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erties, have similar phonon-focusing characteris-
tics. The latter are directly relatable to the simi-
larity in the ratios of their elastic constants, as
mentioned above. This fact constitutes particularly
strong evidence, in addition to the experimental
evidence from the other alkali halides, for the va-
lidity of the focusing theory presented.

In view of these considerations, it is concluded
that the correlation between the intensities of the
pulses observed experimentally and those predicted
theoretically from the elastic constants of the ma-
terials studied is sufficiently high to confirm the
basic correctness of the theory used and the valid-
ity of the various assumptions made.
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The theory of paraelectric resonance (PER) and relaxation is reformulated to allow a con-
sistent treatment of dynamic lattice processes, even in the case when coupling to the lattice
is strong. A simple model Hamiltonian is used and certain response functions are calculated
without using perturbation theory. It is shown that the main effect of the strong lattice cou-
pling at low temperatures is to induce a renormalization of the tunneling parameter of the para-
electric dipoles. The structure of phonon sidebands in PER is discussed. The theory pre-
dicts a strong transfer of intensity from the PER lines to the sidebands above a certain charac-
teristic temperature. A treatment is given of paraelectric relaxation using the same techniques.
A calculation of the temperature dependence of dipole-lattice relaxation time agrees well with
experiment with adjustment of two parameters.

I. INTRODUCTION

There has been a, good deal of recent interest in
"paraelectric" impurities in solids; that is, im-
purities which have electric dipole moments and
rotational degrees of freedom. ' The microwave
spectroscopy of such impurities has come to be
known as "paraelectric resonance" (PER). In a
PER experiment, an external electric field is ap-
plied to a sample containing paraelectric impurities,

and the absorption of microwave radiation of fixed
frequency is observed as a function of applied elec-
tric field. The analogy with paramagnetic reso-
nance is obvious.

The best-known examples of PER are the experi-
ments performed on substitutional OH impurities
in a KCl host lattice. In this case, the OH aligns
preferentially along the (100) axes of the host.
Microwave-induced 90' tunneling transitions have
been observed by several groups. 3
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In previous treatments of this phenomenon, the
host lattice has been assumed to provide a static
potential with minima in the proper directions; the
dipole rotates by tunneling between these minima.
Such an approach ignores the possibility of dynamic
lattice processes such as phonon emission and
absorption. The present study attempts to go be-
yond the static approach. We will be primarily con-
cerned with calculating resonance linewidths and
relaxation times arising from the impurity-phonon
interaction.

That such a treatment is desirable is shown ex-
perimentally by the strikingly large linewidths of
the observed resonances, much larger than those
of typical magnetic resonances. It seems clear
that these broadenings arise either from inhomo-
geneities (strains) in the host, or relaxation due to
phonons. In either case the lattice-impurity cou-
pling is a large effect.

It is also clear on physical grounds that impuri-
ties such as OH are strongly affected by lattice
deformations. The OH impurity is somewhat dif-
ferent in size and quite different in shape (it is
not spherical, of course) from the Cl it replaces.
The lattice must deform to accommodate its sub-
stitution, and this deformation depends on the ori-
entation of the OH .

This situation is quite different from that of
paramagnetic impurities which are usually weakly
coupled to lattices. The main point of the theory
we give is to treat the impurity-phonon interaction
soithout assuming it to be weak. This contrasts
with the treatment of some authors who have used
perturbation theory, as in the paramagnetic case,
to calculate linewidths and relaxation times for
paraelectric defects. ' We will comment more
on the work of these authors below.

It is important not to misjudge the results of the
strong coupling. We will show that, at low temper-
atures, the major effect of the phonons is not to
enormously broaden resonance lines, but to renor-
malize certain coupling constants. We attribute
the broad lines found in PER to inhomogeneous
strain broadening, as has been previously sug-
gested.

It might be maintained that large random pertur-
bations of OH energy levels are inconsistent with
the successes of the static theory in predicting
thermodynamic functions such as specific heat.
For example, the calculations of Shepherd and
Feher of Schottky anomalies due to OH in KCl
agree very well with experiment, even though sharp
levels of a single energy are assumed. Might we
not expect that random strains would "wash out"
the specific-heat peaks of the simple calculation?
We deal with this objection in Appendix A. The re-
sult is that, as usual, specific heat is a poor indi-
cator of the details of the energy-level distribution.

The low-lying (rotational-tunneling) levels of a
paraelectric impurity are relatively complicated.
We simplify the problem by considering a two-level
system interacting with lattice vibrations. Our
Hamiltonian is

0++I &

3Cp = csg —npsq+Qtt (deaf gg i

Xz —zsg „" W„(af, —af) .

(la)

(Ib)

(lc)

Here and elsewhere@=1, and s„, s„and s, are
spin- —,

' matrices. The first term in Ko represents
the two states ("up" or "down" ) of a paraelectric
impurity located at the origin. The tunneling be-
tween up and down orientations is represented by
the second term; 60 is the tunneling matrix ele-

It is most likely that low-temperature PER
linewidths do not arise from dynamic processes.
However, as we shall see (Secs. III and IV), there
is a characteristic temperature To such that for
T & To, PER lines do begin to broaden and decrease
in intensity as a result of the lattice coupling.
Also, dipole-lattice relaxation times can be directly
measured. For these reasons a careful treatment
of the dipole-phonon interaction is necessary.

Some of the results we will derive here have
been extensively studied in quite different contexts;
there is a strong resemblance between our treat-
ment and many results in the theory of F centers
and other optical analogs of the Mossbauer effect.
The fact that phonon coupling does not necessarily
lead to broadening has long been realized in those
fields: The unbroadened spectral transitions give
rise to so-called "zero-phonon" lines. Below we
will show that PER lines can be identified as zero-
phonon transitions.

In Secs. II-V we will treat dipole-phonon interac-
tion in terms of a simple model. The model, which
we believe to contain the essential physics of the
problem, is explained in See. II, and certain re-
sponse functions important for the interpretation
of PER are defined. In Sec. III two of the response
functions are calculated in the approximation that
lifetime effects may be neglected. No assumption
is made about the weakness of the lattice coupling.
In Sec. IV lifetimes of excited states of the dipoles
are calculated, and comparison is made with re-
laxation experiments. In Sec. V we discuss the
applicability of our results.

A recent paper by Pire and Gosar' on paraelastie
relaxation bears great similarity to our treatment.
Their approach is more formal than the present
one, but a number of the results are identical.
Our emphasis is quite different, however; in

Sec. II-V we will point out several similarities and
differences between the two treatments.

II. MODEL HAMILTONIAN AND RESPONSE FUNCTIONS
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g.(t)=e(t)([s, (t), s„(O)j) . (4)

Here 8 is the step function, the brackets denote a
thermal expectation value, and s~(t) is a Heisen-
berg operator. The frequency-dependent suscep-
tibility X3„(id) is the Fourier transform of X„(t):

x.( )=—
' *"'x.() .1

2mJ

The imaginary part of X8 (v) is proportional to the
power absorbed from an external field. From Eq.
(4) we can derive standard results relating power
dissipation to the fluctuations of the system':

imX6. (~)-=Xg'. (~) = l(1 —s ""s')

x— dt e'"'(s, (t)s„( ))0.
«CO

Here k~ is Boltzmann's constant and T is the tem-
per atur e.

In paraelectric resonance the quantity that is mea-
sured is g„, since an external field in the z direc-
tion couples to the dipole through V(t)s, . In PER,
the operators s„and s, do not correspond to com-
ponents of the dipole along the x and y direc'. ions
in space. We ean think of the z axis as the "physi-
cal" axis and the x axis as the "tunneling" axis.

ment. Estle and others have previously used this
model. ' The third term is the Hamiltonian for
the lattice vibrations: a„" 2nd a„- are phonon annihila-
tion and creation operators. The interaction be-
tween the dipole and the strain of the lattice is
given by K„ the W& are coupling constants. The
sign of the interaction depends on the orientation
of the dipole; i. e. , the dipole pulls or pushes on its
neighbors depending on its orientation.

Many of the results in Secs. III and IV are inde-
pendent of the exact form of the coupling. For nu-

merical work we need a model for Wp and also for
the lattice spectrum. In Appendix B we derive an

expression for W," in the Debye model, using a
method similar to one used previously by one of
the present authors. " The result is

Wf = (2Wovg(uD/3N)~~2 .

Here AD is the Debye cutoff frequency, N is the
number of unit cells in the crystal, and Wp is a
dimensionless parameter related to the response
of the lattice to external strain. We regard Wp as
an adjustable parameter.

In a, PER experiment we apply microwave radia-
tion to a sample containing paraelectric impurities.
This adds to the Hamiltonian of Eq. (1) a term of
the form

—V(t)s„.
The effects of the time-dependent external field
V(t) are described by the generalized susceptibility

- is S ~ &isgS

S = P„.(W„-/w„-) (a„-+a;) .

A simple calculation gives

H= Hp+H, + C,
IIO = es, +Z„"v„- a„.a„-,

If, = ——,'ao(s e' +s, e '
) .

(»)

(sa)

(Sb)

(Bc)

Here C is a constant which we discard. The off-

diagonal part of the new HBmiltonian H, is propor-
tional to the small parameter 60. (Note that we

regard ~p as small only as a formal device. In

particular we do not require Ao/e & 1. ) The "large"
off-diagonal terms have been removed by redefin-

ing the phonoas to be vibrations around the equilib-
rium positions of the distorted lattice. The dis-
tortion of the crystal depends on the orientation
of the dipole, as does the nature of the "new" pho-

nons.
When radiation is applied to a system described

by Bp, the susceptibilities will exhibit a sharp
line at & = e (from "flipping the spin") and a, con-

tinuum of phonon sidebands. The off-diagonal
operator H& will induce relaxation processes. Thus

for appreciable ~p the sharp line will be broadened.
It is useful to illustrate the behavior of the

system by calculating p", . This function does not

have a direct physical interpretation in PER, al-
though in spin-resonance work g, is the response
to a transverse magnetic field. From Eq. (6) we

note that y, is determined by the quantity

p(t) =(s (t)s, (O)) .
We cannot calculate p(, t) exactly; however it is

well known that the value of p for &o= 0 [which we

denote by po(t)] can be evaluated. '"We put

III. CALCULATION OF X AND X„

The response of the system described by Eq. (1)
to an external field could be studied in at least two

ways. If the dipole-lattice coupling were small,
we could treat 3Cp as a zero-order Hamiltonian

and X~ as a perturbation. This is the approach of

Vredevoe and of Dick. ' The eigenstates of 3Cp are
the zeroth-order states in this method; they are
linear combinations of the up and down states with

energies + —,'(e +so)' '.
In this paper we want to treat K, exactly. We are

forced to regard the tunneling term Bs a perturba-
tion. In our zeroth-order solution, the dipole points

either up or down with energies +-,'&. Our results
are valid only when (b/e) « I, where 6 is the ob-

served tunneling parameter. (As we shall see,
6& bp. )

If we neglect terms of order 5p, the Hamiltonian

can be exactly diagonalized by a unitary transfor-
mation. We put
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p (t) e-i&i ( eis(t) e-is(o))

g 886/2 /Ie66/2 e-86/2~+e

(i2a)

(12b)

The brackets (),„indicate the remaining thermal
average with respect to the phonons and P = (ksT) '.
The operator S(t) is given by

S(t) = gi-, Vf(ai", e '"&'+ aie'""'), (Is)
k

where V"„=Wg/idi-, . The factor to be thermally
averaged in Eq. (12a) can be thought of as a kind
of overlap integral between the distortions of the
lattice corresponding to the up and down states.

By applying a standard identity' we can put
Eq. (12a) in the form

po(t) =n e "'exp[-Zi", V„- isin(&i-, t) ]

x (exp(Zg V.„i[a„-(e '"&' —1)+ a„.(e '"&' —1)]})».
(14)

The last factor in Eq. (14) may be evaluated using
Bloch' s theorem

(e""'"'" '"') =exp[ —
~y~ (n„-+-,')] .

Here ni", = (eo"I- 1) ' is the Bose distribution func-
tion. Combining Eqs. (14) and (15) we find

po(t) =n e "'R(t), (16a)

R(t) = exp@& V„-'[(n&+1) (e '""'-1)+n„-(8"f'- I)]]
(16b)

The single function R(t) contains information about

absorption and emission of any number of phonons;
the term involving (ni, + 1) describes emission and

the term in nk absorption. We can see this by
writing the response function X, :

y", (id) = —,'(1 —e o")n R(& —e} (17a)

where R(oi) is the Fourier transform of R(t). The
function R(oo) has a useful symmetry property,

R(- io) =e '"R(o~) . (1Vb)

This can be proved most easily using Eq. (12a).
We sort out the contribution from phonon processes
of various orders by expanding the exponential in

Eq. (16b):

R (oi —s) = exp [-Zf V'- (2n„"+ 1)]

x (6(N e) yQf V [ni, 6(oi —ep oui, )

p (t) =(e'"o's'e '"ois', ) .
Here s', are the transformed operators

e-lsgS~ efg S

[cf. Eq. (7a)]. The spin matrices appearing in
the exponents in Eqs. (10) and (ll) can be untangled
by standard techniques. If we then perform the
thermal average over dipole orientations, we find

+ (n„-+ 1)5(o~- e —oo„-)]+ ~ ~ ] . (18)

The first term in braces is the unbroadened "zero-
phonon" (resonance) line; the second describes
single-phonon emission and absorption, and so on.
The terms with phonon assistance are not "relaxa-
tion" processes. They are simply sidebands. Re-
laxation is described by H j, which we have neglect-
ed so far (see Sec. IV).

This division between diagonal phonon terms
(which lead to sidebands) and off-diagonal terms
(which give rise to relaxation) is exactly the point
of view taken in treating zero-phonon lines in op-
tical spectroscopy. The origin of our off-diagonal
term is quite different from the relaxation terms
in optical problems; there is no optical analog to
tunneling. Nevertheless, in the absence of relaxa-
tion it should not be surprising to find many fea-
tures of Eq. (18) which are familiar from previous
work. For instance, each term in Eq. (18) is re-
duced by an exponential factor in front which has
the form of a Debye-Wailer factor; it indicates how

much oscillator strength has been transferred from
the zero-phonon line to the sidebands.

In the Debye model we use Eq. (2) to find the
standard result, for k~T «&~:

exp[ —QgV (2n"„+1)]=e

Wq-— ( ', m)(ksT/oiD) —Wo=T /To .

(19)

(20)

The characteristic temperature To was introduced
by Gosar and Pire' in a context similar to this one.
It is a useful parameter: For temperatures above
To-induced multiphonon absorption and emission
becomes important. As the sidebands grow with
temperature, the zero-phonon line decreases in
intensity. Well below To the zero-phonon line is
reduced only by the constant factor e

The strong temperature dependence e 0 of
the intensity of the zero-phonon line is a well-known
effect. It seems not to have been previously no-
ticed that this effect is probably the reason for one

of the striking eatures of PER. It is found that
PER lines of OH in KCl are relatively insensitive
to temperature until T = 10 'K. Then the resonance
rapidly disappears into the background, ' If we as-
sume that the lines are inhomogeneously broadened,
and that To= 10 'K, we have a simple explanation for
the phenomenon.

The expansion in Eq. (18) is not useful for the
actual evaluation of R(oi). We will calculate Rl, io)

somewhat differently in order to see in detail the
structure of the sidebands. In the Debye approxi-
mation, the sum appearing in Eq. (16b) can be
written



1476 I.. M. SANDE R AND H. B. SHORE

2 W'p &D 2 cosgg= —&p —Wq+ 2 dxx g„+e '"'
(Og)

X

p

(21)

First, suppose T =0. Then only the second term
in brackets survives. This term describes emis-
sion of zero-point phonons. Then,

R(ur —e) = e o 5(~ —q)

+e o e'"" exp~-o dxxe'"'
~

—1 dt.
JO

(22)
The integral in this equation can be approximated

by the method of steepest descents if S'p» 1,

R(~ —~)= e o5(ar —&)+(oWo ~')-"'
x exp[ (ia —e ——,

'
Woe~) /Wo+D] .

(2S)

The zero-phonon line (the first term) is accom-
panied by a Gaussian sideband resulting from pho-
non emission. What makes this case appear differ-
ent from former work on zero-phonon transitions
are the orders of magnitude involved: The side-
band is centered at v = —,

'
Wpco~+ &. This frequency

is very much larger than & for any PER experi-
ment. For very low temperatures (T«To), the
resonance line will stand alone, isolated from the
sideband. The only effect of the lattice coupling on
the resonance line at this stage is to introduce a
Qebye-Wailer factor'. This simple result goes a
long way toward explaining the success of the stat-
ic-lattice theory of PER.

For finite temperatures, the high-frequency part
of the susceptibility is essentially unchanged as
long as k~T «~D. However, for smaller frequen-
cies & = k~T the effects of thermal phonons be-
come important. In this case we let the upper lim-
it of the integral in Eq. (21) become infinite and
introduce a convergence factor e " in the second
term of the integrand. These approximations lead
to a power-series expansion for R(&u), valid for
k T co & (d

i (H p+H ~) t -i (Hp+H ) t (26)

We calculate p, to the lowest nonvanishing order in

hp.
In what follows we take the thermal average

using a partition function tr(e "o), and a corre-
sponding density matrix. This is somewhat incon-
sistent because the correction factors are of the
same order (&oo) as the term we will calculate. How-
ever, these corrections are not important for
finite frequency components of p.

We proceed by performing another unitary trans-
formation on the Hamiltonian to eliminate terms
linear in ~p:

e' o lf e ' o =IIo+O(&o) . (26)

Here X is a Hermitian operator to be determined
below. Now Eq. (25) can be rewritten, to the low-
est order in ~p, as

The sideband portion of R(ar) is continuous and
does not vanish as co passes through zero; thus the
sideband intensity due to thermal phonons is not
necessarily negligible in the vicinity of the reso-
nance line. Since W'p+ W', can be quite large in
paraelectrics, the intensity of the sideband inte-
grated over the width of the zero-phonon line (cf.
Sec. IV) could exceed the intensity of the zero-pho-
non line, and the resonance could be "swamped" by
the featureless sideband. It is not clear whether
this effect would be observable in PER.

We now turn to the calculation of y,", which is the
quantity of physical interest in PER. It is easy to
see that neglecting terms of order bo (as above)
will give )(,",(v) =0 for &F40. This is because the
only term in the original Hamiltonian [Eq. (1)]which
connects up and down spins is the tunneling term,
which involves Dp. We must use the full Hamilto-
nian H=Hp+H, .

From Eq. (6) we note once more that we need only
calculate

p, (t) =(s, (t) s, (0))

R(w) = e o i 6(~) sot - -isof -' (27)

-w -w 3R
[1 —e '"]
p~ 20

xP & D~W~'— (24a)
g=p e=p

This expansion is derived, and a table of the first
few coefficients D& is given, in Appendix C. Each
value of j+k in the summation corresponds to a
term in Eq. (18); the term in (W, )~'" isa (j+k+1)-
phonon process. We will find it useful below to
have a series in ascending powers of temperature.
The sum in Eq. (24a, ) can be rewritten:

ib, pX - ib pX
8 g (28)

=s, —i&o(xs, —x's )+ ~ ~ . (29)

Here we have written X= (xs, +x~s ). The new op-
erator x involves only phonon operators. If we in-
sert Eq. (29) into Eq. (27) and perform the trace
over spin variables we find

p, (t) = —,'+ &oo [n, e"' (x(t) x')»

[cf. Eqs (10) and .(11)]. Expanding Eq. (28) yields

s, = s, +i&o[X, s,]+ ~ ~ ~,

(24b) +n e-'"(x'(t)x),h], (80a.)
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e~86 I & / (eB~ /2+ e-s~ l a
) (30b)

~( ) 1 6(~) ~ g2 Z-lg e-BEg
aQ

x [n. 64+&. Eb-+~ ) l &six l» l'

+n 6(~+E. E, -~)l(bl«&l']. (31)

In this equation Z is the partition function for the
phonons, and la) and ~b) are complete sets of
states of the phonons.

The matrix elements of the operator x are found
from Eq. (26). We proceed in a standard way, '7

expanding the left-hand side and comparing coeffi-
cients to find

&x + [Z u) „a,'a„x]= —,
' i e ". (32)

Taking matrix elements between ~a) and Ib) gives

) =-;i&.le-"lt )/E. -E,+.~ (33)

Finally, Eq. (33) and Eq. (31) together imply

V(~) = l ( 6(~)+ (~0/~')

Here, as in Eq. (12), ()» indicates the remaining
thermal average with respect to phonon variables.

The Fourier transform of Eq. (30a) can be writ-
ten

from Eq. (35) by taking the limit u&/e-0 in the ar-
gument of the R's, and replacing &u by &u2+ (1/Tq )
in the denominator (see Sec. IV). The high-fre-
quency (+ =u&z&) behavior of our expression is not
reproduced in Pire and Gosar. This may be traced
to the fact that they evaluated their Green's func-
tions only near the poles = 0, + ~. Our treatment,
on the other hand, is valid for all frequencies.

The susceptibility y,", (~) as given by Eq. (35) is
"second order" in &o; thus H, is regarded as a
small perturbation even though &o can be much
larger than ~, ~, or k~ T. This can be clarified
by noting that the expansion of Eq. (29) is termi-
nated at first order in &o, implying that f, is not
very different from s„ i.e. , that the eigenstates
of the system are closely approximated by the di-
pole-up-dipole-down states, rather than symmetric
and antisymmetric combinations of those states.
To see what limit this places on the magnitude of
+0 we can write down the f sum rule for X,",

f d(o(o X,",(w) = ——,'([[X,e, ], s,])=-,'& (s„) (36a)

and require that (s„)« l. Using Eqs. (35) and (23)
for y,", (&u) in the above integral leads to &0 (s„)

2 Q/ (3 Wo(olj ) y from which we obtain the condition

x [n R((o -~)+n, R((g+ ~)]) . (34) ~o" &oa (36b)

Now from Eq. (6) we find the susceptibility

X,",(&o) = (&', /6&') (1-e '"
)

& [n R(& —~) +n, R ((o + a) ] . (35)

The two terms in brackets correspond to raising
or lowering the spin.

The physical susceptibility X„has a very similar
form to &, [Eq. (17)]. Our former discussion
applies here as well: We now have two symmetri-
cally placed resonance lines, two sidebands, etc.
The Debye-Wailer factors which we discussed
above have a very interesting consequence in Eq.
(35); since each R(&) is multiplied by an exponen-
tial factor, the net effect is to renormalize the
tunneling parameter ~o. In fact, we can put

~3 ~2 -wo - &&o~
In this equation & is the "observed" tunneling
parameter; note that we can easily have ~ « ~o.
Renormalization of this type has previously been
discussed by one of the authors. "

Equation (35) is similar to the final result given
by Pire and Gosar for paraelastic systems. Pire
and Gosar have included relaxation in their treat-
ment, while we have not yet done so. Thus near
& =+ ~, we find sharp zero-phonon lines, while
Pire and Gosar find Lorentzians. Near fg = 0, our
phonon sidebands reduce to the low-frequency
Debye relaxation term of Eq. (62) in Ref. 9. We
can obtain a term of precisely the Debye form

The theory presented here is thus a "strong-cou-
pling theory" in the sense that S~ must be greater
than a minimum value in order for Eq. (35) to be
valid. However, the condition Eq. (36b) is not at
all restrictive, and will always be satisfied if 5'o

&1, since ~o must be considerably smaller than
the constant h~/2I which describes the splitting
between rotational energy levels of the dipole in
free space (=27'K for OH).

IV. RELAXATION

The off-diagonal part of the Hamiltonian H& is
proportional to the parameter &o. In this section
we will consider its effects by using perturbation
theory.

Our relaxation Hamiltonian H& is quite different
from that used in optical problems. It is usual to
include relaxation effects by adding an off-diagonal
phonon-coupling term to the Hamiltonian. We ex-
pect such terms to be negligible in paraelectrics.
Instead, all of the "spin-flip" terms here arise from
a combination of tunneling and phonon emission or
absorption. A formal similarity to the usual treat-
ments may be seen by expanding the exponentials in
Eq. (Bc) to first order in S. In this section, as
above, we will avoid making such expansions so that
our expressions will be valid for strong coupling.

The operator H& gives rise to two effects: a shift
in resonance frequency away from (d = &, and relaxa-
tion effects such as the broadening of the zero-pho-
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non lines. The first phenomenon is most simply
treated by taking the thermal expectation value of
Hg.

&aI&=--'&O(S &e"&+S,(e-"&)
1~ / - {Wo+WI)/S - {Wo+WI)/S

)2 p Ks-e

= -&s„. (3V)

I/. , =2, Z-Ig ~&;.~a,
~

5, -& ~'

Xe S ~ 5(E, —E{,+ g)

1~8 f~ df {BI/ S I{I-IIS
&

=-,'II ~', II(~) . (38)

The notation here is similar to that of Eq. (31).
We have again neglected corrections to the density
matrix, which in this case give rise to terms of
order &p. In the same way, the down-to-up transi-
tion rate can be shown to be

1/7', = s{I&OA(- E). (39)

Thus the relaxation time T& for the dipole to reach
thermal equilibrium is given by

1/T, = I/r, +I/~, = ,'w~', [E(e)+If-(-e)]. (40)

This result gives the dipole-lattice relaxation time
of a paraelectric impurity to arbitrarily high orders
111 "the pllollon couplillg. Tile saIIle fullctloII R((g)
which described the phonon sidebands occurs again
in this quite different context. Once again, the re-
normalized tunneling parameter & appears, since
each term in brackets in Eq. (40) contains a. factor

-Wp-&'y

The expressions for R(rg} given in Sec. III can be
used, together with Zq. (40), to evaluate the life-
time. From Eq. (24) we can find the "one-phonon"
contribution

In deriving this equation we have used Eqs. (15),
(19), and the definition of the renormalized tunneling
parameter 60. If we add this part of HI to Ho [Eq.
(8b)], we find a (temperature-dependent) shift of the
resollance frequency from E to (f +& ) . If we
were to attempt to find the shift of the resonance by
using the first two terms of the original Hamiltonian,
[Eq. (lb)], we would find (e +&0)'/ . Since &«&0
for strong coupling, the latter answer is entirely
incorrect; it arises from the neglect of large terms
1n Ri ~

If our assumption ~ «& holds, then the shift of the
resonance frequency is a small correction; hence-
forth we will neglect it. Lifetime broadening in-
duced by 8& is much more interesting.

With an off-diagonal term present in the Hamil-
tonian, a dipole can spontaneously change its state,
e. g. , from up to down, while emitting phonons. The
rate for this process is given to order &p by the
Golden Rule

(I/TI){'I =3WIp e& /2v)coth(spa)

= (3o'/u, T', w) T .
In the second line we have assumed p«& 1. In the
temperature region 6 «kBT«kz Tp the relaxation
time is proportional to T and independent of &. Re-
sults of this type have been derived by several
authors using simple perturbation theory. ' ' The
only difference we have introduced by our more
sophisticated treatment is to replace &0 by b (T= 0)

- W'p

When the temperature is raised until T= T„
multiphonon processes become ixnportant. Dick
and Strauch and Vredevoe have treated this situa-
tion by using second- and higher -order perturbation
theory. They find in the Debye mode!. terms in T
(from two-phonon processes), T', etc.

Our treatment gives similar results with an im-
portant exception: We have a temperature-depen-
dent tunneling parameter &. When T= Tp, & starts
to vary appreciably with temperature. We can il-
lustrate the situation by using Zqs. (24), (40), and
(41) to write

e- T'2/ Tp Dp

For convenience, we have supposed that «~ kgTp
(this is usually true for paraelectric impurities) so
that only the term with k = 0 is important in the sum
in Eq. (24b).

The term of order j in Eq. (42) corresponds to a
(j+1}phonon process. If we use the results of
Appendix C to write out the first few terms in Eq.
(42), we find

1/Tl ——(1/TI){ I(l —T /Ts+ }(1+Ts/Ts+ ~ ~ )

= (1/T, )"'[1+o(T'/T'. )] . (43)

The two-phonon terms have been exactly cancelled
by the decrease of & with temperature. The re-
laxation time contains terms of order T, T, etc. ,
but T is missing.

Paraelectric relaxation has been measured over
a wide range of temperature by Kapphan and Luty. '8

In Fig. 1 we give the results for the relaxation of
OH impurities in BbBr, along with theoretical
curves derived from Eq. (42). We have adjusted
two parameters in making the fit: They are the
coefficient of T in (1/TI)"', or, in effect, &Oe
and Tp. The one-phonon rate is taken as
(0. VVx 10s)T sec . (The effect of changing this
parameter would be a uniform vertical shift of the
theoretical curves. ) As we see in Fig. 1, the best
fit is obtained for To= (6. 8 a 0. 5) 'K.

At temperatures higher than those shown in the
figure, our predictions begin to deviate seriously
from the data (we predict too rapid a relaxation
rate). We believe this is due to our neglect of the
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Debye cutoff in deriving Eq. (24), or possibly to a
failure of the Debye approximation itself when the
temperature is high enough for phonons far from
the center of the Brillouin zone to participate in
relaxation.

The multiphonon terms we have been discussing
are all derived from the linear coupling in the orig-
inal Hamiltonian. Nonlinear coupling would alter
the picture considerably. However, the work by
Dick and Strauch seems to indicate that nonlinear
terms give negligible contributions to the lifetime.

The effect of relaxation on paraelectric resonance
should be to broaden the zero-phonon resonance
lines into Lorentzians of width

(44)

We would not expect to be able to directly observe
the temperature-dependent width of a PER line be-
cause of inhomogeneous broadening. However, the
zntenzzty pf the line will be proportional tp e o

as we remarked above.

V. DISCUSSION

A major conclusion of this paper is that many of
the results of the static lattice theory of paraelec-
tric resonance are correct if properly interpreted.
For example, the resonance transition between the
two dipole states is properly regarded as the zero-
phonon line of the coupled dipole-lattice system.
The coupling to phonons does not broaden the line
out of existence; in fact very strong coupling de-
creases the relaxation rate, because of the de-
creased &. The usual formulas for the position
and transition probabilities of resonance lines'
are valid, provided that the correct temperature

l0

LLJ iOI—

I I I & I « I

2 3 4 5 7 io

TEMPERATURE ('K)

FIG. 1. Relaxation rate of OH impurities in RbBr
as a function of temperature. The open circles are the
data of Kapphan and Luty (Ref. 18). The solid lines are
theoretical curves for several values of To. The best
fit is obtained with To ——6.8 'K.

dependent & is used in these formulas. For the
two-level system with E» &, the intensity of the
resonance line is given by Eq. (35) as (&'/8e )
x tanh( —,'Pe). As the dipole-lattice coupling increases,
& gets smaller and the intensity goes down. This
reduction in intensity of the zero-phonon line by the
Debye-Wailer factor is well known in the theory
of F centers and of shallow impurities in semi-
conductors.

The values of (I/T~)~ ' and To obtained by fitting
the data of Kapphan and Luty should in principle
give information about the nature of the dipole-
lattice coupling in RbBr: OH. However, the as-
sumption of a two-level system in this paper and
use of the Debye phonon spectrum in the calculations
preclude the determination of more than rough
estimates for the parameters of the real system.
In order to determine & from Eq. (41) we must note
that Kapphan and Luty measured the relaxation rate
of the optical absorption in a six-level system. The
analysis of Dick~ can be used to show that this is
related to the relaxation between two levels by
(& )„,= 3(I/T~); we therefore use the value (1/T, )"&

= (0. 26x10~)T sec ' in Eq. (41). The result is
&/ks= (2. 8x10 4) 'K. The estimate of Dick and
Strauche for 4 is (5.2x10 ) 'K, in reasonably good
agreement. These are very small values for &

which make RbBr: OH an unlikely candidate for the
observation of paraelectric resonance.

It is tempting to try to estimate S"o by using Eq.
(21) to write

Wo ——(3/2v )(~n/kBTo)

However, S~ and To are determined by two very
different sums over phonon modes, so that Eq. (45)
is only valid within the Debye model. One possible
way to proceed is to regard &~ as an adjustable
parameter and choose it to give a reasonable value
of &o, using Eq. (36). An estimate of &0 can be
obtained ' from the observed infrared "librational
frequency" of the dipole which is of the order of
300 cm for OH in any alkali halide. The result-
ing value of &o/ks is 5 'K, which is probably a cor-
rect order of magnitude for all the alkali halides.
This, along with the value of & already determined,
requires that W0=20. From Eq. (45) we then find
ran/ks = 80 K, a somewhat low but not unreasonable
value. (The Debye temperature of RbBr is actually
about 120 K. ) The condition (36b) for the validity
of the theory is extremely well satisfied. A more
detailed calculation, using realistic values for the
&p and W„", is clearly necessary if one is to im-
prove on the present rough estimates.

ACKNOWLEDGMENTS

We would like to thank B 6 Dick and F Luty
for sending us material before publication. This
work was begun while one of us (L. S. ) held a Na-



1480 L. M. SANDER AND H. B. SHORE

tional Science Foundation Postdoctoral Fellowship.

APPENDIX A

exp[ —(e„'„+e,', + e,',)/S'] . (Al)

Here e„„, etc. , are the strains, and & is a strain
coefficient.

As we can see, the specific heat is not a very
reliable indicator of inhomogeneous broadening.
Nonetheless, if all the broadening in the experi-

l.5—

l.0

0.5

As we mentioned in Sec. I, there is an apparent
contradiction between the success of the specific-
heat calculation of Shepherd and Feher which as-
sumes that sharp tunneling levels exist, and the
suggestion that the tunneling levels are subject to
to large inhomogeneous broadening. A possible
resolution of this difficulty would be to assume that
PER lines are lifetime broadened. Since the con-
clusion of our work is that lifetime broadening is
small for PER at low temperatures (i. e. , T«T ),0
we considered it worthwhile to make sure that the
contradiction mentioned above does not, in fact,
exist.

We have calculated the low-temperature specific
heat of an OH dipole subject to random strains
whose strength obeys a Gaussian distribution. The
width of the Gaussian was varied until strain ener-
gies were appreciable fractions of the energy split-
tings. In Fig. 2 we give the specific heat as a func-
tion of the electric field for several values of the
width, measured in terms of adimensionless param-
eter G = o.S/k~ T where S is the balf-width of the
distribution assumed,

, ; f'(,P+a)

Ret

FIG. 3. Contour used to evaluate 4„(e).

The form of the coupling constants 5'k- may be
derived by a phenomonological treatment valid for
long-wavelength phonons. We write an interaction
term

As, (R, —R') . (Bl)
Here A has the dimensions of a force and R,' are
the z components of the displacements of the near-
est neighbors above and below the impurity. Ex-
panding in phonon operators we get

2is,AQ"„(20pv-„) ' (a„"—a.„')e~ sin(ak, ) . (B2)
Here 0 is the volume, p is the mass density, a is
the lattice spacing, and e-' is the g component of the

k
polarization vector of the mode labeled by k. Note
that Eq. (B2) has the same form as Eq. (lc).

In addition to the wave vector k we should affix
another index specifying the branch of the spectrum
and polarization for the phonon in question. We
restrict ourselves from the outset to acoustic pho-
nons because optical-phonon energies are very much
larger than the tunneling splittings of paraelectric
impurities. We may further restrict the summation
in Eq. (B2) to longitudinal modes only because the
factor e„- sin(ak, ) tends to pick out modes for which
the polarization is parallel to k.

Assuming e„- parallel to %, and expanding

ment of Feher, Shepherd, and Shore is to be at-
tributed to the strains, we would need G= 0. 6. A
distortion of the specific-heat curves could perhaps
be detected if G were this large. '

APPENDIX B

0
0 2

PE/keT

sin(ak, ) = ak„
we average over the directions of k to find

W„-= (—,'A)(20pvf) '~ ak .

(B3)

(B4)

FIG. 2. Specific heat due to paraelectric impurities
as a function of external electric field E, measured in
units of kI3T/p, where p is the dipole moment. The
field is along a (100) axis. It is assumed that pE»4.
The open circles are the data of Shepherd and Weber
(Ref. 2), using the values of p and N given in that paper.
The solid curves are theoretical predictions in the
presence of random strains whose strength is charac-
terized by the parameter 6 (defined in the text).

If we use a Debye approximation for the spectrum,
we can express TVg in terms of the cutoff frequency
(d g)'.

Wf, = (2WO(gf~n/3N) i (B5)

Here 8'0 is a dimensionless parameter describing
the strength of the dipole-phonon interaction. Using
Eqs. (B4) and (B5) we have
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TABLE I. Coefficients D&~
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1.000
1.000
0.200
0.014
5xlp 4

8x 10

1.000
1.000
0.20p
0.014
5 x1p-4
8 x10-'

0.800
0.700
0.130
0.009
2x10 4

5 x10-'

0.514
0.390
0.066
0.004
1 x10-4
2 x1p

0.274
0.183
0.028
0.002
5 x10
8 x1p

0.125
0.074
0.010
6 x1p-4
2x10-'
3x10 7

WO=A /3(6m )'i v p, (B6)

where e is the velocity of sound.
The constant A can be related to the response of

the dipole to an external strain. Because of the
sequence of approximations made in arriving at Eq.
(B5) it seems unlikely that reliable answers could
be found from such an approach. We regard Wo as
an adjustable parameter.

APPENDIX C

With a change of variables, e"" = , the last
factor becomes

(- 3W )~(22~ p/F) f Kn-1+&8(o/2&(W —1) «dw,

(c6)

where the transformed contour C' contains the
singular point so = 1. It is now straightforward to
evaluate the integral in Eq. (C6), and arrive at
the formula first given by Pire and Gosar '

We derive here the power-series expansion for
R(&o). We must first evaluate the integral in Eq.
(21), which we denote I(t), using the approximations
stated just before Eq. (24a). We have, after a few

manipulations,

R(&u) =e o '6(td)+e 0 q (3W, p &/z )

(n+ 1)!(2n+ 1)!

(c7)
25'0 xe ' ' "dx

i(f) =
COg

(Cl) We expand the repeated product within the summa-
tion

where a is a positive infinitesimal. This may be
expressed in terms of a standard integral ' with

the result
(c6)

I(t) = —3W, csch [(n/P)(t —in)] .
From Eqs. (16b) and (19) we have

R( ) -wP-wg5(

(C2)
Using Eq. (C7) we can rewrite the factor in

square brackets in Eq. (CS),

p"
& 0 ~ o (j+k+1)!(2j+2k+1)! '

2m
(C9)

y e o g(1/2&)1 d f eke&t[ l(t) 1] (c3) This specifies the coefficients D&. The &~~' are
determined from the recursion relations

oo 1—e-wo-wy Q d ( )„(nt
The integrals Z„(v) can be evaluated by using the
contour C shown in Fig. 3. We find

(c4)

Expanding the exponential in the second term gives

-w
e 0 "' Q — [I(t)]"e»" dt/2&

n 't

Qo ——1,l

l
O'-m-~

r=m 'r

(C loa)

(Cl ob)

In Table I we give a number of the D&. For use
with connection with Eq. (42) it is useful to note
that Eq. (C10a) implies

J„(~)= (1 —e ") fc[I(f)]"e'"dt /2w (c5) D&~ = 12~(j.)/(2j+ 1) (j + 1) .
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The lattice vibrational properties of heteropolar crystals of the NaCl structure are examined

within the context of recent dielectric-screening theories of insulating crystals. Phillips's
bond-charge approximation for the dielectric response of semiconductors with tetrahedral
coordination is adapted to the treatment of partially covalent NaCl structure crystals. Ap-

plication is made to MgO, where the gross violation of the Cauchy relation among the elastic
constants points to the importance of noncentral forces arising from covalent effects. The

bond-charge model in conjunction with a valence-force-field approximation for the short-range
interactions is shown to provide an adequate description of the lattice spectrum in MgO.

I. INTRODUCTION

The character of the chemical bond which exists
between the component atoms of a metallic or non-
metallic crystal is reflected in those properties of
the crystal which depend directly on the electronic
spectrum. These properties are, in turn, reflected
in the linear dielectric-screening properties of the
many-particle system consisting of the valence
electrons alone. It 1s only natura&, then, that re-
cent advances in the understanding of the chemical
bond have been based on a dielectric-screening
theory of the valence electrons of the crystal. Ap-
plication of these ideas has met with considerable
success in the understanding of the over-all trends
of many of the physical properties of a large class
of covRlent Rnd pRI'tlRlly lonlc dlRtomlc crystRls '

with the formula A„B8 „. Of particular note is the
successful correlation of a dielectric definition of
electronegativity or ionicity with the structure of

the static electronic dielectric constant. This has
led to the prediction, with good results, of ioniza-
tion potentials and band structures of 68 binary
compounds of the form A„B8 „. Furthermore, a
correlation has been shown to exist between the ef-
fective ionicity defined by Phillips and some of the
regularities exhibited by the experimental elastic
constants of ZnS structure semiconductors. 8

The basic ideas which underlie the dlelectr1c def-
inition of electronegativity can be used to develop
a model of lattice vibration spectra in covalent and

partially ionic crystals. Such an extension was
proposed by Phillips4 and subsequently put on a
more r1gorous bRsls by MartIn 1n R dlelectrlc-
screening treatment of the lattice vibrations of sil-
icon. It will be recalled that there have appeared
recently several general formulations of the lattice
vibration problem' '" which encompass in a unified
manner the lattice dynamical description of both
metallic and nonmetallic crystals. In his work on


