
I'HYSICAL RE VIE%' '8 VOL UM K 3, NU M33 E Q, 4 15 FEBRUAH, V 1971

On the Calculation of the Compton Profile in Crystalline LiH
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The Compton profile for LiH is calcula'ted froln a tight-binding wave function, Tll lnt lu-
sion of the overlap bebveen the hydrogen ions, previously neg1ected in the present context, is
found to be important.

The development of high-resolution methods for
the measurement of brompton x-x ay scattering in
solids' yrovides a particularly sensitive tool for
investigating the momentum distribution of outer-
shell electrons. It thus offers an independent test
of the accuracy of theoretical band calculations,
since the Compton profile appears to depend on the
details of the valence-electron wave functions. In

coDnectlon w1th x'ecent meRsurements on cx'ystRlllne

LiH, 3 Phillips and %'eisa have raised the question
as to how accurate a calculation is necessary to ob-
tain simultaneous agreement with such disparate
quantities as Comyton profile x-ray scattering fac-
tors, and total energies. Phillips and %eisa found

that the valence-electron contribution to the mea-
sured profile in LiH is in marked disagreement with

that calculated from the crystal-fieM wave functions
of Hux'st. The observations indicate that the valence-
electx'on momentum distribution is broader in mo-
mentum space than the distribution obtained fx'om

a superposition of H and Li' wave functions for
either the free ions or the H ion in a Li'-yoint-
lattice crystalline fieM. A fux'ther attempt to im-
prove Hurst's wave functions by orthogonalizing
the H" ion function to the Li' wave function produced
no improvement in the calculation.

In the present payer we report on a calculation
of the Compton px'of118 1D.LiH using R t1ght"blndlng
wave function which earlier has been found to give
reasonable agreement with experiments for the co-
hesive energy and the equilibrium lattice parameter,
and the x-ray scattex ing factors. s'6 Below we will
show that the same %Rv8 funct1on gives reasonaMe
values for the Compton profile as well. This con-
sistent picture is achieved by also including the
overlay between the H" ions uy to sufficient ordex,
The wave functions of the H ions axe rather ex-
tended compared to the, dimensions of the lattice,
which results in large overlay integrals and a piling
up of charge at the H" sites. As a consequence, the
distribution in momentum syace is broadened.

Given the n-electron wave function 4(r„rz, ..., r„),
the wave function in momentum spRce is defined by
the transformation

y (p„p,, . . . , p„) = (2z) '"~' fdr, drz. . .dr„
wgk / III

x exp(- Q pg
' rg)@(rg ~ ran ~ ~ rn)

(Atomic units are used throughout this work. ) We
ma, y define the momentum density as the expecta-
tion value

p (p) =&» (p-pi)&, (2))el
where the average is taken over the wave function
in Eq. (l). Performing the integrations in Eq. (2),
we may then express p(p) as

P(y)=, dP
' dr'e"""y(r, P'), (3)

(2z)'„

where y (P, P') is the first-order density matrix in

configuration space defined as

y (r", r') =nfdr, .. dr„e'.(P', P„.. . , P„)

xg (p, p~, , p )

Ãow the Compton scattering profile J(z) for a poly-
crystalline solid (where z is the initial component
of momentum along the scattering vector) may be
obtained from the spherical average (p(p)) „of the
momentum distribution by integration, '

&(z) =» f,"„&p{p)&.,pdP. (5)

Z(z) is the quantity io be calculated below. By
making the spherical average the anisotropy is ig-
nox ed in the yresent calculation.

For an ionic crystal the fixst-order density ma-
trix (4) is in the case of a single determinantal wave
function with tight-biriding orbitals given by

p (P, r') =» X,*(r') d, ~ Xa(». (6)
gilt

In Eq. (6), X~ are atomic functions centered at the
different lattice sites, and h~„' are the elements of
the inverse of the overlap matrix. The factor of 2
comes from the spin summation over doubly oc-
cupied orbitals. The choice of h, ~= 5~„ in Eq. (8)
corresponds to a superposition of free-ion solutions.

In the cRse of LiH we hRve ln oux' calculat10DS
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assumed the simple electronic configuration
Li' (Is)s H (Is)s, where the ls functions are the
screened hydrogenic functions

g(r) =(n»/ z)
t s e ur (7)

3.0--

The average momentum density is then, according
to Eqs. (3) and (8),

(p(p))ar &2 ~ (n2 p2)B (n 2 p2)s g»

2.0-

10--
sin (p [R, -R»( )

P)R, -R~~ (8)

In Eq. (8) the vectors R define the lattice sites.
Inserting the expression (8) in Eq. (5), we obtain
the final expression for the Compton profile in LiH
as

Z(z) = J„-(z)+Z„.(z),

where

32
~» ~a-.» (ns-n»)

sin (p ) Rs- -R» ) ) 1

I Rs- R» I (na-+P ) (n»+P )
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FIG. 1. Compton profiles for crystalline LiH (four
electrons per LiH pair). Curve (i) corresponds to a
plain superposition of ion solutions. In curve (ii) the
nonorthogoriality between the first unlike nearest neigh-
bors is taken into account. In curves (iii) and (iv) the
nonorthogonality is included up to the second and fourth
shell, respectively. Curve (v) is the result of an orbital
splitting with the fourth shell of neighbors included.
Curve (vi) is the contribution from the Li' free-atom
(1s) core. Curve (vii) is the spherically averaged ex-
perimental results (Hef. 2).

(10)

and similarly for J„,+ (z). The normalization of

g(z) is in accordance with Phillips and Weiss.
Eq. (9) seems to be a natural subdivision of the
total Compton profile into the individual ion con-
tributions.

The Compton profile, as defined in Eqs. (9) and

(10), has been calculated numerically with nL, +

= 3-,'6 = 2. 6875 and with three different choices
of n„-, namely, na =1 @=0.8875 (obtained from
minimization of the energy of the free iona), na-
=0. 7208 (from minimization of the total crystal
energy ), and n„- =0. 77242 (from Hurst's closed-
shell crystal-field calculation' ). In the calculations
we have successively included shells up to the
fourth order, i. e. , 32 neighboring ions. In Fig. 1,
we display the results for z„- =0. 7208, noting that
the two other choices for o.„ lead to unimportant
changes. The curve (i) in Fig. 1 shows clearly the
inadequacy of a superposition of a free-ion solutions
in the present contest. The curve (ii) is the result
of orthogonalizing the nearest unlike neighbor wave
functions. As was noted by Phillips and Weiss, ~

this extension leads to an insignificant improvement.
A major improvement [curve (iii)] in the calculated
Compton profile appears when the overlap between
nearest negative iona (second shell) is included.
As shown by curve (iv) the inclusion of also the next
nearest hydrogen ions (fourth shell) essentially con-
firms (iii). For this reason we have not carried
the calculations further; with increasing distance

lR& -R~ I the sine function in the integrand of Eq.
(10) oscillates faster and the resulting integral is
therefore small. It is noteworthy that the numeri-
cally important changes upon orthogonalization ap-
pear in J'a (z). This is because of the large overlap
between the hydrogen ions and the strong deforma-
tion of these ions when forming the crystal.

Incidentally, we have found a small but interesting
improvement in the results above if the restraint
of doubly occupied orbitals is relaxed and an orbit-
al splitting of the up- and down-spin electrons at
the hydrogen sites is allowed (also referred to as
an open-shell configuration or unrestricted Hartree-
Fock). In this case the formulas above should be
supplemented with a summation over spin. The
curve (v) in Fig. 1 has been calculated with the or-
bital exponents taken from Hurst's' open-shell
crystal-field calculation, i. e. , n„=1.0074 for
spin-up electrons, let us say, and n„- = 0. 57146
for spin-down electrons. The improvement ob-
tained from splitting the orbitals gives a hint that
this type of correlation splitting might be a real
effect.

In summary, we have shown that it is possible
to calculate the Compton profile in LiH from a
tight-binding wave function, if only the nonorthogo-
nality between the hydrogen ions is taken into ac-
count properly. In view of the simple hydrogen-
like orbitals chosen, the agreement with the experi-
mental results is reasonable (& 10%). The tight-
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binding wave function used also gives reasonable
values for the cohesive energy and the lattice
parameter and the x-ray scattering factors. '6
The present calculations shows that the distribution
in momentum space is broader than the one obtained
from a superposition of free-ion solutions.
Note added in proof. After the submission of this

work another calculation of the Compton profile in
LiH has appeared [W. Brandt, Phys. Rev. B 2,
M1 (19VO)]. The wave function of Brandt, Eder,
and Lundqvist (Ref. 5) is also found to account in a
satisfactory way for the measured Compton profile.
We are indebted to Professor Werner Brandt for
sending us'a copy of his work.

*Present address: Cavendish Laboratory, Cambridge,
England (until Oct. , 1971).
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Electronic Properties of Liquid Metals, N. W.
Ashcroft and W. Schaich [Phys. Rev. B 1, 1370
(1970)]. The following typographical errors have
been found: In Eq. (39), —5», &~ should be re-
placed by+, 5i, , r~

~ ~; in Eq. (40), -5i, , ia ~ should

be replaced by + 5», iz ~ ~,' Eqs. (51)-(53) should

all include on the right-hand side an extra factor
of (- h~/2mk~) multiplying the derivative of s„
Eq. (56) should include a factor of v(x) in the sec-
ond term on the right-hand side; Eq. (B6), instead
of —,

' v(2mkz/k) ~ ~ ~, should have ——', &(2mkr/k );
and Eq. (BS), instead of a factor (I/e), should have

(i/e). We have also discovered an algebraic error
in Eq. (B11). Instead of the factor (- 2i/3vZ), one
should have (- 2/3'). The definitions of the G'~

and Gs' [Eq. (42)] are then changed to

G (lg, lm) = G (lg, lg) =+ (2/3vZ)(2lg+ I)' 3(2lg+ I)' s .

These corrections substantially change the numer-
ical results as presented in Sec. IV, Figs. 1-4,
and Table I. For instance, the iterated resistivity
[still within the muffin-tin approximation and using

Eq. (49)] now appears to tend to 5.9, 1.15, and

4. 7 times the experimental value for Na, Zn, and

Al, respectively. The difficulty with the optical
theorem is, however, almost eliminated. For
further discussion of the corrected numerical re-
sults see W. Schaich, thesis, Cornell University,
19VO (unpublished).

Ge-Aqueous-Electrolyte interface: Electrical Prop-
erties and Electroreflectance at the Fu»damental
Direct Threshold, D. E. Aspnes and A. Frova
[phys. Rev. B 2, 103V (1970)]. The numerical
prefactor in Eq. (4. 3), which relates the field-in-
duced ref lectivity change ER/R to the field-induced
change in the real part of the effective dielectric
function (EE,), should be 0. 0432 instead of 0. 0109
as shown in Eq. (4. 3). This change does not affect
the experimental electroreflectance data (given as
bR/R vs photon energy or electric field strength),
or conclusions based on features of the experimen-
tal electroreflectance line shape. The theoretical
amplitude predicted by each of the three simple
models will change as follows.

In the low-field limit, the peak-to-peak ampli-
tude of hR/ pRredicted by the n = 1 exciton line,
continuum exciton, and Franz-Keldysh models are
now calculated to be 72&&10 . 6. 3&&10, and 1.25

&10, respectively, compared to the experimentally
observed value of 7 X10~ at this field (h, = 1000
V/cm). In the high-field limit, the discrepancy be-
tween experimental measurement and the predic-
tions of the Franz-Keldysh theory modified by the
field inhomogeneity is now 3 to 4 instead of 13 to
15, with the experimental number being larger.

This correction does not change the main con-
clusion of this section: that experimentally ob-
served changes in bR/R are much too large to be
described by the Franz-Keldysh mechanism, and


