the channel and across to the opposite
wall, causing a peak at a somewhat greater depth

in the crystal. These trajectories continue to os-
cillate back and forth across the channel and pro-
duce a series of maxima and minima at various
depths in the crystal. Because such large amplitude
trajectories all have about the same wavelength in
the channel, the maxima and minima have a regular
spacing. The half-wavelength for trajectories that
enter the channel close to the walls was calculated
from the continuum energy including the effects of
thermal vibrations as given by Eq. (A9) of the Ap-
pendix and is also shown in Fig. 1; it is in good
agreement with the spacing between successive
maxima. As the beam moves into the crystal, the
oscillations are damped because the large amplitude
trajectories do not all have precisely the same
wavelength even in the continuum approximation and
also because the discrete nature of the channel
walls introduces irregularities in successive half-
wavelengths for any one trajectory. Similar cal-
culations for 60-MeV iodine ions in gold show the
same type of oscillations with almost the same half-
wavelength but with much stronger damping. The
stronger damping for iodine in gold arises from the
greater range of wavelengths for trajectories near
the walls which in turn is due to the shorter screen-
ing length in that case.

The depth dependence near the surface for a beam
of 10-MeV protons incident along [011] in tungsten
is shown in Fig. 2. The behavior is similar to that
in Fig. 1 but less regular. The irregularity as
compared with the planar case stems from the ir-
regular way in which a trajectory moves from row
to row in two dimensions rather than from plane to
plane in one. As in the planar case the maxima
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FIG. 1. Nuclear encounter probability as a function

of distance from the crystal surface for a beam.of
particles incident in a planar direction.
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and minima are produced by the trajectories that
strike the surface near the rows and produce the
peak at zero depth. The continuum potential energy
at the rows after averaging over thermal vibrations
was calculated from Eq. (A7) to be 600 eV. When
these trajectories move away from the rows and
this amount of potential energy is converted to ki-
netic energy, the trajectories will make an angle of
0.44° with the row direction. From this angle and
the geometry of the crystal, it can be estimated that
the trajectories must move somewhat more than
370 A into the crystal before encountering the near-
est-neighbor rows.# This corresponds well with
the first peak below the surface. The second peak
is located a similar distance further into the crystal
and can be associated with the second-nearest-
neighbor rows. The greater height of the second
peak can be attributed to the greater number of sec-
ond-nearest-neighbor rows and to the additional
possibility of trajectories going from the original
row to the second-nearest-neighbor rows or back

to the original row by bouncing off the first-neighbor
rows. Subsequent peaks are presumably due to
higher-order groups of rows.

Wavelengths and maximum angles of trajectories
to channeling directions could be obtained from
measurements similar to the calculations shown in
Figs. 1 and 2 and would be quantities of interest.
Most measurements, however, lack sufficient depth
resolution to give as much detail as shown in those
figures. To convert measurements to actual wave-
lengths or angles, the energy loss experienced by
the trajectories producing the maxima and minima,
which one would expect to be higher than the random
energy loss, is needed rather than the random loss.
In addition to the intrinsic interest in these oscilla-
tions, an awareness of them is advisable when mea-
suring or calculating minimum yields so that the
oscillations can be avoided or averaged over in
some suitable way.

B. Bulk Region

Deep in the bulk of the crystal the depth depen-
dence of the nuclear encounter probability for both
axial and planar channeling takes the form of a re-
laxation towards the random value. This relaxation
is found experimentally” to be approximately an ex-
ponential function of depth, characterized by half-
thicknesses for the most open directions of a few
micrometers for planar channeling and a few tens
of micrometers for axial channeling. Calculations
with the present program for planar channeling give
an exponential relaxation with depth, but the half-
thickness is several times larger than observed ex-
perimentally. This discrepancy may be due in part
to the absence of defects in the model lattice, but is
more likely due to the absence from the calculations
of scattering of the ions by electrons. Feldman, 22
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FIG. 2. Nuclear encounter probability as a function
of distance from the crystal surface for a beam of
particles incident in an axial direction.

Schigtt, 2 and Van Vliet?* have shown that electrons
rather than nuclei dominate the multiple scattering
for ions whose trajectories have small to medium
amplitudes of oscillation in the channels. Only for
trajectories with large amplitudes is nuclear scat-
tering dominant. The present calculations, which
include nuclear multiple scattering only, allow most
trajectories to stay channeled too deeply into the
crystal.

Other discrepancies between the Monte Carlo cal-
culations and experimental results also suggest
the importance of the electronic multiple scattering.
When a well-collimated beam of 10- to 60-MeV
iodine ions is incident on a thin gold crystal in a
planar channeling direction, the emergent beam is
elongated perpendicular to the plane of the channel.
On comparison with the angular spread of the ob-
served spot, the spread computed by the Monte
Carlo program is found to be too small by a factor
of 2.% After 1- to 10-MeV protons pass through a
thick silicon crystal in a planar channeling direc-
tion, the beam emerges elongated parallel to the
plane. The mean-squared angular spread for 5-MeV
protons in the (022) channel of silicon is observed
to be 1.7x 10 deg?/1um, % whereas the Monte Carlo
calculations only give a value of 1.4X10°* deg?/um.
These two comparisons reinforce the depth-depen-
dence results concerning the need to incorporate
electronic multiple scattering into the program.

C. Shoulders of Dips

Another aspect of the depth dependence, the vari-
ation with depth of the shoulders of channeling dips,
is shown in Fig. 3. For orientations corresponding
to the shoulder region, all trajectories are able to
penetrate into the rows of atoms, and the multiple
scattering will be dominated by the nuclei. The re-
sults of Fig. 3 compare favorably with the experi-
mental results of Andersen and Uggerhdj.?" It
should be noted that their experiments were done
for [001] rather than [111] but that the target, pro-
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jectile, and energy were the same as for Fig. 3.
The apparent leveling off of the calculation deep in
the crystal at 1.2 rather than 1.0 is due to the in-
fluence of nearby planar channels. Results at larger
angles show that there is a gradual approach to 1.0.

IV. CRITICAL ANGLES

The term critical angle has been used in the past
with several related but different meanings. For
clarity it seems best in the present paper to avoid
a term with such multiple connotations and to give
a separate name to each concept. The first usage
of critical angle was by Lindhard® to refer to the
maximum angle at which a trajectory could be inci-
dent on a row or plane of atoms and be deflected by
a collective process in a series of collisions with
many atoms, giving the effect of deflection by a
continuum potential energy. This will be referred
to here as the specular angle ;.

The quantity most often measured experimentally
is the angle away from a channeling direction at
which the nuclear encounter probability is midway
between the minimum value along the channeling
direction and the value in a random direction. This
will be referred to as the half-angle ¥,,,. There is
no indication that this angle has a fundamental
meaning like the half-width of a Breit-Wigner reso-
nance, but it does have a clear definition and can
be measured with considerable precision.

Another concept that occurs rather naturally is
the breakthrough angle ¢,, that angle of incidence
of an ion on a row or plane that just enables it to
surmount the energy barrier and emerge on the op-
posite side. It has been noted that this angle should
correspond to the peak of the shoulder for a planar
channel?®2° put has no apparent correlation with any
measurable quantity in the axial case.?

A. Previous Results

For axial channeling Lindhard calculated two ex-
pressions for the specular angle depending on the
energy of the ions. His results were that §; would
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FIG. 3. Depth dependence of the shoulder alongside
the dip in nuclear encounter probability for 0.4-MeV
protons near [111] in tungsten. The tilt plane was 12°
from (112) and the temperature was 298 °K.
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be
b= (22,Z,6%/dE)"? (6)
for
VSa/d or ERE'=22,Z,e%/a® )]
and
¥p=1.5"*(ay, /a)'? (8)
for E<E’. If one looks at the way in which he ob-

tained (6) and (8), it can be seen that (6) applies for
conditions in which the screening is relatively un-
important and the interaction is essentially Coulomb
in nature. Equation (8), on the other hand, applies
for conditions under which the exact nature of the
screening is important and is a determining factor
in the form of (8). Since the majority of experi-
ments have been performed in the high-energy
range, most of the calculations to be reported here
have been done in that range, and ¥, will be of little
interest.® In the high-energy range, Lindhard sug-
gested that

Y1/2=Cty , (9
where C is a constant in the range 1-2. Experi-
ments’ have shown that Eqs. (6) and (9) give rather
accurately the dependence of ¥;,, on Z;, Z,, d, and
E. The best value of C has generally been found to
be about 1.

Equations (6) and (9) give a result for ¥,,, that is
independent of temperature. Andersen'® has ex-
tended Lindhard’s treatment to incorporate tempera-
ture dependence, expressing his results as a series
of curves for a wide range of conditions. More re-
cently, Andersen and Feldman®! have given a
formula which expresses this temperature depen-
dence for more restricted conditions. They have
also compared Andersen’s results with some Monte
Carlo calculations for a single row of atoms and
found that the two calculations agree quite well.
Calculations on the temperature dependence of ¥
have been performed by Morgan and Van Vliet®%33
with a Monte Carlo program similar to the present
one.

Andersen and Uggerhdj?” have measured the tem-
perature dependence of ¥;,, for 0.4-MeV protons in
tungsten and found agreement with Andersen’s cal-
culations. Extensive measurements of §,,, for
materials with the diamond structure have been
made by Picraux et al.®; they found that the use of
Andersen’s results on temperature dependence im-
proves the internal agreement among these materi-
als. However, the best value of C to fit their re-
sults was 0.75 rather than 1.0 as for a number of
other materials, particularly tungsten.

For planar channeling, Lindhard suggested a
specular angle of

$s=0.93Y, , (10)
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where

V.= (21Z,Z,e%Nd, /E)"? (11)
and d, is the spacing between planes. Picraux

et al .® have suggested
¥1/2=0.60%, , (12)

and Picraux and Andersen'! have incorporated the
effect of Lindhard’s surface-transmission factor
into (12). Experimental planar half-angles have
generally satisfied relations such as (10) or (12)
reasorably well. The recent measurements of
Picraux ef al. on diamond-lattice materials, how-
ever, have shown that (12) satisfactorily describes
the dependence on Z;, Z,, and E but not on d,.
Picraux and Andersen’s calculations give results in
accord with the experimentally observed dependence
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FIG. 4. Directional patterns of 59-MeV iodine ions
after encounter with a single [011] row of gold atoms.
Each pattern shows the emergent directions for 100
trajectories incident on the row in the plane of the row
with the angle ¢ shown in the corner of each square.
The + symbol indicates the row direction, the lower x
marks the incident direction, and the upper x marks the
specular reflection direction. The number in the upper
right-hand corner is the number of trajectories with
emergent directions above the row direction, and the
number in the lower right~hand corner is the number
with emergent directions below the row. The patterns
in () are for a static row and those in (b) for a vibrating
row with 77=300 ° K.
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FIG. 5. Directional patterns of 1.4-MeV protons after
encounter with a single (111) plane of aluminum atoms.
The remarks in the caption for Fig. 4 apply here also
except that trajectories are encountering planes rather
than rows, ¥ is the angle of inclination of the incident
direction to the plane, the direction of incidence is
4.53° from [011], and the temperature for (b) is 313 °K.

on d, for these materials.

B. Breakthrough and Specular Angles

Simple calculations with the present program for
the encounters of relatively small numbers of tra-
jectories with single rows or planes of atoms give
considerable insight into breakthrough angles and,
to a lesser extent, specular angles. Figures 4 and
5 show the results of such calculations for static
and vibrating rows and planes. Choices of targets,
projectiles, and energies were made as a result of
previous calculations, 2 3% but the results are quite
general in nature.

For the static row, Lindhard’s ¥; would be ex-
pected to be the specular angle; its value of 1.5°
appears to be in good agreement with the Monte
Carlo results in Fig. 4(a). If it is assumed that
the effect of screening roughly balances the deflec-
tions by distant collisions, the shadow angle due to
Coulomb scattering for one lattice nucleus should
give a value for the breakthrough angle. The shad-
ow angle is v 29y, % or 2.2° in the present case;
again the agreement is good. For the vibrating row
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there is no prediction of what the specular angle
might be, and Fig. 4(b) indicates that any definition
of it would be rather arbitrary. From Eq. (A7) of
the Appendix, the breakthrough angle for the vibrat-
ing row may be estimated to be 1.16°, a value in
good agreement with the Monte Carlo results. It is
of interest to note that trajectories incident on the
row at an angle near ¥, tend to emerge randomly
around the surface of a cone making the incident
angle with the row direction. Trajectories incident
at angles much larger than ¥, penetrate the row
readily with multiple scattering much like that for
a random orientation.

For planes there is less difference in the results
for the static and vibrating cases than for rows.
The reflections for § <3, are somewhat more spec-
ular for the static than the vibrating plane, but the
difference is much less marked than it was for the
rows. Also, it can be seen that thermal vibrations
make considerably less difference in ¥,. Trajec-
tories incident on the plane at an angle near ¥, tend
to emerge with angles near =+, with respect to the
plane. The breakthrough angles may be estimated
to be 0.314° from Eq. (A2) for the static plane and
0.274° from Eq. (A9) for the vibrating plane; these
values agree quite well with the results in Fig. 5.

The comparisons made above serve to illustrate
the close correlation noted elsewhere®® between the
breakthrough angle as determined from the analysis
of individual trajectories and the breakthrough angle
as calculated from the barrier height given by the
continuum energy of a row or plane. Also, both
Figs. 4 and 5 show that the average energy trans-
verse to the row or plane of atoms is noticeably
greater after a close encounter than before it. This
increase is due to strong collisions with lattice
atoms.

C. Half-Angles

Estimation of half-angles requires much more
extensive calculations with the present program,
calculations that constitute computer simulations of
experiments. Before undertaking such calculations,
consideration was given to a number of factors that
could influence the results. Measurements of the
dip in nuclear encounter probability near an axial
direction are made by tilting the beam away from
that direction in some “random” plane containing
it. Measurements of Andersen and Uggerhgi?’ and
previous Monte Carlo calculations?®3* have shown
the variation in the nature of an axial dip with the
choice of the tilting plane. Andersen and Uggerhdij’s
results indicate that there is a variation of half-
angle with tilt plane of at least 5-10%. Most ex-
perimenters have not specified the orientations of
their tilt planes. Two other factors that would be
expected to influence the half-angle would be the
orientation spread of the beam and the mosaic
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spread of the crystal. Previous calculations®* of
the (111) planar dip for 60-MeV iodine in gold have
shown that the presence of a mosaic spread causes
a slight decrease in the half-angle. The slope of the
yield curve near ¥,,, does not produce a variation
of ¥,,, with mosaic spread, but the positive curva-
ture does produce a variation. Additional calcula-
tions for the [011] axial dip corresponding to the
same experimental conditions show that the mosaic
spread of 0.13° half-width causes ¥,,, to be 0. 82
+0.02° rather than 0,77+ 0.01° as it would have
been with zero spread. Figure 6 of Ref. 34 helps
to understand this result. The orientation spread
in the tilt plane influences ¥,,, just as for the planar
dip. However, the spread transverse to the tilt
plane tends to increase ¥, ,, due to the downward
curvature of the yield in the transverse direction.
The effect of the transverse spread is dominant be-
cause of the stronger curvature in that direction.

In measuring a planar dip, a precaution that must
be taken is to avoid higher-order axial directions
that lie in the plane. Figure 6 illustrates how nu-
merous these are; it is very similar to experimental
results of Davies et al.”

With the above considerations in mind, the follow-
ing set of conditions was selected for an extensive
series of calculations of axial and planar half-
angles: (a) beam divergence and mosaic spread of
zero; (b) protons incident on tungsten because of
numerous experiments on this combination; (c) E
=10 MeV to be well into Lindhard’s high-energy
range; (d) a depth range of 0-5500 A to average
over surface oscillations; (e) a tilt plane 12° from
(112) for the [111] axial dip, or a tilt plane 8.75°
from [111] for the (011) planar dip; and (f) temper-
atures of 4.2, 298, 700, 1200, and 1800 °K.

1. Tewperature Dependence

Figure 7 shows some calculated temperature ef-

fects. The curve through the points for axial chan-
neling was obtained by letting

Zpl/z:k[Vx‘s(7"”«141)/E]1/2 (13)
and adjusting 2 and » to obtain the best fit. V.4 is

the average potential energy for a static row and is
given by Eq. (Al) of the Appendix. It would perhaps
be more appropriate to use the vibrating row poten-
tial energy V., rather than V... However, the two
functions do not differ greatly in the range of in-
terest, so the simpler of the two was chosen. Other
authors have previously used either 2 or m as ad-
justable parameters, but never both together. It
was necessary to adjust both to obtain an adequate
fit to the Monte Carlo results; the best-fit values
were k=0.83 and w =1.2. Morgan and Van Vliet®
have found it convenient to express their results on
specular angles in terms of a critical approach dis-
tance which turned out to be a linear function of the
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thermal vibration amplitude. Critical approach
distances were found for the present Monte Carlo
results, but neither a linear nor a quadratic ex-
pression gave a satisfactory relationship to the vi-
bration amplitude. The most satisfactory expres-
sion found with which to express the present Monte
Carlo results is (13). For future use it will be con-
venient to have it in the form

Vy1/5 =kR(muy /a)yy , (14)
where
R(&)=[fs(8)]V2 . (15)

Although Eq. (14) indicates that ¥;,, would be infinite
for u;=0, comparisons with experiment that will be
made below show that the values of #, in actual
solids ~ including tungsten, which has unusually
small thermal vibrations - are sufficiently far re-
moved from this singularity that it causes no prob-
lem. However, Eq. (14) may not be used to obtain
results for a rigid lattice.

An expression similar to Eq. (14) but with a dif-
ferent function of thermal vibration amplitude in
place of the product #R has been given by Andersen
and Feldman. 3! If their method is applied to the
interaction energy used here, the form obtained for
145 is Eq. (14) with 2=1,00 and m =1.18. These
values of £ and w in (14) give results that lie very
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close to their formula, with their formula varying
somewhat more rapidly with vibration amplitude.
However, the values given by each of these formulas
are about 25% larger than the Monte Carlo results.
In view of the agreement found by Andersen and
Feldman between their formula and Monte Carlo
calculations for an isolated row, it appears that
there is an inherent difference in behavior between
a single row and a complete lattice.

In a similar way the curve for planar channeling
was obtained by letting
busa =k { [ Voslmuy) + Vyold, —muy) -2V, (5d,)] /E 12

(16)

where V,, is the average potential energy of a static
plane, and is given by (A2) of the Appendix. The
three terms inside the brackets in (16) represent
the energy of the plane on the near side of the chan-
nel, the energy of the plane on the far side, and the
energy at the center of the channel due to both
planes. The second and third terms, particularly
the third, are not negligible with respect to the
first. Additional such terms exist in Eq. (13) also,
but they are small enough to be neglected. The best
fit of Eq. (16) to the Monte Carlo results for the
planar case was obtained with 2=0.76 and w =1.6.
It will be convenient to have (16) in the form

V15 =kPlmuy /a, d, /a)¥, , (17)
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where
P&, ) =[fosl8) + fosm=&) =2, (M) V2 . (18)

Although physical intuition suggested Eqs. (13) and
(16) as plausible forms for ¥,,,, it should be recog-
nized that they have been used to provide empiri-
cal curves expressing the results of the Monte Carlo
calculations, Caution should be exercised in draw-
ing conclusions therefrom. Also, it should be noted
that 2 and » have been adjusted to fit the Monte
Carlo calculations rather than experimental results;
agreement with experiment hinges on the adequacy
of the interaction energy and other features incor-
porated in the computer program.

Since R is a function of a single variable it can
be conveniently tabulated and is given in Table I.
Because P is a function of two variables, it is more
conveniently presented as a family of curves; these
are shown in Fig. 8.

2. Enevgy Dependence

In addition to the results just given for the tem-
perature dependence, calculations were done to
study the dependence on other quantities, principally
Zy and E. They were done for protons in tungsten
for each of several energies and for two choices of
crystal thickness. Under the first choice, the
thickness was always 2000d or about 5500 A. The
second choice was made in such a way that the tra-
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jectories would encounter the same number of rows
or planes within the crystal thickness at each ener-
gy. Accordingly, the thickness was kept at a con-
stant number (between 6 and 7) of half-wavelengths
such as shown in Fig. 1. The results are shown in
Fig. 9 along with some experimental results of
Davies et al.” The variations of §y,, with depth at
the various energies are the first such calculated
results. The depth dependence of ¥;,, should be
much more accurately portrayed than the depth de-
pendence of the nuclear encounter probability along
a channeling direction, since the multiple scattering
for all trajectories near the half-angle is dominated
by the nuclei rather than by the electrons. The
transition between Lindhard’s high- and low-energy
regions occurs at (Z, /E)}'?~1. 2 and most of the
variation shown is within the high-energy region.
In both the axial and planar cases with the thickness
set at a constant number of wavelengths, ¥,,, varies
within the accuracy of the calculations as E%*" over
the energy range shown. For the constant-thickness
calculations, however, no simple power law ade-
quately expresses the energy dependence. Compar-
ison of the calculated and experimental results in
Fig. 9 reveals that the two are very close together
in the axial case and that the experimental values
are slightly but noticeably lower in the planar case.
The discrepancy in the planar case may be due in
part to the difference in depth at which the Monte
Carlo results were calculated and at which the ex-
perimental values were measured.

1t appears that the difference between E*% and
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E*%*7 yariations of y;,, in Fig. 9 is small compared
with the experimental uncertainties. Therefore, a
straight-line fit in the figure for the calculations
over the energy range 1-10 MeV should be an ade-
quate basis for comparison with experimental -
values. The best fits are obtained by adjusting % in
Eq. (14) for the axial case to be 0.80 and % in Eq.
(17) for the planar case to be 0.72.

3. Comparison with Expeviment

Equation (14) has the same dependence on Z;, Z,,
d, and E as Eq. (9), dependences that have been
found to give good agreement with experiment.
defects of Eq. (9) are that ¥,,, is independent of
temperature and that C has been found by Picraux
et al. to depend on the target material. The most
relevant experimental measurements of temperature
dependence to which Eq. (14) might be compared are

The

JOHN H. BARRETT 3

those of Andersen and Uggerhdj, ¥” for which Ander-
sen’s calculations!® have already been found to give
good predictions. The experimental results are
shown in Fig. 10 along with several curves calcu-
lated from (14) with various parameters. Curve 1
is obtained using the best-fit parameters for 10
MeV. However, the experimental energies fall just
below the lower limit of Lindhard’s high-energy range
so Monte Carlo calculations were done at 0.4 MeV and
new values of £ and » determined for the best fit

to the calculations. The results are shown as curve
2; it has about the right slope but is low in over-all
value. To get some measure of the discrepancy in
magnitude, % was arbitrarily adjusted to give the
best agreement between the calculated and measured
values at both energies; curves 3 and 4 are the re-
sults of this adjustment. This increase of &z by
about 14% is just within the range of variation ob-
served by Andersen and Uggerhdj for various tilt
planes. Inasmuch as the experimental results do
not show the energy dependence that would be ex-
pected, the discrepancy between the Monte Carlo
calculations and the measured values is greater for
0. 48 than for 0.4 MeV. Equation (14) appears to
be in reasonable agreement with the temperature
dependence of ¥;,, as measured by Andersen and
Uggerhd]j since the calculated slope is correct, the
calculated values are within the range of experi-
mental uncertainty even though at its limits, and
numerous other comparisons to be enumerated be-
low show good agreement with experiment. More
recently, Foti ef al .% have reported on measure-
ments with 1-MeV protons of the temperature de-
pendence of ¥,,, near the [011] and [111] axes in
silicon. The temperature variation calculated from
(14) appears to be somewhat less than they mea-
sured. The magnitudes of the calculated half-angles
are in good agreement with their results for [111]
but considerably lower than theirs for [011]. This
difference for the two axes reflects the fact that
they did not obtain the inverse-square-root depen-
dence on d usually found® for §;,,. Their observed
ratio for half-angles in the two directions was 1. 39,
whereas 1. 11 would be expected.

To evaluate how Eq. (14) with the values of 2 and
m determined above from the temperature and en-
ergy dependences for protons in tungsten agrees
with experiment, comparisons with measured val-
ues”® 34379 for 3 large number of elemental ma-

TABLE I. R(£) as defined in Eq. (15).
£ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 % 1.607 1.388 1.251 1.149 1.068 1.001 0.944 0.894 0.849
1 0.810 0.774 0.742 0.712 0.685 0.659 0.636 0.614 0.594 0.575
2 0.557 0.541 0.525 0.510 0,496 0.483 0.470 0.458 0.446 0.435
3 0.424 0.414 0.404 0.395 0.386 0.377 0.369 0.360 0.353 0.3456
4 0.338 0.331 0.324 0.317 0.310 0.304 0.298 0.292 0.286 0.280
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terials were made. The measurements were se-
lected to represent a wide variety of ions, targets,
and experimenters. For axial channeling, compar-
isons are shown in Table II with the same 2 and m»
used for all lattice types. The calculated values
for tungsten tend to be slightly less than the mea-
sured ones, particularly for the heavier ions, but
the differences are generally within the error lim-
its. For protons in tungsten, the product kR in

Eq. (14) has the value 0.90, in fairly good agree-
ment with the value 1.0 that has generally been
found to be satisfactory for this ion-target combina-
tion. Actually, Eq. (9) gives better agreement with
the extensive measurements of Davies et al.” if

0.9 is used for C rather than 1.0. The agreement
between calculated and measured values is good for
the other target materials, particularly for the
semiconductors, with no systematic deviations
apparent.

The Z,, Z,, and E dependences of planar half-
angles as given by Eq. (17) are the same as those
given by (10) or (12) and are in agreement with ex-
periment. The temperature dependence calculated
for the planar case is less than for the axial case,
and there are no experimental values to compare it
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FIG. 10. Temperature dependence of ¥4, for axial
channeling of protons in tungsten. The curves are
calculated from Eq. (14) as explained in the text.
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TABLE II. Comparison of calculated and measured
values of ¥/, for axial channeling. The calculated
values were obtained from Eq. (14) using 2=0.80 and
m=1.2 and calculating a from Eq. (3a) for Z;=1, 2 and
from (3b) for Z;>2.

Energy by /2(deg)

Target Direction Ion (MeV) Calculated Measured Ref.
Al 011y H 1.4 0.45  0.42 37
Al (011) H 0.4 0.84 0.90£0.10 38
w (111) He 5.49 0.87  0.85%0.05 39

6.00 0.83 0.80+0. 05

7.68 0.74 0.75+0.10
Au (011) I 60.0 0.80 1.0 £0.1; 34
w (002 H 2.0 0.95 1.00+0. 07 7

3.0 0.78 0.79+0.07

6.0 0.55 0.55+0. 07

He 2.0 1.34 1.39+0.07

10.0 0.60 0.67+0. 07

C 10.0 0.98 1.10+0. 07

30.0 0.57 0.64+0. 07

O 10.0 1.13 1.23+0. 07

30.0 0.65 0.70+0. 07

Cl 10.0 1.60 1.82+0. 07

: 30.0 0.93 1.00£0. 07

11y H 3.0 0.83  0.85%0.07

6.0 0.59 0.52+0. 07

024y H 3.0 0.52  0.51+0.07

He 10.0 0.40 0.42+0. 07

Cc 30.0 0.38 0.36+0. 07

Cl 30.0 0.62 0.70+0. 07
Si (011) H 3.0 0.30 0.26x0. 07 7
Au 011y Cl 20.0 0.84 1,10£0.07 - 7
Si 011y H 0.25 1.03 1.02+0. 06 9

0.5 0.73 0.68%0, 06

1.0 0.51 0.53+0, 06

2.0 0.36 0.36+0. 06

He 0.5 1.03 1.10+0.06

1.0 0.73 0.75+0, 06

2.0 0.51 0.55%0. 06
Ge (011) He 1.0 0.93 0.95+0. 06 9
C(ia)  (011) H 1.0 0.53  0.540.06 9

He 1.0 0.75 0.75+0, 06

with. Equation (17), because of the factor P, has
a different dependence on d, than (10) or (12). The
variation with d, given by Eq. (17) using the values
of & and m determined above for protons in tungsten
is compared for three planar channels in silicon
with the experimental results of Picraux ef al. ®in
Fig. 11; the agreement is good. Picraux and
Andersen'! have also been able to explain the de-
pendence of ¥y, on d, by including Lindhard’s trans-
mission factor. The concepts involved in the trans-
mission factor are basically the same as those in-
volved in choosing the three terms in the brackets
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energy for three planar channels in silicon.
mated error for the experimental points is +0. 03.
Miller indices were chosen so that the interplanar
spacings are given by d/(h?+k?+1%)1/? rather than using
smaller equivalent ones such as (011) in place of (022).
The straight lines were obtained from Eq. (17) using
£=0.72 and m=1.6.

in Eq. (16). The present approach, embodied in
(16), makes the physics of the problem more ap-
parent and yields a formula by which ¥,,, can be
calculated. Also, no arbitrary adjustable param-
eter such as Picraux and Andersen used for the (011)
channel is needed here to get agreement with ex-
periment.

Further comparisons of calculated and measured
half-angles for planar channeling are shown in Ta-
ble III. The agreement in this table and in Fig. 11
is quite good in the case of silicon and germanium.
For tungsten, the calculated values tend to be some-
what higher than the measured ones. As noted
above in discussing Fig. 9, this discrepancy for
tungsten may be due to the depth dependence of ¥y ,s.
Picraux et al. extrapolated their values of ¥y, back
to zero depth for silicon and germanium, whereas
Davies et al. did not do so for tungsten. Further-
more, Picraux ef al. found the extrapolation to be
much more important for the target of higher atomic
number. If this represents a definite trend with
atomic number, it increases the likelihood that such
extrapolation would have given higher values for
tungsten. Another possible reason for the discrep-
ancy in the case of tungsten might be an inadequacy
of the potential function used. Comparison of Egs.
(14) and (17) indicates that the half-angle formula
has a different dependence on the screening length
and hence on the screening function in the planar
case than in the axial case. An inadequacy of the
screening function in calculating half-angles might
show up in making comparisons for planar but not
for axial half-angles. However, it does not seem
justified to seek a resolution of this discrepancy
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for tungsten by some modification of the screening
function. There is a trend in the opposite sense in
the case of gold, although the gold measurements
are fewer in number and carry less weight.

A tendency was noted above for the calculated
values of axial half-angles to be greater than the
measured ones in the cases of the heavier ions.
The agreement in these cases is improved if a for
Eq. (14) is calculated by (3a) for Z,>2 as well as
for Z,=1, 2. Appleton et al.*® have found just such
a form of the screening length to be in best accord
with their measurements of energy losses for vari-
ous ions in gold. However, consistency here re-
quires the same treatment for planar half-angles,
and comparisons such as in Table III for the heavier
ions are in general worse if (3a) is used in place
of (3b). Considering the axial and planar cases to-

TABLE III. Comparison of calculated and measured
values of ¥4y for planar channeling. The calculated
values were obtained from Eq. (17) using £=0.72 and
m=1.6 and calculating a from Eq. (3a) for Z;=1, 2 and
from (3b) for Z;>2. The error limits for the measure-
ments are £0. 03 for all cases. Further comparisons
are shown in Fig. 11.

Energy ¥y /9(deg)

(MeV) Calculated Measured Ref.

Target Direction Ion

w 002y H 2.0 0.25 0.22 7
3.0 0.20 0.17
6.0 0.14 0.12
011y H 2.0 0.32 0.26
3.0 0.26 0.22
6.0 0.18 0.18
(002) He 2.0 0.35 0.27
10.0 0.16 0.14
011y He 2.0 0.45 0.38
10.0 0.20 0.15
002y C  10.0 0.25 0.20
30.0 0.14 0.12
011y C  10.0 0.32 0.28
30.0 0.18 0.16
{002y O 10.0 0.29 0.25
30.0 0.17 0.15
011y 0 10.0 0.36 0.33
30.0 0.21 0.17
002y Cl 10.0 0.40 0.30
30.0 0.23 0.22
011y Cl 10.0 0.50 0.42
30.0 0.29 0.25
si (004) H 3.0 0.07 0.07 7
022y H 3.0 0.10 0.09
Au 002y Cl 20.0 0.27 0.31 7
022y Cl 20,0 0.21 0.24
(111) ¢l 20.0 0.30 0.32
Ge (022) He 0.5 0.44 0.40 9
1.0 0.31 0.30
1.9 0.23 0.23
(004) He 1.0 0.23 0.18
(224) He 1.0 0.18 0.20
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gether, Eq. (3b) is to be preferred in the present
calculations over (3a) for calculating screening
lengths for ions with Z; > 2,

Tables II and III show that Eqs. (14) and (17) with
the choices made for the screening lengths and for
the parameters k£ and m give generally satisfactory
predictions of axial and planar half-angles. Picraux
et al.® have suggested that an equation such as (14)
can be generalized to a diatomic lattice or to a row
having nonuniform spacing by using average values
of Z, and d. They make a number of comparisons
to confirm this idea. The use here of an average
potential energy as a basis for Eq. (14) is quite in
accord with their suggestion. For planar half-
angles, the use of an average value of Z, in Eq. (17),
as also suggested by them, should likewise be a
valid generalization. However, it is not clear that
use of the average plangr spacing is valid.

V. MINIMUM YIELD

When an ion beam is exactly aligned with a set of
rows or planes in a target crystal, the normalized
nuclear encounter probability has a minimum value
generally called the minimum yield x.

A. Row Minimum Yield

For an axial direction, Lindhard® predicted that
the minimum yield just below the surface would be

X =Ndnu2 + Ndna® + x5 , (19)

where

U= (x +y2)V/2= 2172,
and X3 is a contribution from the divergence pro-
duced in the beam by scattering in any amorphous
region on the surface of the specimen. Most ex-
perimental results have been much larger than the
values predicted by the first two terms on the right-
hand side of Eq. (19), which is not surprising since
surface layers were likely present and no particular
care was taken to ensure the proper depth resolu-
tion. The minimum yields measured by B;zfgh41 and
by Appleton and Feldman in tungsten are probably
the best published values since tungsten is rela-
tively free of impurity layers on the surface and
they made careful measurements of the depth de-
pendence. Their measured values are in satisfac-
tory agreement with the first two terms on the
right-hand side of Eq. (19).

1. Temperature Dependence

A series of calculations was done with the present
program for 3-MeV protons in tungsten at several
temperatures and beam divergences to see whether
there would be agreement with Eq. (19). In order
to avoid the surface peak, the minimum yield was
computed for the depth range 340-1370 A. A Gaus-
sian distribution of beam directions was used as
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an approximation to experimental situations; its
spread is specified by its variance A. The calcu-
lated values are plotted in Fig. 12. A straight line
provides a good fit for each beam divergence, par-
ticularly the smaller ones. However, there are two
deviations from Eq. (19). The first is that the con-
tribution from beam divergence is primarily to the
slope rather than to the intercept of each line in
Fig. 12. The second deviation is that the constant
term is much smaller, in fact, practically zero, **
relative to the linear term than predicted by (19).
The results of the calculations can be expressed
rather well by the form

Xx=Ndn[C(AuE+C "(a)a?] . (20)

From Fig. 12 it can be seen that C'$0.1C, so that
to a good approximation

x=C(ANdm . (21)

A least-squares fit to the calculations for A=0°
yields the values C(0)=3.0+0.2 and C’(0)=0.2+0.1,
Calculations for several other ion-target combina-
tions yield similar results. In general, it seems
possible to use C(0)=3.0+0.3 and C’'(0)=0.

Some insight into the predominance of the tem-
perature-dependent term and the large value of the
coefficient C can be obtained by considering the way

in which various factors contribute to x. The first
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to consider is the effectiveness factor F(E), defined
as the ratio of the nuclear encounter probability for
trajectories having a certain transverse energy E
or maximum angle of inclination relative to the
rows to the nuclear encounter probability for tra-
jectories having random orientations to the rows.
The only method available for calculating this factor
is the Monte Carlo program; some results are
shown in Fig. 13(a). The effectiveness factor is
greater than 1 near and above the maximum value
of the continuum potential energy. The other factor
to consider is the density of trajectories D(E), de-
fined by letting the fraction of trajectories with en-
ergies between E and E +dE be D(E)dE. Examples
of this quantity are shown in Fig. 13(b). The curve
for the discrete-lattice model was calculated by the
Monte Carlo program, and the one for the continu-
um-row model was calculated using Eq. (A8) of the

Appendix. For the latter case the energy is that of
a vibrating row, V,,(»), and D is given by
-1
D7, migna(Te= ) (22)

where 0=72/uZ. The derivative on the right-hand
side of Eq. (22) is a function of u,; however, cal-
culations at several temperatures show the depen-
dence to be very weak over a considerable range
down from the maximum energy. Therefore, the
dependence of D, and hence of X, on u, is very
nearly quadratic, in accord with the results shown
in Fig. 12. TFigure 13(c) shows the product of the
effectiveness factor times the density of trajectories
for each model. The area under the curve in each
case gives the minimum yield. The value for the

20

15
3 4/5’

_
iy

.’,/T
- 3MeVHIN WI[111]
7=1200°K

EFFECTIVENESS FACTOR
)

(@) /!

T I T
—=—=—=CONTINUUM ROW MODEL
—3$— DISCRETE LATTICE MODEL —|

N

\
N -
\§\§ .\\'

DENSITY OF
TRAJECTORIES
(ev™)

S

|

Y

) R N
0 .

5 ,
(x107) ———-CONTINUUM ROW MODEL _|
—3#— DISCRETE LATTICE MODEL

"""""" SIMPLE GEOMETRICAL MODEL

7/ 4+ —
s

0 200 400 600 800 1000 1200
TRANSVERSE ENERGY (eV)

PRODUCT OF DENSITY
OF TRAJECTORIES AND
EFFECTIVENESS FACTOR (eV™~

Factors contributing to the minimum
yield for axial channeling.

FIG. 13.

JOHN H. BARRETT 3

continuum-row model is about two-thirds that for
the discrete-lattice model. The difference arises
from the trajectories that have been shifted upward
in energy — and hence to a higher effectiveness
factor — by strong collisions in the Monte Carlo
calculations. The simple geometrical model shown
in Fig. 13(c) results from assuming an effectiveness
factor of 1 for all trajectories that strike within u,
of the row and an effectiveness factor of 0 for all
others. This model gives the same result as Lind-
hard’s treatment of thermal vibrations, namely, the
first term on the right-hand side of Eq. (19). From
Fig. (13) three reasons can be seen for the large
value of C. First, trajectories with transverse
energies near and somewhat above the maximum

of the continuum potential energy are more effective
in making close nuclear encounters than are random
trajectories. Second, trajectories with energies
considerably below the maximum make a significant
contribution by virtue of being very numerous.
Third, strong collisions shift trajectories to higher
transverse energies and larger effectiveness fac-
tors. This last contribution, which is essentially
the one considered by Lindhard® as leading to the
second term on the right-hand side of Eq. (19), also
varies quadratically with #,, presumably due to the
form of D(E), rather than being independent of u,

as obtained by him. The influence of beam diver -
gence on the minimum yield can be seen by consid-
ering its influence on the density of trajectories.
Beam divergence has the effect of replacing either
of the curves in Fig. 13(b) by one that at any energy
is some appropriate weighted average of the one
shown from that energy downward. For a Gaussian
distribution of beam directions, the average is taken
over an energy range ~ EA%, If, as in Fig. 12, EA?
is sufficiently small, the resulting increase of the
density of trajectories at a given energy is approxi-
mately proportional to #2, since the original density
has such a proportionality. Therefore, the main
influence of beam divergence in Fig. 12 is on the
slopes of the lines. On the other hand, as will be
discussed below, the divergence produced by a sur-
face layer is much broader and produces a different
behavior.

2. Enevgy Dependence

When Lindhard originally wrote down Eq. (19),
he stated that it would only be valid for conditions
satisfying Eq. (7). He suggested a low-energy form
for the second term in (19); it has an inverse-
square-root dependence on energy but differs in

" other respects from the form given below in (26).

In order to test the conditions under which Eq. (21)
is valid, a series of calculations was done for pro-
tons of various energies in tungsten. The results
are shown in Fig. 14(c) along with the previously
discussed results at various temperatures in 14(d).
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Also shown, in 14(a) and 14(b), is the effective num-
ber of surface layers L, which is defined to be the
area under the surface peak in a plot such as Fig. 2
divided by the row spacing d. Since L is easier to
understand, consider it before x. At low energies
it will have the value 1. At higher energies it might
be expected to be of the form L =¢, where

&= Kuy / (Py/ad) (23)

and « is a proportionality constant to be determined
empirically. The simplest function found to provide
a good connection between the low- and high-energy
ranges is

L=(1+£3)Y2, (24)

The intersection of the two asymptotes for T'=298 °K
at E=0.7 MeV was used to evaluate « as 2.2. The
curves in Figs. 14(a) and 14(b) were evaluated from
Egs. (23) and (24) with this value of k. It is inter-
esting to note that the high-temperature asymptotic
form of the curve in 14(b) is approximately L « ut?
The exponent 1,2 rather than 1 is due to the tem-
perature dependence of ¥ .

It might be expected that L and X would be related
by

XOCLlpl/aocL/g . (25)

From Eq. (21) the constant of proportionality can
be determined so that (21) can be generalized to

X=C(ANdmu3(1+ 22, (26)

This relation was used to calculate the curves in
Figs. 14(c) and 14(d). For the curves in Figs. 14(a)

and 14(c) with 7' =298 °K, there might be some ques-
tion as to whether the high-energy region corre-
sponds to £ >1 or to Eq. (7) since ku; has nearly the
same value as a. However, for the curves with

T =1200 °K these two conditions are fulfilled for
different energies and it can be seen that £=1 di-
vides the two energy ranges. '

For very low energy combined with very low vi-
bration amplitude, Eq. (26) fails to express the
Monte Carlo results. This is shown by the lowest-
energy point on the lower-temperature curve in Fig.
14(c) as well as by results not plotted. This failure
may be due to the C '(A) term in Eq. (20), which
has been neglected in the later equations. On the
higher-temperature curve in Fig. 14(c) the two
highest-energy points may. also indicate that (26) is
not adequate to express the Monte Carlo results for
high energy combined with large vibration ampli-
tude. No reason for this to be true is apparent.
Although the exact limits of validity for (26) have
not been found, it appears to cover a very wide
range of experimental conditions.

3. Comparison with Experiment

As mentioned above, the most accurate published
experimental results for minimum yields appear to
be Bdgh’s* value of (0.9 £0.1)% for 0. 4-MeV protons.
directed along [111] in tungsten and Appleton and
Feldmans’# value of 1.0% for 1-MeV helium ions
along [011] in tungsten; Lindhard’s formula is in
satisfactory agreement with these measurements.
As can be seen from Fig. 14(c), the Monte Carlo
calculations and Eq. (26) also agree quite well with
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Bggh’s result and the energy dependence makes a
significant contribution to the calculated result.
When allowances are made for differences of pro-
jectile, energy, and atomic spacing along the row,
Appleton and Feldman’s value is in excellent agree-
ment with Bdgh’s result and the present calculations
The agreement between the present calculation and
Lindhard’s formula for the conditions under which

x has been measured in tungsten is a consequence
of the small value of u, relative to a and to the en-
ergy of the projectile in this particular case. In
general, Eq. (26) will give a value larger than will
Lindhard’s expression. Although this will be in the
right direction to make (26) nearer to agreement
with measurements on other materials, it should

be kept in mind that these materials almost certain-
ly have sizable contributions from amorphous sur-
face layers.

The agreement between theory and experiment is
not so good, however, as the comparisons just made
seem to indicate. The value of 400 °K used for the
Debye temperature was selected from a convenient
source before it was appreciated how sensitive the
minimum yield is to the thermal vibration ampli-
tude. Another, perhaps more authoritative,
source!”? suggests a value of about 320 °K. When
this Debye temperature is used, the theoretical re-
sult is approximately 30% higher for the experi-
mental conditions of Bggh and of Appleton and Feld-
man. Also, in both experiments the measured ef-
fective number of surface layers is higher than cal-
culated by theory, implying the presence of amor-
phous oxide or impurity layers on the crystal sur-
face. From this result it would seem that the mini-
mum yield for an absolutely clean surface would be
somewhat lower than measured by Bggh or by
Appleton and Feldman. A very likely reason for
the resulting discrepancy between theory and ex-
periment is that no account has been taken of what
difference there may be between the rates of energy
loss for the particles contributing to the minimum
yield and for particles directed at random in the
crystal. Allowance for a higher loss rate for the
minimum-yield particles than for the random parti-
cles would bring the theoretical and experimental
values closer together.

In thinking about channeling, it is often convenient
to picture the ion beam inside the crystal as com-
posed of channeled and unchanneled fractions with
the channeled fraction getting no nearer to the rows
or planes of the lattice than some minimum-impact
parameter 7,,. The results given above in Egs.
(14), (17), and (26) each suggest a minimum impact
parameter for a row or plane, as distinguished from
an individual atom, that is proportional to u,. The
proportionality constant would be different in each
case, ranging from 0.8 to 1.7, Morgan and Van
Vliet®® have expressed some of their results in
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terms of 7,,;, and found that the relation between
7min and u#, might be either linear or quadratic de-
pending on the property of interest. Two recent
experiments?! have given estimates regarding mini-
mum-impact parameters. Davies et al. have in-
terpreted their results on x-ray yields of channeled
ions as evidence that Lindhard’s suggestion of 7,
~qa is correct; however, their experiments would
not be able to distinguish between the form suggested
by Lindhard and forms such as suggested by the
present calculations or those of Morgan and Van
Vliet. Altman, Feldman, and Gibson have inferred
from their experiments on energy losses of 5-MeV
protons traversing Si(022) channels that 7,5 a~uy
and say that this result suggests the thermal vibra-
tion amplitude may constitute a critical distance
parameter for channeling. The present calculations
together with the other results on 7, make it ap-
pear that critical approach distances for channeling
defined in various ways by various means of ob-
servation will differ somewhat from each other, and
that any expression which may be generally applica-
ble can only be approximate — perhaps only an order-
of~magnitude estimate.

4. Contvibution of Surface Region

In view of the above results, measurements of
the energy dependence of the minimum yield are
very desirable. Because it is virtually impossible
to have a crystal with no amorphous surface regiocn,
allowance must be made for its contribution to the
energy dependence. An estimate can easily be
made if the amorphous region is treated as a ran-
dom solid. Significant scattering requires close
impact so that the potential of the bare nuclear may
be used. If it is assumed that scattering through an
angle of ¥/, or greater is required for a contribution
to the minimum yield, the resulting estimate of the
contribution of the amorphous region to the mini-
mum yield is®

XSZEsnsNd'" [ZIZs ez/(Ewllz)]a ’

where the index s runs over the types of atoms in
the surface region and Z; is the atomic number and
ns the number of layers of type s. In Eq. (27), X3
has a weak dependence on temperature through ¥y,,
and an inverse first-power dependence on E. These
dependences are in contrast to the results in Figs.
12 and 13 and stem from the much broader beam
spread in the present case. The contribution of the
amorphous surface layer to L is

L3=Esns(zs/zz)z . (28)

Monte Carlo calculations of the effect of an amor-
phous surface region were done also. Equations
(27) and (28) agree quite well with them. By making
simultaneous measurements of x and L over a range
of energies it should be possible to determine the

(27)
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contributions to each from the amorphous surface
layers and from the underlying lattice itself.

5. Double Alignment

When an experiment is conducted so that the inci-
dent beam is subject to channeling by being aligned
with an axial direction and the emergent beam is
subject to blocking by also having the detector
aligned with an axial direction, the number of parti-
cles scattered into the detector is even further re-
duced from the number scattered if merely one
alignment is made. *'**~*" When only the beam or
detector direction is aligned with a crystal axis,
the technique is referred to as single alignment;
when both are aligned, the technique is referred to
as double alignment. Either may be used to mea-
sure amounts of impurities or defects in a crystal;
however, the double-alignment technique is more
sensitive by one or two orders of magnitude. Feld-
man and Appleton* # have shown that a modification
of. Lindhard’s theory of the single-alignment mini-
mum yield x leads to the expression

X =(2 =% sin® a)x? (29)

for the double-alignment minimum yield X/, where
a is the angle between the detector and beam direc-
tions.

The present program has been used to calculate
values of x’. For reasons that will become apparent
shortly, such a calculation tends to require a large
amount of computer time. Therefore, the following
steps were taken to keep this need as small as pos-
sible: (i) Statistical uncertainties up to 10% were
accepted. (ii) Since the effect can be calculated
with better accuracy for larger thermal displace-
ments, gold was selected as the target material.
The beam direction selected was [011], the most
open direction for this lattice. (iii) The depth nec-
essary to avoid surface effects varies as the square
root of the energy, but the yield will be energy de-
pendent at very low energy. Hence, an energy of
1 MeV was chosen as being about the lowest value
at which the yield would be independent of energy.
(iv) The scattering events used to calculate the yield
were those that occurred between 150 and 635 A.
This range avoids the surface peak and first mini-
mum and satisfactorily averages over the deeper
maxima and minima. (v) The dependence on ther-
mal vibration amplitude was studied by using only
two temperatures, 298 and 1200 °K.

The calculation of X’ was done in two steps. The
first found the probability that an incident ion would
strike a lattice atom, and the second computed the
probability that a scattered ion would reach the de-
tector. For this approach one would write

X' = XaXp» (30)

where X, and X, are the probabilities for the two
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steps. It can be seen that ¥, is just the single-
alignment minimum yield x. The computation of x,
is the more time-consuming part of the problem.
While calculating a very accurate value of X,, a
record was made of the thermal displacement of
each struck lattice atom. A lattice atom was con-
sidered to be struck if the impact parameter was
less than one-quarter of a screening length., Pre-
vious calculations®* have shown the cross section
for such an event to be geometrical. After record-
ing a large number of such events, a second series
of calculations was done in which trajectories were
started within a few degrees of the detector direc-
tion. The detector was assumed to have an accep-
tance angle of about 0.3¢,,,, and a record was kept
of the fraction of trajectories reaching it. This
fraction was x,. As a compromise between accura-
cy and computing time, the starting directions for
the second series of calculations were kept within
about 3¢y, , of the detector direction and the contri-
bution from trajectories starting at larger angles
from the detector was estimated from the Ruther-
ford scattering law. This estimated correction was
only ~5% of the total value. Calculations were done
for beam-detector angles of 90° and 180°.

The method just described for determining x, is
a blocking calculation using the special distribution
of starting points selected during the calculation of
X.. Since this is a very inefficient method of calcu-
lating x,, an alternative method was also tried.
This method started with an analysis of the dis-
placements of the struck-atom positions recorded
during the ¥, calculation. As would be expected,
the distribution parallel to the incident direction
was Gaussian with a variance equal to »,. Within
the statistical error limits imposed by the finite
sample size, the distribution in each of the two di-
rections perpendicular to the incident direction also
appeared to be Gaussian but had a variance equal
to 1.16u;. With the distribution of struck atoms
known, a channeling calculation could be done, and
Xp could be equated to the results by means of the
reversibility rule, 2" In the channeling calcula-
tion, #, in Eq. (5) was replaced by 1.16u;, but the
distribution given by Eq. (1) was not altered. The
second method of calculating x, is much faster than
the first, but uncertainties in the distribution of
struck atoms leave them with about the same ac-
curacy. The two methods agree quite well.

The results of the double-alignment calculations
are summed up in the relation

X =v(a)x?, (31)

where v(90°)=1.1+£0.1 and »(180°)=1.2x0.1. The
magnitude of v(a) is smaller and its variation with
a is less in (31) than in Feldman and Appleton’s
formula given in (29). Bggh*® has measured a value
of x'=4x107* for 1-MeV helium ions in tungsten us-
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ing (111) axes. Also for 1-MeV helium in tungsten,
Appleton and Feldman have measured a value of
9x107* at room temperature as well as values at
several other temperatures using (001) axes*® and
a value of 4x10°* using (111) axes.® Equation (31)
predicts a value of 1xX10™* for (111) axes and
1.3x%10°* for (001) axes. The measured and calcu-
. lated values show a large difference in magnitudes
and fairly good agreement in rates of temperature
variation. # Part of the difference in magnitude
may be accounted for by very thin oxide or impurity
layers that the experimenters believe to be present,
but it is unlikely that this can account for the entire
difference. Also, as discussed above for single-
alignment minimum yields, a more accurate value
of the Debye temperature may decrease the differ-
ence somewhat, while inclusion in the calculation
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of energy-loss rates may increase the difference.
B. Planar Minimum Yield

Lindhard® has given for the minimum yield in
planar channeling the expression

X=Zd/dp,

which is independent of energy and temperature.

The measuredvalues of Davies ef al."are consider-
ably higher than predicted by (32). A series of cal-
culations was done with the present program to see
how the results would agree with the experimental
values and to see how the minimum yield might de-
pend on various parameters. The results for the
temperature dependence are shown in Fig, 15 along
with a linear least-squares fit to the calculations.

In contrast to the results for the axial case, the
planar minimum yield shows a linear (or even
slower than linear) dependence on % and the value

of x at #,=0 is not negligible. No analysis in terms
of a density of trajectories and an effectiveness fac-
tor has been made. Figure 16 shows the energy de-
pendence of the minimum yield and effective number
of surface layers along with the temperature depen-
dence of these quantities. Because the values of L
due to the perfect lattice are large for planar chan-
neling, amorphous surface layers should make rel-
atively small contributions to x. From Figs. 16(a)
and 16(c) it appears that L and x satisfy Eq. (25),
but no other empirical analytical expressions for
them have been found in the planar case. Davies

et al.” observed that the energy dependence of x for
protons in tungsten was negligible over the energy
range 2—6 MeV and did not quote the energy at which

(32)
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their reported value was measured. Their observa-
tion is compatible with the weak calculated energy
dependence. The agreement with the experimental
values is much better for the present calculations
than for Lindhard’s formula. The same remarks
made above about the influence of the Debye tem-
perature and the rate of energy loss on the predicted
value of the minimum yield in axial channeling also
apply here for planar channeling.

VI. CONCLUSION

The main results of this paper are given in Egs.
(14) and (17) for axial and planar half-angles and in
Egs. (26) and (31) for axial single- and double-
alignment yields. These formulas have been ob-
tained as empirical fits to calculations made with
the Monte Carlo computer program described in the
paper. Figures 1 and 2 also show important results
on variations of yield with depth that occur near the
surface of a crystal. Equations (14) and (17) with
Table I and Fig. 8 offer a quite accurate and con-
venient method of calculating half-angles. Difficul-
ties with earlier formulas noted by Picraux et al.®
are resolved by these equations. Whereas the pres-
ent results for half-angles are similar to but more
accurate than earlier ones, the result given in Eq.
(26) for the single-alignment minimum yield differs
considerably from the previous one due to Lindhard.
The present form has an energy dependence as well
as a much stronger temperature dependence. A
relationship has also been found between the min-
imum yield and the yield from the surface of the
crystal; it is expressed as Eq. (25). Lindhard’s
expression for the minimum yield gives equally good
results for tungsten, for which the most accurate
measurements have been made, but Eq. (26) should
give better results for other materials having larger
thermal vibration amplitudes. Although the form of
the double-alignment minimum yield given by (31)
does not agree in magnitude with experiment, it is
superior, particularly for temperature dependence,
to what was previously available.

For the model on which the computer program is
based, half-angles can be calculated by the Monte
Carlo technique with a precision of better than 1%,
and presumably Egs. (14) and (17) are almost
equally precise. Experimental uncertainties are
sometimes as low as 5% but are generally 10% or
greater. More precise experiments in the future
may reveal inadequacies of the model. One possi-
bility is that axial half-angles for different lattice
types might not be calculable with one set of values
for k and m. This would not be surprising since the
portion of an axial dip from around ¢, , out to be-
yond the shoulder has been shown® to be shaped by
the shoulders of the various planes that pass through
the axis. It is even possible that different axes in
one lattice type would have different #’s and »’s be-

1545

cause of the differing sets of planes. Other reasons
the theory might fail to agree with more accurate
experiments are inadequacies in the potential-ener-
gy functibn, lack of correlation between the thermal
vibrations of the lattice atoms, or some other fea-
ture of the model. More accurate measurements

to further probe the theory would certainly be desir-
able. In order that additional experiments provide
the best possible test of the theory, the location of
the tilt plane and the depth range in the crystal over
which the measurements were made should be re-
ported, and the divergence of the beam, mosaic
spread of the crystal, and amorphous surface layers
should be minimized with the residual values of
these latter features measured and characterized

as accurately as possible.

It would also be desirable to test the new predic-
tions on energy and temperature dependence of the
minimum yield by additional measurements and to
have better measurements on materials other than
tungsten. Target materials should be selected to
be as free as possible from amorphous surface
layers, and the measuring technique should have
sufficient depth resolution to avoid any influence of
surface variations on the minimum yield. In turn
the theory needs to have the energy loss incorpo-~
rated into it and to make use of the best available
value of Debye temperature. Electron multiple
scattering could be conveniently incorporated along
with the energy loss, which should improve the pre-
dictions of the theory regarding the dechanneling
distance and patterns of emergent beams.
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APPENDIX: CONTINUUM POTENTIAL ENERGIES

In addition to their direct use to interpret experi-
ments, continuum potential energies in which the
discrete charges of the lattice atoms are imagined
to be distributed uniformly along a row or plane
of atoms are useful in understanding the results of
the Monte Carlo calculations presented above and
in providing formulas by which such results may be
summarized.

For the energy of Eq. (2), Erginsoy®! has given
the continuum energy for a static row as

V,s(r) =(22,Z,2%/d) foo\v/a) (A1)
and the continuum energy for a static plane as

V) = (212,Z,e%/A) f,r/a), (A2)
where

Fral) =20, @K o(Bu) (A3)
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fps(u) =Et Yi ehit ’ (A4)

A is the area per atom in the plane, K, is a mod-
ified Bessel function, ;= ,;/B;, and all other quan-
tities are as defined following Eq. (2) or before
Eq. (5).

For a vibrating row, the continuum energy may
be obtained by combining Eqs. (1) and (A1), giving

V) =(22,Z,e%/d) o r?/ud 20 @y 9,(r/uy) , (A5)
where
9,(u) = fom Ko(Buu’) I(,(uu’)e""z/2 u' du’

W =uy/a, and I, is also a modified Bessel function.
For the value # =0, the integral in (A6) can be done
in closed form with the results®?

9,(0) = %eT’El(TIz)

(AB)

and

Vol0)=(22,Z,e%/d) 23; $a,e™ Ey(T)) (A7)

where 7;=385u% and
Eylx)= [y e dy

is the exponential integral.

For nonzero values of u, the integral in Eq. (A6)
has been evaluated both by numerical quadrature
and by expansion in a power series. The power
series is obtained by expanding I, in (A6); the re-

sult is
oo uZn
9,(u)= ,“Eo CPIL A7),

where
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9T = [y Kol2Ti/ 2 B tret at
The first two J’s are

50=%eT‘E1(T1) s

Ji=3[QQ+7)e™E ()~ 1] ,
and the higher §’s can be found from the recursion
relation,

Jp=2n+1+7) I, =12, ,

which is valid for » >1. The power-series result

is

2 0
Val) =22 oy c0m
n=

(A8)
where 0= $7%/u? and
Cp=20; 9,1y /m1?

For a vibrating plane, the continuum energy has
been obtained by Erginsoy®? and is

21Z,Z 6"
Valr) = _’UZ_Z_‘Z 5 Lyem
i
X {e"s"/“ erfc [2'1/2 (ﬁiﬂ - —7):]
a u,
+efit/e erfe [‘2'1/2 (—Bﬂ + r—ﬂ} ,  (A9)
a Uy
where

erfc(x)=2n"1/2 f: et dt

is the complementary error function.
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Experimental results are presented of measurements of the very small magnetic-field-de-
pendent changes in the attenuation Aca of ultrasound (absorptive Alpher-Rubin effect) in pure

single crystals of Al, Cu, Nb, and Ta.

ranging from 0 to 11 kOe, using both longitudinal and transverse acoustic waves.

Measurements were made at 293 K in magnetic fields

Variations

of Aa with both orientation and magnitude of the external magnetic field were studied. Mea-
surements of the dependence of Aa on frequency over the range 5-250 MHz were made. The
results are particularly relevant to the study of induced dipolar coupling in nuclear acoustic

resonance.
pure metals.

I. INTRODUCTION

The influence of a magnetic field on the propaga-
tion of acoustic waves in solid metals was first
considered theoretically by Alpher and Rubin.! The
Alpher-Rubin phenomenological theory predicts
changes in both the acoustic phase velocity (disper-
sion) and the acoustic attenuation (absorption) when
a static magnetic field is applied. Galkin and Kor-
oliuk?® verified the predicted dependence of acoustic

A derivation is given of expressions for the nuclear-acoustic-resonance signal in

velocity on the magnitude of the magnetic field for
longitudinal acoustic waves propagating in polycrys-
talline tin and aluminum. In a comprehensive
study, Alers and Fleury?® verified the predicted de-
pendence of acoustic velocity on both magnitude and
orientation of an external field for longitudinal and
transverse 10-MHz acoustic waves. A review of
the dispersive Alpher-Rubin effect has been given
by Alers.*

The magnetic field dependence of the acoustic at-



